1
|
Cui J, Piao J, Han H, Peng W, Lin M, Zhou D, Zhu C, Gong X. Semiarbitrary qPCR for Sensitive Detection of Circulating miRNA via Terminal Deoxynucleotidyl Transferase-Assisted RNA-Primed DNA Polymerization. Anal Chem 2024; 96:10496-10505. [PMID: 38896549 DOI: 10.1021/acs.analchem.3c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Circulating microRNAs (miRNAs) have recently emerged as noninvasive disease biomarkers. Quantitative detection of circulating miRNAs could offer significant information for clinical diagnosis due to its significance in the development of biological processes. In response to the current challenges of circulating miRNA detection, we introduce a sensitive, selective, and versatile circulating miRNA detection strategy using terminal deoxynucleotidyl transferase (TdT)-catalyzed RNA-primed DNA polymerization (TCRDP) coupled with semiarbitrary qPCR (SAPCR). Semiarbitrary qPCR was first developed here to detect long fragment targets with only a short-known sequence or to detect a short fragment target after extension with terminal transferase. Besides, the subsequent results show that TdT has a preference for RNA, particularly for extending RNAs with purine-rich and unstructured ends. Consequently, utilizing this assay, we have successfully applied it to the quantitative analysis of circulating miR-122 in animal models, a sensitive and informative biomarker for drug-induced liver injury, and as low as 200 zmol of the target is detected with desirable specificity and sensitivity, indicating that the TCRDP-SAPCR can offer a promising platform for nucleic acids analysis.
Collapse
Affiliation(s)
- Jingyu Cui
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jiafang Piao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Houyu Han
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Weipan Peng
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengyao Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dianming Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
3
|
Veselov M, Uporov IV, Efremova MV, Le-Deygen IM, Prusov AN, Shchetinin IV, Savchenko AG, Golovin YI, Kabanov AV, Klyachko NL. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS OMEGA 2022; 7:20644-20655. [PMID: 35755395 PMCID: PMC9219078 DOI: 10.1021/acsomega.2c00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Enzymes conjugated to magnetic nanoparticles (MNPs) undergo changes in the catalytic activity of the non-heating low-frequency magnetic field (LFMF). We apply in silico simulations by molecular dynamics (MD) and in vitro spectroscopic analysis of the enzyme kinetics and secondary structure to study α-chymotrypsin (CT) conjugated to gold-coated iron oxide MNPs. The latter are functionalized by either carboxylic or amino group moieties to vary the points of enzyme attachment. The MD simulation suggests that application of the stretching force to the CT globule by its amino or carboxylic groups causes shrinkage of the substrate-binding site but little if any changes in the catalytic triad. Consistent with this, in CT conjugated to MNPs by either amino or carboxylic groups, LFMF alters the Michaelis-Menten constant but not the apparent catalytic constant k cat (= V max/[E]o). Irrespective of the point of conjugation to MNPs, the CT secondary structure was affected with nearly complete loss of α-helices and increase in the random structures in LFMF, as shown by attenuated total reflection Fourier transformed infrared spectroscopy. Both the catalytic activity and the protein structure of MNP-CT conjugates restored 3 h after the field exposure. We believe that such remotely actuated systems can find applications in advanced manufacturing, nanomedicine, and other areas.
Collapse
Affiliation(s)
- Maxim
M. Veselov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Igor V. Uporov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V. Efremova
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - Irina M. Le-Deygen
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor V. Shchetinin
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
| | | | - Yuri I. Golovin
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- G.R.
Derzhavin Tambov State University, Tambov 392000, Russia
| | - Alexander V. Kabanov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| | - Natalia L. Klyachko
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| |
Collapse
|
4
|
Han H, Cui J, Zhou D, Hua D, Peng W, Lin M, Zhang Y, Li F, Gong X, Zhang J. Single-stranded RNA as primers of terminal deoxynucleotidyl transferase for template-independent DNA polymerization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Papini FS, Seifert M, Dulin D. High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments. Nucleic Acids Res 2020; 47:e144. [PMID: 31584079 PMCID: PMC6902051 DOI: 10.1093/nar/gkz851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Single molecule biophysics experiments have enabled the observation of biomolecules with a great deal of precision in space and time, e.g. nucleic acids mechanical properties and protein–nucleic acids interactions using force and torque spectroscopy techniques. The success of these experiments strongly depends on the capacity of the researcher to design and fabricate complex nucleic acid structures, as the outcome and the yield of the experiment also strongly depend on the high quality and purity of the final construct. Though the molecular biology techniques involved are well known, the fabrication of nucleic acid constructs for single molecule experiments still remains a difficult task. Here, we present new protocols to generate high quality coilable double-stranded DNA and RNA, as well as DNA and RNA hairpins with ∼500–1000 bp long stems. Importantly, we present a new approach based on single-stranded DNA (ssDNA) annealing and we use magnetic tweezers to show that this approach simplifies the fabrication of complex DNA constructs, such as hairpins, and converts more efficiently the input DNA into construct than the standard PCR-digestion-ligation approach. The protocols we describe here enable the design of a large range of nucleic acid construct for single molecule biophysics experiments.
Collapse
Affiliation(s)
- Flávia S Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058 Erlangen, Germany
| | - Mona Seifert
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058 Erlangen, Germany
| | - David Dulin
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Melkonyan L, Bercy M, Bizebard T, Bockelmann U. Overstretching Double-Stranded RNA, Double-Stranded DNA, and RNA-DNA Duplexes. Biophys J 2019; 117:509-519. [PMID: 31337545 PMCID: PMC6697464 DOI: 10.1016/j.bpj.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
Using single-molecule force measurements, we compare the overstretching transition of the four types of duplexes composed of DNA or RNA strands. Three of the four extremities of each double helix are attached to two microscopic beads, and a stretching force is applied with a dual-beam optical trapping interferometer. We find that overstretching occurs for all four duplexes with small differences between the plateau forces. Double-stranded RNA (dsRNA) exhibits a smooth transition in contrast to the other three duplexes that show sawtooth patterns, the latter being a characteristic signature of peeling. This difference is observed for a wide range of experimental conditions. We present a theoretical description that explains the difference and predicts that peeling and bubble formation do not occur in overstretching double-stranded RNA. Formation of S-RNA is proposed, an overstretching mechanism that contrary to the other two does not generate single strands. We suggest that this singular RNA property helps RNA structures to assemble and play their essential roles in the biological cell.
Collapse
Affiliation(s)
- Lena Melkonyan
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Mathilde Bercy
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Thierry Bizebard
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France.
| | - Ulrich Bockelmann
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France.
| |
Collapse
|
7
|
Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, Fiorini F, Kanaan J, Le Hir H, Allemand J, Bensimon D, Croquette V. A mechanistic study of helicases with magnetic traps. Protein Sci 2017; 26:1314-1336. [PMID: 28474797 PMCID: PMC5477542 DOI: 10.1002/pro.3187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
Helicases are a broad family of enzymes that separate nucleic acid double strand structures (DNA/DNA, DNA/RNA, or RNA/RNA) and thus are essential to DNA replication and the maintenance of nucleic acid integrity. We review the picture that has emerged from single molecule studies of the mechanisms of DNA and RNA helicases and their interactions with other proteins. Many features have been uncovered by these studies that were obscured by bulk studies, such as DNA strands switching, mechanical (rather than biochemical) coupling between helicases and polymerases, helicase-induced re-hybridization and stalled fork rescue.
Collapse
Affiliation(s)
- Samar Hodeib
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Saurabh Raj
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Maria Manosas
- Departament de Física FonamentalFacultat de Física, Universitat de BarcelonaBarcelona08028Spain
- CIBER‐BBN de BioingenieriaBiomateriales y Nanomedicina, Instituto de Sanidad Carlos IIIMadridSpain
| | - Weiting Zhang
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Debjani Bagchi
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Present address: Physics DepartmentFaculty of Science, The M.S. University of BarodaVadodaraGujarat390002India
| | - Bertrand Ducos
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Francesca Fiorini
- Univ Lyon, Molecular Microbiology and Structural Biochemistry, MMSB‐IBCP UMR5086 CNRS/Lyon1Lyon Cedex 769367France
| | - Joanne Kanaan
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Jean‐François Allemand
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - David Bensimon
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCalifornia90095
| | - Vincent Croquette
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| |
Collapse
|
8
|
Le MT, Kasprzak WK, Kim T, Gao F, Young MYL, Yuan X, Shapiro BA, Seog J, Simon AE. Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. eLife 2017; 6:e22883. [PMID: 28186489 PMCID: PMC5336357 DOI: 10.7554/elife.22883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.
Collapse
Affiliation(s)
- My-Tra Le
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wojciech K Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Taejin Kim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Megan YL Young
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Joonil Seog
- Department of Materials Science and Engineering, University of Maryland, College Park, United States
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
9
|
Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, Allemand JF, Bensimon D, Croquette V. Single molecule studies of helicases with magnetic tweezers. Methods 2016; 105:3-15. [DOI: 10.1016/j.ymeth.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022] Open
|
10
|
Abstract
RNA with site-specific modification is a useful tool for RNA biology studies. However, generating kilobase (kb) -long RNA with internal modification at a site distant from RNA termini remains challenging. Here we report an enhanced splint ligation technique, proximal disruptor aided ligation (ProDAL), which allows adequate efficiency toward this purpose. The key to our approach is using multiple DNA oligonucleotides, 'proximal disruptors', to target the RNA substrate sequence next to the ligation site. The binding of disruptors helps to free the ligation site from intramolecular RNA basepairing, and consequently promotes more efficient formation of the pre-ligation complex and a higher overall ligation yield. We used naturally occurring 1.0 kb renilla and 1.9 kb firefly luciferase mRNA sequences to test the efficacy of our approach. ProDAL yielded 9-14% efficiency for the ligation between two RNA substrates, both of which were between 414 and 1313 nucleotides (nt) long. ProDAL also allowed similarly high efficiency for generating kb-long RNA with site-specific internal modification by a simple three-part ligation between two long RNA substrates and a modification-carrying RNA oligonucleotide. In comparison, classical splint ligation yielded a significantly lower efficiency of 0-2% in all cases. We expect that ProDAL will benefit studies involving kb-long RNAs, including translation, long non-coding RNAs, RNA splicing and modification, and large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexander Zhovmer
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| | - Xiaohui Qu
- a Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| |
Collapse
|
11
|
Pankovics P, Boros Á, Kiss T, Reuter G. Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): for the first time in a bird. Arch Virol 2014; 160:345-51. [PMID: 25195063 DOI: 10.1007/s00705-014-2228-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/31/2014] [Indexed: 12/11/2022]
Abstract
The genus Kobuvirus (Picornaviridae) consists of three species, Aichivirus A (e.g., Aichi virus, which infects humans), Aichivirus B and Aichivirus C. Kobuvirus have not been detected in non-mammal species including birds. In this study, a novel kobuvirus was identified in 3 (17 %) out of 18 faecal samples collected from European rollers (Coracias garrulus) in Hungary. The complete genome sequence of strain SZAL6-KoV/2011/HUN (KJ934637), which was determined using a novel 5'/3' RACE method (dsRNA-RACE) involving a double-stranded (ds)RNA intermediate, has a type-V IRES at the 5' end and a cis-acting element (CRE) in the 3C gene and encodes L and 2A(H-box/NC) proteins, but it does not contain the sequence forming a "barbell-like" secondary RNA structure in the 3'UTR. SZAL6-KoV/2011/HUN has 72 %, 73 %, and 81 % amino acid sequence identity to the P1, P2, and P3 protein, respectively, of Aichi virus. Evolutionary analysis showed that SZAL6-KoV/2011/HUN shares a common ancestor with other kobuviruses but belongs to a more ancient lineage in the species Aichivirus A. Investigation of the known kobuviruses in different animals and discovery of novel kobuviruses in potential host species helps to clarify the evolutionary connection and zoonotic potential of kobuviruses.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7, 7623, Pécs, Hungary
| | | | | | | |
Collapse
|
12
|
Stephenson W, Wan G, Tenenbaum SA, Li PTX. Nanomanipulation of single RNA molecules by optical tweezers. J Vis Exp 2014. [PMID: 25177917 DOI: 10.3791/51542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Collapse
Affiliation(s)
- William Stephenson
- Nanoscale Engineering Graduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Gorby Wan
- Nanoscale Science Undergraduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York; The RNA Institute, University at Albany, State University of New York
| | - Pan T X Li
- The RNA Institute, University at Albany, State University of New York; Department of Biological Sciences, University at Albany, State University of New York;
| |
Collapse
|
13
|
Vilfan ID, Tsai YC, Clark TA, Wegener J, Dai Q, Yi C, Pan T, Turner SW, Korlach J. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnology 2013; 11:8. [PMID: 23552456 PMCID: PMC3623877 DOI: 10.1186/1477-3155-11-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/25/2013] [Indexed: 01/05/2023] Open
Abstract
Background Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis. Results Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template. Conclusions Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.
Collapse
|
14
|
Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 2013; 10:481-9. [PMID: 23422316 PMCID: PMC3710354 DOI: 10.4161/rna.23838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
15
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
16
|
Magae Y. Molecular characterization of a novel mycovirus in the cultivated mushroom, Lentinula edodes. Virol J 2012; 9:60. [PMID: 22390839 PMCID: PMC3365873 DOI: 10.1186/1743-422x-9-60] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 03/06/2012] [Indexed: 11/13/2022] Open
Abstract
Background In the 1970s, mycoviruses were identified that infected the edible mushroom Lentinula edodes (shiitake), but they were not regarded as causal agents for mushroom diseases. None of their genes has been sequenced. In this study, the dsRNA genome of a mycovirus recently found in a shiitake commercial strain was sequenced and its molecular structure was characterized. Methods A cDNA library was constructed from a dsRNA purified from the fruiting body of L. edodes. The virus was tentatively named L. edodes mycovirus HKB (LeV). Based on the deduced RNA-dependent RNA polymerase (RdRp) sequence, phylogenetic analysis of LeV was conducted. Because no virion particles associated with the dsRNA were observed by electron microscopic observation, atomic force microscopy (AFM) observation was chosen for achieving molecular imaging of the virus. Results The 11,282-bp genome of LeV was obtained. The genome encoded two open reading frames (ORFs). ORF1 coded for a hypothetical protein and ORF2 for a putative RdRp, respectively. In addition, a region coding for a NUDIX domain was present in ORF1. There was a 62-bp intergenic region between ORF1 and RdRp. Similarity with coat protein of mycoviruses was not found within the whole sequence. Based on phylogenetic analysis of the putative RdRp sequence, LeV grouped into a clade with dsRNA found in the basidiomycetes Phlebiopsis gigantea and Helicobasidium mompa. The clade was placed apart from the Totiviridae and Chrysoviridae families. As suggested from the genome sequence, AFM revealed that the structure of LeV was linear unencapsidated dsRNA. Conclusions The results suggest that LeV represents a novel family of mycoviruses, found thus far only among the basidiomycetes.
Collapse
Affiliation(s)
- Yumi Magae
- Department of Applied Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| |
Collapse
|
17
|
Winz ML, Samanta A, Benzinger D, Jäschke A. Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 2012; 40:e78. [PMID: 22344697 PMCID: PMC3378897 DOI: 10.1093/nar/gks062] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest—of either synthetic or biological origin—is modified at its 3′-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide–alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2′-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2′-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules.
Collapse
Affiliation(s)
- Marie-Luise Winz
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
18
|
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R. Quantitative analysis of single-molecule RNA-protein interaction. Biophys J 2009; 96:5030-9. [PMID: 19527663 DOI: 10.1016/j.bpj.2009.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/27/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022] Open
Abstract
RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule data in combination with competition assays and site-directed mutagenesis of both the RNA target and the RNA-binding domain of the protein allowed us to distinguish and quantify two different binding modes. For dwell times <0.21 s an unspecific complex with a lifetime of 0.56 s is observed, whereas dwell times >0.33 s result in a specific interaction with a lifetime of 208 s. The corresponding reaction lengths are 0.28 nm for the unspecific and 0.55 nm for the specific AtGRP8-RNA interactions, indicating formation of a tighter complex with increasing dwell time. These two binding modes cannot be dissected in ensemble experiments. Quantitative titration in RNA bandshift experiments yields an ensemble-averaged equilibrium constant of dissociation of KD = 2 x 10(-7) M. Assuming comparable on-rates for the specific and nonspecific binding modes allows us to estimate their free energies as DeltaG0 = -42 kJ/mol and DeltaG0 = -28 kJ/mol for the specific and nonspecific binding modes, respectively. Thus, we show that single-molecule force spectroscopy with a refined statistical analysis is a potent tool for the analysis of protein-RNA interactions without the drawback of ensemble averaging. This makes it possible to discriminate between different binding modes or sites and to analyze them quantitatively. We propose that this method could be applied to complex interactions of biomolecules in general, and be of particular interest for the investigation of multivalent binding reactions.
Collapse
Affiliation(s)
- Alexander Fuhrmann
- Experimental Biophysics and Applied Nanoscience, Department of Physics, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
19
|
Vilfan ID, Candelli A, Hage S, Aalto AP, Poranen MM, Bamford DH, Dekker NH. Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate. Nucleic Acids Res 2008; 36:7059-67. [PMID: 18986997 PMCID: PMC2602768 DOI: 10.1093/nar/gkn836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important regulatory mechanism for RNA polymerases that has also been implicated in RNA recombination, has not been considered. Here, we report that RdRP experience a dramatic, long-lived decrease in its elongation rate when it is reinitiated following stalling. The rate decrease has an intriguingly weak temperature dependence, is independent of both the nucleotide concentration during stalling and the length of the RNA transcribed prior to stalling; however it is sensitive to RNA structure. This allows us to delineate the potential factors underlying this irreversible conversion of the elongation complex to a less active mode.
Collapse
Affiliation(s)
- Igor D Vilfan
- Faculty of Applied Sciences, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Many experiments involving nucleic acids require the hybridization and ligation of multiple DNA or RNA molecules to form a compound molecule. When one of the constituents is single stranded, however, the efficiency of ligation can be very low and requires significant individually tailored optimization. Also, when the molecules involved are very long (>10 kb), the reaction efficiency typically reduces dramatically. Here, we present a simple procedure to efficiently and specifically end-join two different nucleic acids using the well-known biotin–streptavidin linkage. We introduce a two-step approach, in which we initially bind only one molecule to streptavidin (STV). The second molecule is added only after complete removal of the unbound STV. This primarily forms heterodimers and nearly completely suppresses formation of unwanted homodimers. We demonstrate that the joining efficiency is 50 ± 25% and is insensitive to molecule length (up to at least 20 kb). Furthermore, our method eliminates the requirement for specific complementary overhangs and can therefore be applied to both DNA and RNA. Demonstrated examples of the method include the efficient end-joining of DNA to single-stranded and double-stranded RNA, and the joining of two double-stranded RNA molecules. End-joining of long nucleic acids using this procedure may find applications in bionanotechnology and in single-molecule experiments.
Collapse
Affiliation(s)
- M van den Hout
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | |
Collapse
|