1
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
2
|
Karimzadeh P, Rezakhani S, Miryounesi M, Alijanpour S. Neurodegenerative disorder and diffuse brain calcifications due to FARSB mutation in two siblings. Clin Case Rep 2022; 10:e6195. [PMID: 35937029 PMCID: PMC9347330 DOI: 10.1002/ccr3.6195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the FARSB gene are associated with neurodevelopmental disorder involving the brain, liver, and lungs. We report genetic analysis of a family including two affected members with this disorder, which revealed a homozygous pathogenic missense variant, FARSB: NM_005687.4:c.853G > A:p.E285K in both affected patients. The parents were heterozygous for this variant.
Collapse
Affiliation(s)
- Parvaneh Karimzadeh
- Pediatric Neurology, Pediatric Neurology Research Center, Mofid Children's HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Sepideh Rezakhani
- Pediatric Neurology, Pediatric Neurology Research Center, Mofid Children's HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Miryounesi
- Medical Genetics, Genomic Research Center, Taleghani HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Sahar Alijanpour
- Medical Genetics, Genomic Research Center, Taleghani HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Carter CW, Wills PR. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Res 2019; 46:9667-9683. [PMID: 30016476 PMCID: PMC6182185 DOI: 10.1093/nar/gky600] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
Class I and II aaRS recognition of opposite grooves was likely among the earliest determinants fixed in the tRNA acceptor stem bases. A new regression model identifies those determinants in bacterial tRNAs. Integral coefficients relate digital dependent to independent variables with perfect agreement between observed and calculated grooves for all twenty isoaccepting tRNAs. Recognition is mediated by the Discriminator base 73, the first base pair, and base 2 of the acceptor stem. Subsets of these coefficients also identically compute grooves recognized by smaller numbers of aaRS. Thus, the model is hierarchical, suggesting that new rules were added to pre-existing ones as new amino acids joined the coding alphabet. A thermodynamic rationale for the simplest model implies that Class-dependent aaRS secondary structures exploited differential tendencies of the acceptor stem to form the hairpin observed in Class I aaRS•tRNA complexes, enabling the earliest groove discrimination. Curiously, groove recognition also depends explicitly on the identity of base 2 in a manner consistent with the middle bases of the codon table, confirming a hidden ancestry of codon-anticodon pairing in the acceptor stem. That, and the lack of correlation with anticodon bases support prior productive coding interaction of tRNA minihelices with proto-mRNA.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Peter R Wills
- Department of Physics, Centre for Computational Evolution, and Te Ao Marama Centre for Fundamental Enquiry, University of Auckland, PB 92109, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Structure-function studies of the asparaginyl-tRNA synthetase from Fasciola gigantica: understanding the role of catalytic and non-catalytic domains. Biochem J 2018; 475:3377-3391. [DOI: 10.1042/bcj20180700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
The asparaginyl-tRNA synthetase (NRS) catalyzes the attachment of asparagine to its cognate tRNA during translation. NRS first catalyzes the binding of Asn and ATP to form the NRS-asparaginyl adenylate complex, followed by the esterification of Asn to its tRNA. We investigated the role of constituent domains in regulating the structure and activity of Fasciola gigantica NRS (FgNRS). We cloned the full-length FgNRS, along with its various truncated forms, expressed, and purified the corresponding proteins. Size exclusion chromatography indicated a role of the anticodon-binding domain (ABD) of FgNRS in protein dimerization. The N-terminal domain (NTD) was not essential for cognate tRNA binding, and the hinge region between the ABD and the C-terminal domain (CTD) was crucial for regulating the enzymatic activity. Molecular docking and fluorescence quenching experiments elucidated the binding affinities of the substrates to various domains. The molecular dynamics simulation of the modeled protein showed the presence of an unstructured region between the NTD and ABD that exhibited a large number of conformations over time, and further analysis indicated this region to be intrinsically disordered. The present study provides information on the structural and functional regulation, protein-substrate(s) interactions and dynamics, and the role of non-catalytic domains in regulating the activity of FgNRS.
Collapse
|
5
|
Zadjali F, Al-Yahyaee A, Al-Nabhani M, Al-Mubaihsi S, Gujjar A, Raniga S, Al-Maawali A. Homozygosity for FARSB
mutation leads to Phe-tRNA synthetase-related disease of growth restriction, brain calcification, and interstitial lung disease. Hum Mutat 2018; 39:1355-1359. [DOI: 10.1002/humu.23595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Fahad Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - Aida Al-Yahyaee
- Department of Genetics, College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - Maryam Al-Nabhani
- Genetic and Developmental Medicine Clinic; Sultan Qaboos University Hospital; Muscat Oman
| | | | | | - Sameer Raniga
- Department of Radiology and Molecular Imaging; Sultan Qaboos University; Muscat Oman
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
- Genetic and Developmental Medicine Clinic; Sultan Qaboos University Hospital; Muscat Oman
| |
Collapse
|
6
|
The evolution of the genetic code: Impasses and challenges. Biosystems 2018; 164:217-225. [DOI: 10.1016/j.biosystems.2017.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
|
7
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|
8
|
Vijayakumar R, Tripathi T. Soluble expression and purification of a full-length asparaginyl tRNA synthetase from Fasciola gigantica. Protein Expr Purif 2017; 143:9-13. [PMID: 29031680 DOI: 10.1016/j.pep.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022]
Abstract
We report the molecular cloning, expression, and single-step homogeneous purification of a full-length asparaginyl tRNA synthetase (NRS) from Fasciola gigantica (FgNRS). Fasciola gigantica is a parasitic liver fluke of the class Trematoda. It causes fascioliasis that infects the liver of various mammals, including humans. Aminoacyl tRNA synthetases (AARS) catalyze the first step of protein synthesis. They attach an amino acid to its cognate tRNA, forming an amino acid-tRNA complex. The gene that codes for FgNRS was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pQE30 under the transcriptional control of the bacteriophage T5 promoter and lac operator. M15 Escherichia coli strain transformed with the FgNRS expression vector pQE30-NRS accumulates large amounts of a soluble protein of about 61 kDa. The protein was purified to homogeneity using immobilized metal affinity chromatography. The recombinant protein was further confirmed by immunoblotting with anti-His antibody. Following size exclusion chromatography, the FgNRS was stable and observed to be a dimeric protein. In this study, the expression and purification procedures have provided a simple and efficient method to obtain full-length FgNRS in large quantities. This will provide an opportunity to study the structure, dynamics and function of NRS.
Collapse
Affiliation(s)
- R Vijayakumar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
9
|
Galili T, Gingold H, Shaul S, Benjamini Y. Identifying the ligated amino acid of archaeal tRNAs based on positions outside the anticodon. RNA (NEW YORK, N.Y.) 2016; 22:1477-1491. [PMID: 27516383 PMCID: PMC5029447 DOI: 10.1261/rna.053777.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Proper recognition of tRNAs by their aminoacyl-tRNA synthetase is essential for translation accuracy. Following evidence that the enzymes can recognize the correct tRNA even when anticodon information is masked, we search for additional nucleotide positions within the tRNA molecule that potentially contain information for amino acid identification. Analyzing 3936 sequences of tRNA genes from 86 archaeal species, we show that the tRNAs' cognate amino acids can be identified by the information embedded in the tRNAs' nucleotide positions without relying on the anticodon information. We present a small set of six to 10 informative positions along the tRNA, which allow for amino acid identification accuracy of 90.6% to 97.4%, respectively. We inspected tRNAs for each of the 20 amino acid types for such informative positions and found that tRNA genes for some amino acids are distinguishable from others by as few as one or two positions. The informative nucleotide positions are in agreement with nucleotide positions that were experimentally shown to affect the loaded amino acid identity. Interestingly, the knowledge gained from the tRNA genes of one archaeal phylum does not extrapolate well to another phylum. Furthermore, each species has a unique ensemble of nucleotides in the informative tRNA positions, and the similarity between the sets of positions of two distinct species reflects their evolutionary distance. Hence, we term this set of informative positions a "tRNA cipher." It is tempting to suggest that the diverging code identified here might also serve the aminoacyl tRNA synthetase in the task of tRNA recognition.
Collapse
Affiliation(s)
- Tal Galili
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel
| | - Hila Gingold
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaul Shaul
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel
| | - Yoav Benjamini
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel The Edmond J. Safra Center for Bioinformatics and The Sagol School for Neuroscience, Tel Aviv University, Ramat-Aviv 69978, Israel
| |
Collapse
|
10
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
11
|
Kun Á, Szathmáry E. Fitness Landscapes of Functional RNAs. Life (Basel) 2015; 5:1497-517. [PMID: 26308059 PMCID: PMC4598650 DOI: 10.3390/life5031497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- MTA-ELTE-MTMT Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
12
|
Zhang Z, Yu J. Does the genetic code have a eukaryotic origin? GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:41-55. [PMID: 23402863 PMCID: PMC4357656 DOI: 10.1016/j.gpb.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
Abstract
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core “house-keeping” functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables—GC and purine contents—of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern—the symmetric pattern—where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes.
Collapse
Affiliation(s)
- Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
13
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
14
|
Szenes A, Pál G. Mapping hidden potential identity elements by computing the average discriminating power of individual tRNA positions. DNA Res 2012; 19:245-58. [PMID: 22378766 PMCID: PMC3372374 DOI: 10.1093/dnares/dss008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recently published discrete mathematical method, extended consensus partition (ECP), identifies nucleotide types at each position that are strictly absent from a given sequence set, while occur in other sets. These are defined as discriminating elements (DEs). In this study using the ECP approach, we mapped potential hidden identity elements that discriminate the 20 different tRNA identities. We filtered the tDNA data set for the obligatory presence of well-established tRNA features, and then separately for each identity set, the presence of already experimentally identified strictly present identity elements. The analysis was performed on the three kingdoms of life. We determined the number of DE, e.g. the number of sets discriminated by the given position, for each tRNA position of each tRNA identity set. Then, from the positional DE numbers obtained from the 380 pairwise comparisons of the 20 identity sets, we calculated the average excluding value (AEV) for each tRNA position. The AEV provides a measure on the overall discriminating power of each position. Using a statistical analysis, we show that positional AEVs correlate with the number of already identified identity elements. Positions having high AEV but lacking published identity elements predict hitherto undiscovered tRNA identity elements.
Collapse
Affiliation(s)
- Aron Szenes
- Department of Biochemistry, Eötvös University, Budapest, Hungary
| | | |
Collapse
|
15
|
Seligmann H. Undetected antisense tRNAs in mitochondrial genomes? Biol Direct 2010; 5:39. [PMID: 20553583 PMCID: PMC2907346 DOI: 10.1186/1745-6150-5-39] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/16/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5' and 3' end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential. RESULTS Processed antisense tRNAs align better with standard tRNA sequences with the same cognate than unprocessed antisense tRNAs, suggesting less misacylations. Misacylation increases with cloverleaf fragility and processing inaccuracy. Cloverleaf fragility, misacylation and processing accuracy of antisense tRNAs decrease with genome-wide usage of their predicted cognate amino acid. CONCLUSIONS These properties correlate as if they adaptively coevolved for translational activity by some antisense tRNAs, and to avoid such activity by other antisense tRNAs. Analyses also suggest previously unsuspected particularities of aminoacylation specificity in mt tRNAs: combinations of competition between tRNAs on tRNA synthetases with competition between tRNA synthetases on tRNAs determine specificities of tRNA amino acylations. The latter analyses show that alignment methods used to detect tRNA cognates yield relatively robust results, even when they apparently fail to detect the tRNA's cognate amino acid and indicate high misacylation potential.
Collapse
Affiliation(s)
- Hervé Seligmann
- Department of Biology, University of Oslo, Center for Ecological and Evolutionary Synthesis, Blindern, 3016 Oslo, Norway.
| |
Collapse
|
16
|
Computational analysis of tRNA identity. FEBS Lett 2009; 584:325-33. [PMID: 19944694 DOI: 10.1016/j.febslet.2009.11.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/22/2022]
Abstract
I review recent developments in computational analysis of tRNA identity. I suggest that the tRNA-protein interaction network is hierarchically organized, and coevolutionarily flexible. Its functional specificity of recognition and discrimination persists despite generic structural constraints and perturbative evolutionary forces. This flexibility comes from its arbitrary nature as a self-recognizing shape code. A revisualization of predicted Proteobacterial tRNA identity highlights open research problems. tRNA identity elements and their coevolution with proteins must be mapped structurally over the Tree of Life. These traits can also resolve deep roots in the Tree. I show that histidylation identity elements phylogenetically reposition Pelagibacter ubique within alpha-Proteobacteria.
Collapse
|
17
|
Giegé R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 2008; 15:1007-14. [PMID: 18836497 DOI: 10.1038/nsmb.1498] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/09/2008] [Indexed: 12/11/2022]
Abstract
Transfer RNAs are ancient molecules present in all domains of life. In addition to translating the genetic code into protein and defining the second genetic code together with aminoacyl-tRNA synthetases, tRNAs act in many other cellular functions. Robust phenomenological observations on the role of tRNAs in translation, together with massive sequence and crystallographic data, have led to a deeper physicochemical understanding of tRNA architecture, dynamics and identity. In vitro studies complemented by cell biology data already indicate how tRNA behaves in cellular environments, in particular in higher Eukarya. From an opposite approach, reverse evolution considerations suggest how tRNAs emerged as simplified structures from the RNA world. This perspective discusses what basic questions remain unanswered, how these answers can be obtained and how a more rational understanding of the function and dysfunction of tRNA can have applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France.
| |
Collapse
|