1
|
Kirchner S, Reuter S, Westphal A, Mrowka R. Decipher the complexity of cis-regulatory regions by a modified Cas9. PLoS One 2020; 15:e0235530. [PMID: 32614871 PMCID: PMC7332081 DOI: 10.1371/journal.pone.0235530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/18/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Understanding complex mechanisms of human transcriptional regulation remains a major challenge. Classical reporter studies already enabled the discovery of cis-regulatory elements within the non-coding DNA; however, the influence of genomic context and potential interactions are still largely unknown. Using a modified Cas9 activation complex we explore the complexity of renin transcription in its native genomic context. METHODS With the help of genomic editing, we stably tagged the native renin on chromosome 1 with the firefly luciferase and stably integrated a programmable modified Cas9 based trans-activation complex (SAM-complex) by lentiviral transduction into human cells. By delivering five specific guide-RNA homologous to specific promoter regions of renin we were able to guide this SAM-complex to these regions of interest. We measured gene expression and generated and compared computational models. RESULTS SAM complexes induced activation of renin in our cells after renin specific guide-RNA had been provided. All possible combinations of the five guides were subjected to model analysis in linear models. Quantifying the prediction error and the calculation of an estimator of the relative quality of the statistical models for our given set of data revealed that a model incorporating interactions in the proximal promoter is the superior model for explanation of the data. CONCLUSION By applying our combined experimental and modelling approach we can show that interactions occur within the selected sequences of the proximal renin promoter region. This combined approach might potentially be useful to investigate other genomic regions. Our findings may help to better understand the transcriptional regulation of human renin.
Collapse
Affiliation(s)
- Steven Kirchner
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Stefanie Reuter
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Anika Westphal
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Ralf Mrowka
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
2
|
Cheng X, Dimou E, Alborzinia H, Wenke F, Göhring A, Reuter S, Mah N, Fuchs H, Andrade-Navarro MA, Adjaye J, Gul S, Harms C, Utikal J, Klipp E, Mrowka R, Wölfl S. Identification of 2-[4-[(4-Methoxyphenyl)methoxy]-phenyl]acetonitrile and Derivatives as Potent Oct3/4 Inducers. J Med Chem 2015; 58:4976-83. [PMID: 25898186 DOI: 10.1021/acs.jmedchem.5b00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reprogramming somatic cells into induced-pluripotent cells (iPSCs) provides new access to all somatic cell types for clinical application without any ethical controversy arising from the use of embryonic stem cells (ESCs). Established protocols for iPSCs generation based on viral transduction with defined factors are limited by low efficiency and the risk of genetic abnormality. Several small molecules have been reported as replacements for defined transcriptional factors, but a chemical able to replace Oct3/4 allowing the generation of human iPSCs is still unavailable. Using a cell-based High Throughput Screening (HTS) campaign, we identified that 2-[4-[(4-methoxyphenyl)methoxy]phenyl]acetonitrile (1), termed O4I1, enhanced Oct3/4 expression. Structural verification and modification by chemical synthesis showed that O4I1 and its derivatives not only promoted expression and stabilization of Oct3/4 but also enhanced its transcriptional activity in diverse human somatic cells, implying the possible benefit from using this class of compounds in regenerative medicine.
Collapse
Affiliation(s)
- Xinlai Cheng
- †Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Eleni Dimou
- †Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Hamed Alborzinia
- †Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Frank Wenke
- ‡Experimentelle Nephrologie, KIM III, Universitätsklinikum Jena, Am Nonnenplan 2-4, D-07743 Jena, Germany
| | - Axel Göhring
- ‡Experimentelle Nephrologie, KIM III, Universitätsklinikum Jena, Am Nonnenplan 2-4, D-07743 Jena, Germany
| | - Stefanie Reuter
- ‡Experimentelle Nephrologie, KIM III, Universitätsklinikum Jena, Am Nonnenplan 2-4, D-07743 Jena, Germany
| | - Nancy Mah
- §Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Heiko Fuchs
- ∥Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | | | - James Adjaye
- ∥Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Sheraz Gul
- ⊥European Screening Port GmbH, Hamburg, Germany
| | - Christoph Harms
- #Center for Stroke Research Berlin, Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jochen Utikal
- ∇Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg University, Mannheim, Germany
| | - Edda Klipp
- ○Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Mrowka
- ‡Experimentelle Nephrologie, KIM III, Universitätsklinikum Jena, Am Nonnenplan 2-4, D-07743 Jena, Germany
| | - Stefan Wölfl
- †Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
Schulthess P, Löffler A, Vetter S, Kreft L, Schwarz M, Braeuning A, Blüthgen N. Signal integration by the CYP1A1 promoter--a quantitative study. Nucleic Acids Res 2015; 43:5318-30. [PMID: 25934798 PMCID: PMC4477655 DOI: 10.1093/nar/gkv423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/17/2015] [Indexed: 01/23/2023] Open
Abstract
Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns.
Collapse
Affiliation(s)
- Pascal Schulthess
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Alexandra Löffler
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Luisa Kreft
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Michael Schwarz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Wilhelmstraße 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Nils Blüthgen
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
4
|
Desch M, Harlander S, Neubauer B, Gerl M, Germain S, Castrop H, Todorov VT. cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Arch 2011; 461:567-77. [PMID: 21424707 DOI: 10.1007/s00424-011-0956-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/30/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
This study aimed to assess the role of cAMP target sequences enhancer cAMP response element (enhCRE) and cAMP and overlapping negative response element (CNRE) in the control of human renin gene (REN) in vivo. enhCRE and CNRE were silenced by mutations in a 12.2-kb human renin promoter fused to LacZ reporter gene. This construct was used to generate transgenic mice (RENMut-LacZ). The expression of the transgene was correctly targeted to the juxtaglomerular portions of renal afferent arterioles which express endogenous mouse renin. Therefore, enhCRE and CNRE do not seem to be relevant for the control of the cell-specific expression of the human renin gene. The β-adrenoreceptor agonist isoproterenol (10 mg/kg/day, for 2 days) stimulated the endogenous renin, but not the LacZ mRNA expression. Treatment of RENMut-LacZ mice with the angiotensin converting enzyme inhibitor (enalapril 10 mg/kg/day, for 7 days) or their crossing to angiotensin receptor type 1a knockout mice led to increased renin and LacZ mRNA levels. Renin expression was upregulated by low-salt diet (0.03% NaCl, for 10 days) and downregulated by high-salt diet (4% NaCl, for 10 days). In contrast, low-salt diet did not influence, while high-salt diet inhibited the expression of LacZ. In summary, enhCRE and CNRE appear to be necessary for the transactivation of the human renin gene through β-adrenoreceptors and by low-salt diet. Our data also suggest that different intracellular mechanisms mediate the effect of low- and high-salt intake on renin expression in vivo.
Collapse
Affiliation(s)
- Michael Desch
- Institute of Physiology, University of Regensburg, 93040, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Desch M, Schubert T, Schreiber A, Mayer S, Friedrich B, Artunc F, Todorov VT. PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression. Mol Endocrinol 2010; 24:2139-51. [PMID: 20861226 DOI: 10.1210/me.2010-0134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The second messenger cAMP plays an important role in the regulation of renin gene expression. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is known to stimulate renin gene transcription acting through PPARγ-binding sequences in renin promoter. We show now that activation of PPARγ by unsaturated fatty acids or thiazolidinediones drastically augments the cAMP-dependent increase of renin mRNA in the human renin-producing cell line Calu-6. The underlying mechanism involves potentiation of agonist-induced cAMP increase and up-regulation of adenylate cyclase 6 (AC6) gene expression. We identified a palindromic element with a 3-bp spacer (Pal3) in AC6 intron 1 (AC6Pal3). AC6Pal3 bound PPARγ and mediated trans-activation by PPARγ agonist. AC6 knockdown decreased basal renin mRNA level and attenuated the maximal PPARγ-dependent stimulation of the cAMP-induced renin gene expression. AC6Pal3 decoy oligonucleotide abrogated the PPARγ-dependent potentiation of cAMP-induced renin gene expression. Treatment of mice with PPARγ agonist increased AC6 mRNA kidney levels. Our data suggest that in addition to its direct effect on renin gene transcription, PPARγ "sensitizes" renin gene to cAMP via trans-activation of AC6 gene. AC6 has been identified as PPARγ target gene with a functional Pal3 sequence.
Collapse
Affiliation(s)
- Michael Desch
- Institute of Physiology, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Sequeira Lopez MLS, Gomez RA. Novel mechanisms for the control of renin synthesis and release. Curr Hypertens Rep 2010; 12:26-32. [PMID: 20425155 DOI: 10.1007/s11906-009-0080-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Renin is the key regulated step in the enzymatic cascade that leads to angiotensin generation and the control of blood pressure and fluid/electrolyte homeostasis. In the adult unstressed animal, renin is synthesized and released by renal juxtaglomerular cells. However, when homeostasis is threatened, the number of cells that express and release renin increases and extends beyond the juxtaglomerular area; the result is an increase in circulating renin and the reestablishment of homeostasis. The increase in the number of renin cells, a process termed recruitment, is achieved by dedifferentiation and re-expression of renin in cells derived from the renin lineage. The mechanisms that regulate the related processes of reacquisition of the renin phenotype, renin synthesis, and renin release are beginning to be understood. Numerous studies point to cAMP as a central common factor for the regulation of renin phenotype. In addition, we are seeing the emergence of gap junctions and microRNAs as new and promising avenues for a more complete understanding of the complex regulation of the renin cell.
Collapse
|
7
|
Kiełbasa SM, Klein H, Roider HG, Vingron M, Blüthgen N. TransFind--predicting transcriptional regulators for gene sets. Nucleic Acids Res 2010; 38:W275-80. [PMID: 20511592 PMCID: PMC2896106 DOI: 10.1093/nar/gkq438] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The analysis of putative transcription factor binding sites in promoter regions of coregulated genes allows to infer the transcription factors that underlie observed changes in gene expression. While such analyses constitute a central component of the in-silico characterization of transcriptional regulatory networks, there is still a lack of simple-to-use web servers able to combine state-of-the-art prediction methods with phylogenetic analysis and appropriate multiple testing corrected statistics, which returns the results within a short time. Having these aims in mind we developed TransFind, which is freely available at http://transfind.sys-bio.net/.
Collapse
Affiliation(s)
- Szymon M Kiełbasa
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
8
|
Perlewitz A, Nafz B, Skalweit A, Fähling M, Persson PB, Thiele BJ. Aldosterone and vasopressin affect {alpha}- and {gamma}-ENaC mRNA translation. Nucleic Acids Res 2010; 38:5746-60. [PMID: 20453031 PMCID: PMC2943617 DOI: 10.1093/nar/gkq267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vasopressin and aldosterone play key roles in the fine adjustment of sodium and water re-absorption in the nephron. The molecular target of this regulation is the epithelial sodium channel (ENaC) consisting of α-, β- and γ-subunits. We investigated mRNA-specific post-transcriptional mechanisms in hormone-dependent expression of ENaC subunits in mouse kidney cortical collecting duct cells. Transcription experiments and polysome gradient analysis demonstrate that both hormones act on transcription and translation. RNA-binding proteins (RBPs) and mRNA sequence motifs involved in translational control of γ-ENaC synthesis were studied. γ-ENaC–mRNA 3′-UTR contains an AU-rich element (ARE), which was shown by RNA affinity chromatography to interact with AU-rich element binding proteins (ARE-BP) like HuR, AUF1 and TTP. Some RBPs co-localized with γ-ENaC mRNA in polysomes in a hormone-dependent manner. Reporter gene co-expression experiments with luciferase γ-ENaC 3′-UTR constructs and ARE-BP expression plasmids demonstrate the importance of RNA–protein interaction for the up-regulation of γ-ENaC synthesis. We document that aldosterone and the V2 receptor agonist dDAVP act on synthesis of α- and γ-ENaC subunits mediated by RBPs as effectors of translation but not by mRNA stabilization. Immunoprecipitation and UV-crosslinking analysis of γ-ENaC–mRNA/HuR complexes document the significance of γ-ENaC–mRNA–3′-UTR/HuR interaction for hormonal control of ENaC synthesis.
Collapse
Affiliation(s)
- Andrea Perlewitz
- Institut für Vegetative Physiologie, Universitätsmedizin Berlin (Charité), D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H. Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem 2008; 284:4255-66. [PMID: 19097999 DOI: 10.1074/jbc.m807354200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fragile X syndrome is a common inherited cause of mental retardation that results from loss or mutation of the fragile X mental retardation protein (FMRP). In this study, we identified the mRNA of the basic helix-loop-helix transcription factor human achaete-scute homologue-1 (hASH1 or ASCL1), which is required for normal development of the nervous system and has been implicated in the formation of neuroendocrine tumors, as a new FMRP target. Using a double-immunofluorescent staining technique we detected an overlapping pattern of both proteins in the hippocampus, temporal cortex, subventricular zone, and cerebellum of newborn rats. Forced expression of FMRP and gene silencing by small interference RNA transfection revealed a positive correlation between the cellular protein levels of FMRP and hASH1. A luciferase reporter construct containing the 5'-untranslated region of hASH1 mRNA was activated by the full-length FMRP, but not by naturally occurring truncated FMR proteins, in transient co-transfections. The responsible cis-element was mapped by UV-cross-linking experiments and reporter mutagenesis assays to a (U)(10) sequence located in the 5'-untranslated region of the hASH1 mRNA. Sucrose density gradient centrifugation revealed that hASH1 transcripts were translocated into a translationally active polysomal fraction upon transient transfection of HEK293 cells with FMRP, thus indicating translational activation of hASH1 mRNA. In conclusion, we identified hASH1 as a novel downstream target of FMRP. Improved translation efficiency of hASH1 mRNA by FMRP may represent an important regulatory switch in neuronal differentiation.
Collapse
Affiliation(s)
- Michael Fähling
- Charité, Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Tucholskystrasse 2, D-10117 Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Todorov VT, Desch M, Schubert T, Kurtz A. The Pal3 promoter sequence is critical for the regulation of human renin gene transcription by peroxisome proliferator-activated receptor-gamma. Endocrinology 2008; 149:4647-57. [PMID: 18483152 DOI: 10.1210/en.2008-0127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that human renin gene transcription is stimulated by the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-gamma in the renin-producing cell line Calu-6. The effect of PPARgamma was mapped to two sequences in the renin promoter: a direct repeat hormone response element (HRE), which is related to the classical PPAR response element (PPRE) and a nonconsensus palindromic element with a 3-bp spacer (Pal3). We now find that PPARgamma binds to the renin HRE. Neither the human renin HRE nor the consensus PPRE was sufficient to attain the maximal stimulation of renin promoter activity by the PPARgamma agonist rosiglitazone. In contrast, the human renin Pal3 element mediates both the full PPARgamma-dependent activation of transcription and the PPARgamma-driven basal renin gene transcription. The human renin Pal3 sequence was found to selectively bind PPARgamma and the retinoid X receptor-alpha from Calu-6 nuclear extracts. This is in contrast to the consensus PPRE, which can bind other nuclear proteins. PPARgamma knockdown paradoxically did not attenuate the stimulation of the endogenous renin gene expression by rosiglitazone. Similarly, a deficiency of PPARgamma did not attenuate the activation of the minimal human renin promoter, which contains the endogenous Pal3 motif. However, when the human renin Pal3 site was replaced by the consensus PPRE sequence, PPARgamma knockdown abrogated the effect of rosiglitazone on renin promoter activity. Thus, the human renin Pal3 site appears to be critical for the PPARgamma-dependent regulation of gene expression by mediating maximal transcription activation, particularly at the low cellular level of PPARgamma.
Collapse
Affiliation(s)
- Vladimir T Todorov
- Institute of Physiology, University of Regensburg, D-93040 Regensburg, Germany.
| | | | | | | |
Collapse
|
11
|
Steege A, Fähling M, Paliege A, Bondke A, Kirschner KM, Martinka P, Kaps C, Patzak A, Persson PB, Thiele BJ, Scholz H, Mrowka R. Wilms' tumor protein (-KTS) modulates renin gene transcription. Kidney Int 2008; 74:458-66. [PMID: 18496514 DOI: 10.1038/ki.2008.194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Renin plays a crucial role in the control of various physiological processes such as blood pressure and body fluid homeostasis. Here, we show that a splice variant of the Wilms' tumor protein lacking three amino acids WT1(-KTS) suppresses renin gene transcription. Using bioinformatics tools, we initially predicted that a WT1-binding site exists in a regulatory region about 12 kb upstream of the renin promoter; this was confirmed by reporter gene assays and gel shift experiments in heterologous cells. Co-expression of Wt1 and renin proteins was found in rat kidney sections, mouse kidney blood vessels, and a cell line derived from the juxtaglomerular apparatus that produces renin. Knockdown of WT1 protein by siRNA significantly increased the cellular renin mRNA content, while overexpression of WT1(-KTS) reduced renin gene expression in stable and transiently transfected cells. A mutant WT1(-KTS) protein found in Wilms' tumors failed to suppress renin gene reporter activity and endogenous renin expression. Our findings show that renin gene transcription is regulated by the WT1(-KTS) protein and this may explain findings in patients with WT1 gene mutations of increased plasma renin and hypertension.
Collapse
Affiliation(s)
- Andreas Steege
- Institut für Physiologie CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou X, Sigmund CD. Chorionic enhancer is dispensable for regulated expression of the human renin gene. Am J Physiol Regul Integr Comp Physiol 2007; 294:R279-87. [PMID: 18077515 DOI: 10.1152/ajpregu.00780.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that a transcriptional chorionic enhancer (CE), previously identified to increase human renin expression in choriodecidual cells is required to mediate tissue-specific, cell-specific, and regulated expression of human renin in transgenic mice. Recombineering was used to delete the CE upstream of the renin gene alone or in combination with the kidney enhancer (KE) in a large artificial chromosome construct containing the entire human renin gene and extensive flanking sequences. Deletion of the CE had no qualitative or quantitative effect on the tissue-specific expression of human renin, nor on the cellular localization of human renin in the kidney or placenta. Combined deletion of both the CE and KE caused a decrease in the level of renal renin expression consistent with the established role of the KE. We also considered the possibility that the CE is a downstream enhancer of the KiSS1 gene, which lies directly upstream of renin and is also expressed in the placenta. Deletion of the CE alone, or the CE and KE together, had no effect on the level of KiSS1 expression in the placenta. These data provide convincing evidence that the CE is silent in vivo, at least in the mouse. The absence of a phenotype caused by deletion of the CE is consistent with the observation that the sequence is not evolutionarily conserved.
Collapse
Affiliation(s)
- Xiyou Zhou
- Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|