1
|
Chang Y, Zeng X, Peng S, Lai R, Yang M, Wang D, Zhou X, Shao Y. All-or-None Selectivity in Probing Polarity-Determined Trinucleotide Repeat Foldings with a Parity Resolution by a Beyond-Size-Matching Ligand. Anal Chem 2023; 95:3746-3753. [PMID: 36745842 DOI: 10.1021/acs.analchem.2c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Abnormal amplification of trinucleotide repeats (TNRs) is associated with neurodegenerative diseases by forming a particular hairpin bulge. It is well known that the polarity and parity of TNRs can regulate the formed hairpin structures. Therefore, there is a great challenge to efficiently discriminate the hairpin structures of TNRs with substantial selectivity. Herein, we developed a fluorescent ligand of pseudohypericin (Pse) with a beyond-size-matching (BSM) geometry to selectively sense hairpin structures of GTC and CTG TNRs. The GTC hairpin structures can bind with Pse dominantly at extreme T-T mismatches by the virtue of their most extrahelical conformations, while there is no binding event to occur with the polarity-inverted counterpart CTG hairpin structures because of the limited space provided by their intrahelical T-T mismatches. In addition, this all-or-none response with the polarity-dependent folding (PoDF) is independent of the length of these TNRs. Interestingly, the parity-dependent folding (PaDF) of GTC hairpin structures can also be resolved. Besides pure TNRs, the competency of this BSM ligand to sense the PoDF and PaDF effects was also generalized to DNAs with TNRs occurring at loop and stem end regions. To our knowledge, this is the first experimental observation with the state-of-the-art performance over the fluorescence measurement of PoDF and PaDF in TNRs. Our work provides an expedient way to elucidate the TNR folding by designing ligands having BSM features.
Collapse
Affiliation(s)
- Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
2
|
Kirsanova OV, Subach FV, Loiko AG, Eritja RI, Gromova ES. EcoRII Restriction Endonuclease Forms Specific Contacts to the Bases of Its Target Sequence Flipped from DNA in a Transition Complex with Photoactivatable Substrates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202102014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
3
|
Tamulaitiene G, Manakova E, Jovaisaite V, Tamulaitis G, Grazulis S, Bochtler M, Siksnys V. Unique mechanism of target recognition by PfoI restriction endonuclease of the CCGG-family. Nucleic Acids Res 2019; 47:997-1010. [PMID: 30445642 PMCID: PMC6344858 DOI: 10.1093/nar/gky1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2018] [Accepted: 10/26/2018] [Indexed: 01/23/2023] Open
Abstract
Restriction endonucleases (REs) of the CCGG-family recognize a set of 4–8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5′-CCNGG flip the central N nucleotides and ‘compress’ the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5′-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not ‘compress’ the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences.
Collapse
Affiliation(s)
- Giedre Tamulaitiene
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginija Jovaisaite
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Grazulis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Matthias Bochtler
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Dept. of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol Cell 2018; 71:816-824.e3. [PMID: 30078724 PMCID: PMC6679935 DOI: 10.1016/j.molcel.2018.06.043] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
Class 2 CRISPR-Cas nucleases are programmable genome editing tools with promising applications in human health and disease. However, DNA cleavage at off-target sites that resemble the target sequence is a pervasive problem that remains poorly understood mechanistically. Here, we use quantitative kinetics to dissect the reaction steps of DNA targeting by Acidaminococcus sp Cas12a (also known as Cpf1). We show that Cas12a binds DNA tightly in two kinetically separable steps. Protospacer-adjacent motif (PAM) recognition is followed by rate-limiting R-loop propagation, leading to inevitable DNA cleavage of both strands. Despite functionally irreversible binding, Cas12a discriminates strongly against mismatches along most of the DNA target sequence. This result implies substantial reversibility during R-loop formation-a late transition state-and defies common descriptions of a "seed" region. Our results provide a quantitative basis for the DNA cleavage patterns measured in vivo and observations of greater reported target specificity for Cas12a than for the Cas9 nuclease.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fatema A Saifuddin
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Sasnauskas G, Tamulaitienė G, Tamulaitis G, Čalyševa J, Laime M, Rimšelienė R, Lubys A, Siksnys V. UbaLAI is a monomeric Type IIE restriction enzyme. Nucleic Acids Res 2017; 45:9583-9594. [PMID: 28934493 PMCID: PMC5766183 DOI: 10.1093/nar/gkx634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Jelena Čalyševa
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Miglė Laime
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Renata Rimšelienė
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Tamulaitis G, Rutkauskas M, Zaremba M, Grazulis S, Tamulaitiene G, Siksnys V. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI. Nucleic Acids Res 2015; 43:8100-10. [PMID: 26240380 PMCID: PMC4652773 DOI: 10.1093/nar/gkv768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2015] [Accepted: 07/17/2015] [Indexed: 02/03/2023] Open
Abstract
Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5′-W/CCGGW-3′ (W stands for A or T, ‘/’ denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an ‘open’ configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes.
Collapse
Affiliation(s)
- Gintautas Tamulaitis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Marius Rutkauskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Saulius Grazulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
7
|
Karpen ME, deHaseth PL. Base flipping in open complex formation at bacterial promoters. Biomolecules 2015; 5:668-78. [PMID: 25927327 PMCID: PMC4496690 DOI: 10.3390/biom5020668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022] Open
Abstract
In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called "open complex" (also referred to as RP(o)). This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the -11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the -11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the -11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.
Collapse
Affiliation(s)
- Mary E Karpen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, 312 Padnos Hall, Allendale, MI 49401, USA.
| | - Pieter L deHaseth
- Center for RNA Molecular Biology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
- Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Dyakonova ES, Koval VV, Lomzov AA, Ishchenko AA, Fedorova OS. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA. Biochim Biophys Acta Gen Subj 2015; 1850:1297-309. [PMID: 25766873 DOI: 10.1016/j.bbagen.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. METHODS The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. RESULTS We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. CONCLUSIONS We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. GENERAL SIGNIFICANCE Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents.
Collapse
Affiliation(s)
- Elena S Dyakonova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogov St., 2, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
9
|
Park S, Otomo H, Zheng L, Sugiyama H. Highly emissive deoxyguanosine analogue capable of direct visualization of B-Z transition. Chem Commun (Camb) 2014; 50:1573-5. [PMID: 24382561 DOI: 10.1039/c3cc48297a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
A 2-aminothieno[3,4-d]pyrimidine G-mimic deoxyribonucleoside, (th)dG, was synthesized and incorporated readily into oligonucleotides as a versatile fluorescent guanine analogue. We demonstrate that (th)dG enables the visual detection of Z-DNA successfully based on different π-stacking of B- and Z-DNA.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
10
|
Seio K, Kanamori T, Tokugawa M, Ohzeki H, Masaki Y, Tsunoda H, Ohkubo A, Sekine M. Fluorescent properties of oligonucleotides doubly modified with an indole-fused cytosine analog and 2-aminopurine. Bioorg Med Chem 2013; 21:3197-201. [PMID: 23628471 DOI: 10.1016/j.bmc.2013.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/16/2022]
Abstract
Single- and double-stranded oligodeoxynucleotides (ODNs) incorporating both 2-aminopurine (2AP) and an indole-fused cytosine analog (PPI) were prepared and studied for their fluorescence properties. PPI and 2AP can be excited simultaneously by irradiation at 300 nm, with emission observed at 500 nm for PPI and 370 nm for 2AP. We demonstrated the utility of these properties in the dual fluorescence labeling of ODNs giving well-separated emission peaks. In addition, both of the fluorescence signals of a doubly modified ODN changed independently, reflecting the local duplex formation at the regions containing 2AP or PPI. Potential applications of this strategy for the dual fluorescence labeling of oligonucleotides with 2AP and PPI include monitoring local structure alterations of functional nucleic acids and the multiplex detection of biologically important nucleic acids.
Collapse
Affiliation(s)
- Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ma L, Chen K, Clarke DJ, Nortcliffe CP, Wilson GG, Edwardson JM, Morton AJ, Jones AC, Dryden DTF. Restriction endonuclease TseI cleaves A:A and T:T mismatches in CAG and CTG repeats. Nucleic Acids Res 2013; 41:4999-5009. [PMID: 23525471 PMCID: PMC3643589 DOI: 10.1093/nar/gkt176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
The type II restriction endonuclease TseI recognizes the DNA target sequence 5′-G^CWGC-3′ (where W = A or T) and cleaves after the first G to produce fragments with three-base 5′-overhangs. We have determined that it is a dimeric protein capable of cleaving not only its target sequence but also one containing A:A or T:T mismatches at the central base pair in the target sequence. The cleavage of targets containing these mismatches is as efficient as cleavage of the correct target sequence containing a central A:T base pair. The cleavage mechanism does not apparently use a base flipping mechanism as found for some other type II restriction endonuclease recognizing similarly degenerate target sequences. The ability of TseI to cleave targets with mismatches means that it can cleave the unusual DNA hairpin structures containing A:A or T:T mismatches formed by the repetitive DNA sequences associated with Huntington’s disease (CAG repeats) and myotonic dystrophy type 1 (CTG repeats).
Collapse
Affiliation(s)
- Long Ma
- EaStChem School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Johnson J, Okyere R, Joseph A, Musier-Forsyth K, Kankia B. Quadruplex formation as a molecular switch to turn on intrinsically fluorescent nucleotide analogs. Nucleic Acids Res 2012; 41:220-8. [PMID: 23093597 PMCID: PMC3592437 DOI: 10.1093/nar/gks975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Quadruplexes are involved in the regulation of gene expression and are part of telomeres at the ends of chromosomes. In addition, they are useful in therapeutic and biotechnological applications, including nucleic acid diagnostics. In the presence of K+ ions, two 15-mer sequences d(GGTTGGTGTGGTTGG) (thrombin binding aptamer) and d(GGGTGGGTGGGTGGG) (G3T) fold into antiparallel and parallel quadruplexes, respectively. In the present study, we measured the fluorescence intensity of one or more 2-aminopurine or 6-methylisoxanthopterin base analogs incorporated at loop-positions of quadruplex forming sequences to develop a detection method for DNA sequences in solution. Before quadruplex formation, the fluorescence is efficiently quenched in all cases. Remarkably, G3T quadruplex formation results in emission of fluorescence equal to that of a free base in all three positions. In the case of thrombin binding aptamer, the emission intensity depends on the location of the fluorescent nucleotides. Circular dichroism studies demonstrate that the modifications do not change the overall secondary structure, whereas thermal unfolding experiments revealed that fluorescent analogs significantly destabilize the quadruplexes. Overall, these studies suggest that quadruplexes containing fluorescent nucleotide analogs are useful tools in the development of novel DNA detection methodologies.
Collapse
Affiliation(s)
- John Johnson
- Department of Chemistry and Biochemistry, Center for RNA Biology, the Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
13
|
Dyakonova ES, Koval VV, Ishchenko AA, Saparbaev MK, Kaptein R, Fedorova OS. Kinetic mechanism of the interaction of Saccharomyces cerevisiae AP-endonuclease 1 with DNA substrates. BIOCHEMISTRY (MOSCOW) 2012; 77:1162-71. [DOI: 10.1134/s0006297912100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
14
|
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 2012; 109:E2579-86. [PMID: 22949671 DOI: 10.1073/pnas.1208507109] [Citation(s) in RCA: 1840] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system introduces in vitro a double-strand break at a specific site in DNA containing a sequence complementary to crRNA. DNA cleavage is executed by Cas9, which uses two distinct active sites, RuvC and HNH, to generate site-specific nicks on opposite DNA strands. Results demonstrate that the Cas9-crRNA complex functions as an RNA-guided endonuclease with RNA-directed target sequence recognition and protein-mediated DNA cleavage. These findings pave the way for engineering of universal programmable RNA-guided DNA endonucleases.
Collapse
|
15
|
Sukackaite R, Grazulis S, Tamulaitis G, Siksnys V. The recognition domain of the methyl-specific endonuclease McrBC flips out 5-methylcytosine. Nucleic Acids Res 2012; 40:7552-62. [PMID: 22570415 PMCID: PMC3424535 DOI: 10.1093/nar/gks332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023] Open
Abstract
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in prokaryotes. Here we report the crystal structure of the N-terminal DNA-binding domain (McrB-N) of the methyl-specific endonuclease McrBC from Escherichia coli. The McrB-N protein shows a novel DNA-binding fold adapted for 5mC-recognition. In the McrB-N structure in complex with methylated DNA, the 5mC base is flipped out from the DNA duplex and positioned within a binding pocket. Base flipping elegantly explains why McrBC system restricts only T4-even phages impaired in glycosylation [Luria, S.E. and Human, M.L. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol., 64, 557–569]: flipped out 5-hydroxymethylcytosine is accommodated in the binding pocket but there is no room for the glycosylated base. The mechanism for 5mC recognition employed by McrB-N is highly reminiscent of that for eukaryotic SRA domains, despite the differences in their protein folds.
Collapse
Affiliation(s)
- Rasa Sukackaite
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, 02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
16
|
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2011. [PMID: 21343909 DOI: 10.1038/emboj.2011.41.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.
Collapse
Affiliation(s)
- Tomas Sinkunas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
17
|
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2011; 30:1335-42. [PMID: 21343909 DOI: 10.1038/emboj.2011.41] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2010] [Accepted: 02/01/2011] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.
Collapse
|
18
|
Zaremba M, Owsicka A, Tamulaitis G, Sasnauskas G, Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL, Laurens N, van den Broek B, Wuite GJL, Siksnys V. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme. Nucleic Acids Res 2010; 38:7142-54. [PMID: 20571089 PMCID: PMC2978343 DOI: 10.1093/nar/gkq560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Singh P, Tripathi P, Muniyappa K. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not. Protein Sci 2010; 19:111-23. [PMID: 19937653 DOI: 10.1002/pro.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
Collapse
Affiliation(s)
- Pawan Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
20
|
Bethge L, Singh I, Seitz O. Designed thiazole orange nucleotides for the synthesis of single labelled oligonucleotides that fluoresce upon matched hybridization. Org Biomol Chem 2010; 8:2439-48. [PMID: 20448904 DOI: 10.1039/c000697a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Probe molecules that enable the detection of specific DNA sequences are used in diagnostic and basic research. Most methods rely on the specificity of hybridization reactions, which complicates the detection of single base mutations at low temperature. Significant efforts have been devoted to the development of oligonucleotides that allow discrimination of single base mutations at temperatures where both the match and the mismatch probe-target complexes coexist. Oligonucleotides that contain environmentally sensitive fluorescence dyes such as thiazole orange (TO) provide single nucleotide specific fluorescence. However, most previously reported dye-DNA conjugates showed only little if any difference between the fluorescence of the single and the double stranded state. Here, we introduce a TO-containing acyclic nucleotide, which is coupled during automated oligonucleotide synthesis and provides for the desired fluorescence-up properties. The study reveals the conjugation mode as the most important issue. We show a design that leads to low fluorescence of the unbound probe (background) yet permits TO to adopt fluorescent binding modes after the probe-target complex has formed. In these probes, TO replaces a canonical nucleobase. Of note, the fluorescence of the "TO-base" remains low when a base mismatch is positioned in immediate vicinity.
Collapse
Affiliation(s)
- Lucas Bethge
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, Berlin, D-12489, Germany
| | | | | |
Collapse
|
21
|
Singh P, Tripathi P, Silva GH, Pingoud A, Muniyappa K. Characterization of Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease, reveals a unique mode of DNA binding, helical distortion, and cleavage compared with a canonical LAGLIDADG homing endonuclease. J Biol Chem 2009; 284:25912-28. [PMID: 19605345 PMCID: PMC2757992 DOI: 10.1074/jbc.m109.042861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2009] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.
Collapse
Affiliation(s)
- Pawan Singh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Pankaj Tripathi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - George H. Silva
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Alfred Pingoud
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - K. Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
22
|
Neely RK, Tamulaitis G, Chen K, Kubala M, Siksnys V, Jones AC. Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Res 2009; 37:6859-70. [PMID: 19740769 PMCID: PMC2777440 DOI: 10.1093/nar/gkp688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Restriction enzymes Ecl18kI, PspGI and EcoRII-C, specific for interrupted 5-bp target sequences, flip the central base pair of these sequences into their protein pockets to facilitate sequence recognition and adjust the DNA cleavage pattern. We have used time-resolved fluorescence spectroscopy of 2-aminopurine-labelled DNA in complex with each of these enzymes in solution to explore the nucleotide flipping mechanism and to obtain a detailed picture of the molecular environment of the extrahelical bases. We also report the first study of the 7-bp cutter, PfoI, whose recognition sequence (T/CCNGGA) overlaps with that of the Ecl18kI-type enzymes, and for which the crystal structure is unknown. The time-resolved fluorescence experiments reveal that PfoI also uses base flipping as part of its DNA recognition mechanism and that the extrahelical bases are captured by PfoI in binding pockets whose structures are quite different to those of the structurally characterized enzymes Ecl18kI, PspGI and EcoRII-C. The fluorescence decay parameters of all the enzyme-DNA complexes are interpreted to provide insight into the mechanisms used by these four restriction enzymes to flip and recognize bases and the relationship between nucleotide flipping and DNA cleavage.
Collapse
Affiliation(s)
- Robert K Neely
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Golovenko D, Manakova E, Tamulaitiene G, Grazulis S, Siksnys V. Structural mechanisms for the 5'-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII. Nucleic Acids Res 2009; 37:6613-24. [PMID: 19729506 PMCID: PMC2770665 DOI: 10.1093/nar/gkp699] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
EcoRII restriction endonuclease is specific for the 5′-CCWGG sequence (W stands for A or T); however, it shows no activity on a single recognition site. To activate cleavage it requires binding of an additional target site as an allosteric effector. EcoRII dimer consists of three structural units: a central catalytic core, made from two copies of the C-terminal domain (EcoRII-C), and two N-terminal effector DNA binding domains (EcoRII-N). Here, we report DNA-bound EcoRII-N and EcoRII-C structures, which show that EcoRII combines two radically different structural mechanisms to interact with the effector and substrate DNA. The catalytic EcoRII-C dimer flips out the central T:A base pair and makes symmetric interactions with the CC:GG half-sites. The EcoRII-N effector domain monomer binds to the target site asymmetrically in a single defined orientation which is determined by specific hydrogen bonding and van der Waals interactions with the central T:A pair in the major groove. The EcoRII-N mode of the target site recognition is shared by the large class of higher plant transcription factors of the B3 superfamily.
Collapse
Affiliation(s)
- Dmitrij Golovenko
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
24
|
Bischerour J, Chalmers R. Base flipping in tn10 transposition: an active flip and capture mechanism. PLoS One 2009; 4:e6201. [PMID: 19593448 PMCID: PMC2705183 DOI: 10.1371/journal.pone.0006201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2009] [Accepted: 05/25/2009] [Indexed: 11/19/2022] Open
Abstract
The bacterial Tn5 and Tn10 transposases have a single active site that cuts both strands of DNA at their respective transposon ends. This is achieved using a hairpin intermediate that requires the DNA to change conformation during the reaction. In Tn5 these changes are controlled in part by a flipped nucleoside that is stacked on a tryptophan residue in a hydrophobic pocket of the transposase. Here we have investigated the base flipping mechanism in Tn10 transposition. As in Tn5 transposition, we find that base flipping takes place after the first nick and is required for efficient hairpin formation and resolution. Experiments with an abasic substrate show that the role of base flipping in hairpin formation is to remove the base from the DNA helix. Specific interactions between the flipped base and the stacking tryptophan residue are required for hairpin resolution later in the reaction. We show that base flipping in Tn10 transposition is not a passive reaction in which a spontaneously flipped base is captured and retained by the protein. Rather, it is driven in part by a methionine probe residue that helps to force the flipped base from the base stack. Overall, it appears that base flipping in Tn10 transposition is similar to that in Tn5 transposition.
Collapse
Affiliation(s)
- Julien Bischerour
- University of Nottingham, School of Biomedical Sciences, The Medical School, Queens Medical Centre (QMC), Nottingham, United Kingdom
| | - Ronald Chalmers
- University of Nottingham, School of Biomedical Sciences, The Medical School, Queens Medical Centre (QMC), Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Schroeder LA, Gries TJ, Saecker RM, Record MT, Harris ME, DeHaseth PL. Evidence for a tyrosine-adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA. J Mol Biol 2008; 385:339-49. [PMID: 18976666 DOI: 10.1016/j.jmb.2008.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022]
Abstract
Bacterial RNA polymerase and a "sigma" transcription factor form an initiation-competent "open" complex at a promoter by disruption of about 14 base pairs. Strand separation is likely initiated at the highly conserved -11 A-T base pair. Amino acids in conserved region 2.3 of the main Escherichia coli sigma factor, sigma(70), are involved in this process, but their roles are unclear. To monitor the fates of particular bases upon addition of RNA polymerase, promoters bearing single substitutions of the fluorescent A-analog 2-aminopurine (2-AP) at -11 and two other positions in promoter DNA were examined. Evidence was obtained for an open intermediate on the pathway to open complex formation, in which these 2-APs are no longer stacked onto their neighboring bases. The tyrosine at residue 430 in region 2.3 of sigma(70) was shown to be involved in quenching the fluorescence of a 2-AP substituted at -11, presumably through a stacking interaction. These data refine the structural model for open complex formation and reveal a novel interaction involved in DNA melting by RNA polymerase.
Collapse
Affiliation(s)
- Lisa A Schroeder
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106-4973, USA
| | | | | | | | | | | |
Collapse
|
26
|
Szczepanowski RH, Carpenter MA, Czapinska H, Zaremba M, Tamulaitis G, Siksnys V, Bhagwat AS, Bochtler M. Central base pair flipping and discrimination by PspGI. Nucleic Acids Res 2008; 36:6109-17. [PMID: 18829716 PMCID: PMC2577326 DOI: 10.1093/nar/gkn622] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
PspGI is a representative of a group of restriction endonucleases that recognize a pentameric sequence related to CCNGG. Unlike the previously investigated Ecl18kI, which does not have any specificity for the central base pair, PspGI prefers A/T over G/C in its target site. Here, we present a structure of PspGI with target DNA at 1.7 Å resolution. In this structure, the bases at the center of the recognition sequence are extruded from the DNA and flipped into pockets of PspGI. The flipped thymine is in the usual anti conformation, but the flipped adenine takes the normally unfavorable syn conformation. The results of this and the accompanying manuscript attribute the preference for A/T pairs over G/C pairs in the flipping position to the intrinsically lower penalty for flipping A/T pairs and to selection of the PspGI pockets against guanine and cytosine. Our data show that flipping can contribute to the discrimination between normal bases. This adds a new role to base flipping in addition to its well-known function in base modification and DNA damage repair.
Collapse
Affiliation(s)
- Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. How PspGI, catalytic domain of EcoRII and Ecl18kI acquire specificities for different DNA targets. Nucleic Acids Res 2008; 36:6101-8. [PMID: 18820295 PMCID: PMC2577355 DOI: 10.1093/nar/gkn621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
Restriction endonucleases Ecl18kI and PspGI/catalytic domain of EcoRII recognize CCNGG and CCWGG sequences (W stands for A or T), respectively. The enzymes are structurally similar, interact identically with the palindromic CC:GG parts of their recognition sequences and flip the nucleotides at their centers. Specificity for the central nucleotides could be influenced by the strength/stability of the base pair to be disrupted and/or by direct interactions of the enzymes with the flipped bases. Here, we address the importance of these contributions. We demonstrate that wt Ecl18kI cleaves oligoduplexes containing canonical, mismatched and abasic sites in the central position of its target sequence CCNGG with equal efficiencies. In contrast, substitutions in the binding pocket for the extrahelical base alter the Ecl18kI preference for the target site: the W61Y mutant prefers only certain mismatched substrates, and the W61A variant cuts exclusively at abasic sites, suggesting that pocket interactions play a major role in base discrimination. PspGI and catalytic domain of EcoRII probe the stability of the central base pair and the identity of the flipped bases in the pockets. This ‘double check’ mechanism explains their extraordinary specificity for an A/T pair in the flipping position.
Collapse
|
28
|
Carpenter MA, Bhagwat AS. DNA base flipping by both members of the PspGI restriction-modification system. Nucleic Acids Res 2008; 36:5417-25. [PMID: 18718929 PMCID: PMC2532716 DOI: 10.1093/nar/gkn528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.
Collapse
Affiliation(s)
- Michael A Carpenter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | |
Collapse
|
29
|
Morita R, Nakagawa N, Kuramitsu S, Masui R. An O6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J Biochem 2008; 144:267-77. [PMID: 18483064 DOI: 10.1093/jb/mvn065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
The major damage to DNA caused by alkylating agents involves the formation of O6-methylguanine (O6-meG). Almost all species possess O6-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O6-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O6-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O6-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O6-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O6-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
30
|
Daujotyte D, Liutkeviciūte Z, Tamulaitis G, Klimasauskas S. Chemical mapping of cytosines enzymatically flipped out of the DNA helix. Nucleic Acids Res 2008; 36:e57. [PMID: 18450817 PMCID: PMC2425465 DOI: 10.1093/nar/gkn200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein-DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein-DNA complexes.
Collapse
Affiliation(s)
- Dalia Daujotyte
- Institute of Biotechnology, Graiciūno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|