1
|
Susorov D, Echeverria D, Khvorova A, Korostelev A. mRNA-specific readthrough of nonsense codons by antisense oligonucleotides (R-ASOs). Nucleic Acids Res 2024; 52:8687-8701. [PMID: 39011883 PMCID: PMC11347175 DOI: 10.1093/nar/gkae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Nonsense mutations account for >10% of human genetic disorders, including cystic fibrosis, Alagille syndrome, and Duchenne muscular dystrophy. A nonsense mutation results in the expression of a truncated protein, and therapeutic strategies aim to restore full-length protein expression. Most strategies under development, including small-molecule aminoglycosides, suppressor tRNAs, or the targeted degradation of termination factors, lack mRNA target selectivity and may poorly differentiate between nonsense and normal stop codons, resulting in off-target translation errors. Here, we demonstrate that antisense oligonucleotides can stimulate readthrough of disease-causing nonsense codons, resulting in high yields of full-length protein in mammalian cellular lysate. Readthrough efficiency depends on the sequence context near the stop codon and on the precise targeting position of an oligonucleotide, whose interaction with mRNA inhibits peptide release to promote readthrough. Readthrough-inducing antisense oligonucleotides (R-ASOs) enhance the potency of non-specific readthrough agents, including aminoglycoside G418 and suppressor tRNA, enabling a path toward target-specific readthrough of nonsense mutations in CFTR, JAG1, DMD, BRCA1 and other mutant genes. Finally, through systematic chemical engineering, we identify heavily modified fully functional R-ASO variants, enabling future therapeutic development.
Collapse
Affiliation(s)
- Denis Susorov
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the Fragile X protein, FMRP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577121. [PMID: 38352534 PMCID: PMC10862907 DOI: 10.1101/2024.02.02.577121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS) and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal non-canonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not PABPC1, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of the putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes and can stimulate NGD of a select set of transcripts in cells, revealing an unappreciated role of FMRP that would be misregulated in FXS.
Collapse
|
3
|
Furuhashi T, Sakamoto K, Wada A. Genetic Code Expansion and a Photo-Cross-Linking Reaction Facilitate Ribosome Display Selections for Identifying a Wide Range of Affinity Peptides. Int J Mol Sci 2023; 24:15661. [PMID: 37958644 PMCID: PMC10650079 DOI: 10.3390/ijms242115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cell-free molecular display techniques have been utilized to select various affinity peptides from peptide libraries. However, conventional techniques have difficulties associated with the translational termination through in-frame UAG stop codons and the amplification of non-specific peptides, which hinders the desirable selection of low-affinity peptides. To overcome these problems, we established a scheme for ribosome display selection of peptide epitopes bound to monoclonal antibodies and then applied genetic code expansion with synthetic X-tRNAUAG reprogramming of the UAG codons (X = Tyr, Trp, or p-benzoyl-l-phenylalanine (pBzo-Phe)) to the scheme. Based on the assessment of the efficiency of in vitro translation with X-tRNAUAG, we carried out ribosome display selection with genetic code expansion using Trp-tRNAUAG, and we verified that affinity peptides could be identified efficiently regardless of the presence of UAG codons in the peptide coding sequences. Additionally, after evaluating the photo-cross-linking reactions of pBzo-Phe-incorporated peptides, we performed ribosome display selection of low-affinity peptides in combination with genetic code expansion using pBzo-Phe-tRNAUAG and photo-irradiation. The results demonstrated that sub-micromolar low-affinity peptide epitopes could be identified through the formation of photo-induced covalent bonds with monoclonal antibodies. Thus, the developed ribosome display techniques could contribute to the promotion of diverse peptide-based research.
Collapse
Affiliation(s)
- Takuto Furuhashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Laboratory for Advanced Biomolecular Engineering, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan;
- Department of Drug Target Protein Research, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Akira Wada
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Laboratory for Advanced Biomolecular Engineering, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan;
| |
Collapse
|
4
|
Grove DJ, Levine DJ, Kearse MG. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Nucleic Acids Res 2023; 51:9983-10000. [PMID: 37602404 PMCID: PMC10570035 DOI: 10.1093/nar/gkad683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Collapse
Affiliation(s)
- Daisy J Grove
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Levine
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Kearse
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Scarpitti MR, Kearse MG. In vitro Analysis of Stalled Ribosomes Using Puromycin Incorporation. Bio Protoc 2023; 13:e4744. [PMID: 37638299 PMCID: PMC10450738 DOI: 10.21769/bioprotoc.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 05/17/2023] [Indexed: 08/29/2023] Open
Abstract
Ribosome footprint profiling has demonstrated that ribosomes can be slowed or stalled on select mRNAs, often due to the presence of rare codons, stalling motifs, or via a ribosome-binding protein (e.g., FMRP). Stalled ribosomes can act as physical roadblocks for trailing ribosomes and ultimately can cause ribosome collisions that stimulate no-go mRNA decay. Detecting stalled or slowed ribosomes in cells by ribosome footprint profiling or classic polysome profiling is laborious, technically challenging, and low throughput. Here, we present a protocol to assay for stalled ribosomes on in vitro-transcribed reporter mRNAs using a robust, commercially available mammalian in vitro translation lysate and an optimized low-speed sucrose cushion. In short, we take advantage of the ability of puromycin to incorporate into the nascent polypeptide and cause the ribosome to dissociate from the mRNA during active elongation, as well as the ability to selectively pellet ribosomes through a low-speed sucrose cushion due to their large molecular weight. Stalled ribosomes are not actively elongating and do not incorporate puromycin, allowing the ribosome-bound mRNA to pellet in the low-speed sucrose cushion. RT-qPCR is used to quantify the amount of ribosome-bound reporter mRNA in the pellet. This workflow allows for direct assessment of stalled ribosomes and is fully amendable to insertion of putative stalling motifs in the target mRNA, as well as supplementation with recombinant proteins or small molecule inhibitors that target translation elongation. Key features This protocol is optimized for cap-dependent in vitro translation in the dynamic linear range. Details for generating capped reporter mRNA in one day are provided. Requires as little as one day to complete if starting with in vitro-transcribed mRNA. This protocol requires access to an ultracentrifuge and a real-time PCR system.
Collapse
Affiliation(s)
- MaKenzie R. Scarpitti
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Michael G. Kearse
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Condé L, Allatif O, Ohlmann T, de Breyne S. Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses 2022; 14:1505. [PMID: 35891485 PMCID: PMC9322171 DOI: 10.3390/v14071505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5'UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5'UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| | - Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| |
Collapse
|
7
|
Biziaev NS, Egorova TV, Alkalaeva EZ. Dynamics of Eukaryotic mRNA Structure during Translation. Mol Biol 2022. [DOI: 10.1134/s0026893322030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
González-Catrilelbún S, Cartagena J, Vargas D, Breguel-Serrano P, Sandino AM, Rivas-Aravena A. The RNA-dependent RNA polymerase of the infectious pancreatic necrosis virus is linked to viral mRNA acting as a cap substitute. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The infectious pancreatic necrosis virus (IPNV) is responsible for significant economic losses in the aquaculture industry. It is an unenveloped virus with an icosahedral capsid. Its viral genome comprises two dsRNA segments, A and B. Segment A contains a small ORF, which encodes VP5, and a large ORF, which encodes a polyprotein that generates the structural proteins and the viral protease. Segment B encodes the RNA-dependent RNA polymerase (RdRp), called VP1 in this free form, or Vpg when it covalently attaches to the viral RNA. The viral genome does not have cap or poly(A). Instead, each 5′ end is linked to the Vpg. Recently, we demonstrated that mRNA-A contains an internal ribosome entry site (IRES) to command polyprotein synthesis. However, the presence of Vpg on IPNV mRNAs and its impact on cellular translation has not been investigated. This research demonstrates that IPNV mRNAs are linked to Vpg and that this protein inhibits cap-dependent translation on infected cells. Also, it is demonstrated that Vpg interacts with eIF4E and that rapamycin treatment partially diminishes the viral protein synthesis. In addition, we determined that an IRES does not command translation of IPNV mRNA-B. We show that VPg serves as a cap substitute during the initiation of IPNV translation, contributing to understanding the replicative cycle of Birnaviruses. Our results indicate that the viral protein VP1/Vpg is multifunctional, having a significant role during IPNV RNA synthesis as the RdRp and the primer for IPNV RNA synthesis and translation as the viral protein genome, acting as a cap substitute.
Collapse
Affiliation(s)
| | - Julio Cartagena
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Deborah Vargas
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Pamela Breguel-Serrano
- Laboratorio de Virología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea Rivas-Aravena
- Laboratorio de Virología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
9
|
Svitkin YV, Gingras AC, Sonenberg N. Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs. Nucleic Acids Res 2021; 50:7202-7215. [PMID: 34933339 PMCID: PMC9303281 DOI: 10.1093/nar/gkab1241] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294-1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Institute, Montréal, Québec H3A 1A3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1×5, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Institute, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
10
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
11
|
The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol 2021; 95:JVI.01998-20. [PMID: 33298544 PMCID: PMC8092825 DOI: 10.1128/jvi.01998-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is an enveloped, positive-sense, single-stranded RNA virus belonging to the Flaviviridae family. Translation initiation of the DENV mRNA can occur following a cap-dependent or a cap-independent mechanism. Two non-mutually exclusive cap-independent mechanisms of translation initiation have been described for the DENV mRNA. The first corresponds to a 5'end-dependent internal ribosome entry site (IRES)-independent mechanism, while the second relies on IRES-dependent initiation. In this report, we study the recently discovered DENV IRES. Results show that the DENV IRES is functional in the rabbit reticulocyte (RRL) in vitro translation system. In accordance, the activity of DENV IRES was resistant to the cleavage of eIF4G by the Foot-and-mouth disease virus leader protease in RRL. In cells, the DENV IRES exhibited only a marginal activity under standard culture conditions. The DENV IRES showed weak activity in HEK 293T cells; however, the DENV IRES activity was significantly enhanced in HEK 293T cells expressing the Human rhinovirus 2A protease. These findings suggest that the DENV IRES enables viral protein synthesis under conditions that suppress canonical translation initiation.IMPORTANCE Dengue virus (DENV), the etiological agent of Dengue, a febrile and hemorrhagic disease, infects millions of people per year in tropical and subtropical countries. When infecting cells, DENV induces stress conditions known to inhibit canonical protein synthesis. Under these conditions, DENV mRNA thrives using non-canonical modes of translation initiation. In this study, we characterize the mechanism dependent upon an internal ribosome entry site (IRES). Herein, we describe the activity of the DENV IRES in vitro and cells. We show that in cells, DENV IRES enables the viral mRNA to translate under conditions that suppress canonical translation initiation.
Collapse
|
12
|
Toro-Ascuy D, Gaete-Argel A, Rojas-Celis V, Valiente-Echeverria F. In Situ Hybridization-Proximity Ligation Assay (ISH-PLA) to Study the Interaction of HIV-1 RNA and Remodeling Proteins. Methods Mol Biol 2021; 2209:307-319. [PMID: 33201477 DOI: 10.1007/978-1-0716-0935-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms involved in the posttranscriptional control of the replicative cycle of the human immunodeficiency virus (HIV), specifically the molecular events which allow the interaction between the viral genomic RNA (gRNA) and the cellular machinery for the transport, translation, or intracellular packaging, have not been yet elucidated. In this chapter, we describe the in situ hybridization-proximity ligation assay (ISH-PLA) to characterize interactions between the genomic RNA (gRNA) of HIV-1 and viral proteins or host proteins involved in nuclear export and translation initiation. We also present data that validate the ISH-PLA as a simple and useful tool to study HIV-1 gRNA-protein interactions within cells.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Victoria Rojas-Celis
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverria
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Waldron JA, Tack DC, Ritchey LE, Gillen SL, Wilczynska A, Turro E, Bevilacqua PC, Assmann SM, Bushell M, Le Quesne J. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol 2019; 20:300. [PMID: 31888698 PMCID: PMC6936103 DOI: 10.1186/s13059-019-1901-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The RNA helicase eIF4A1 is a key component of the translation initiation machinery and is required for the translation of many pro-oncogenic mRNAs. There is increasing interest in targeting eIF4A1 therapeutically in cancer, thus understanding how this protein leads to the selective re-programming of the translational landscape is critical. While it is known that eIF4A1-dependent mRNAs frequently have long GC-rich 5'UTRs, the details of how 5'UTR structure is resculptured by eIF4A1 to enhance the translation of specific mRNAs are unknown. RESULTS Using Structure-seq2 and polysome profiling, we assess global mRNA structure and translational efficiency in MCF7 cells, with and without eIF4A inhibition with hippuristanol. We find that eIF4A inhibition does not lead to global increases in 5'UTR structure, but rather it leads to 5'UTR remodeling, with localized gains and losses of structure. The degree of these localized structural changes is associated with 5'UTR length, meaning that eIF4A-dependent mRNAs have greater localized gains of structure due to their increased 5'UTR length. However, it is not solely increased localized structure that causes eIF4A-dependency but the position of the structured regions, as these structured elements are located predominantly at the 3' end of the 5'UTR. CONCLUSIONS By measuring changes in RNA structure following eIF4A inhibition, we show that eIF4A remodels local 5'UTR structures. The location of these structural elements ultimately determines the dependency on eIF4A, with increased structure just upstream of the CDS being the major limiting factor in translation, which is overcome by eIF4A activity.
Collapse
Affiliation(s)
- Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Present Address: Spectrum Health Office of Research, 100 Michigan Street NE, Mail Code 038, Grand Rapids, MI, 49503, USA
| | - Laura E Ritchey
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Present Address: Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, PA, 15904, USA
| | - Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge, UK
- National Institute for Health Research BioResource, Cambridge University Hospitals, Cambridge, UK
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - John Le Quesne
- Medical Research Council Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
14
|
Kraft JJ, Peterson MS, Cho SK, Wang Z, Hui A, Rakotondrafara AM, Treder K, Miller CL, Miller WA. The 3' Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens 2019; 8:E28. [PMID: 30823456 PMCID: PMC6471432 DOI: 10.3390/pathogens8010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
Many plant viral RNA genomes lack a 5' cap, and instead are translated via a cap-independent translation element (CITE) in the 3' untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host's translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Mariko S Peterson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sung Ki Cho
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA.
| | - Zhaohui Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Alice Hui
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute⁻National Research Institute, 76-009 Bonin, Poland.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
15
|
Interplay between the Poly(A) Tail, Poly(A)-Binding Protein, and Coronavirus Nucleocapsid Protein Regulates Gene Expression of Coronavirus and the Host Cell. J Virol 2018; 92:JVI.01162-18. [PMID: 30209168 DOI: 10.1128/jvi.01162-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
In the present study, we investigated the roles of interactions among the poly(A) tail, coronavirus nucleocapsid (N) protein, and poly(A)-binding protein (PABP) in the regulation of coronavirus gene expression. Through dissociation constant (Kd ) comparison, we found that the coronavirus N protein can bind to the poly(A) tail with high affinity, establishing N protein as a PABP. A subsequent analysis with UV cross-linking and immunoprecipitation revealed that the N protein is able to bind to the poly(A) tail in infected cells. Further examination demonstrated that poly(A) tail binding by the N protein negatively regulates translation of coronaviral RNA and host mRNA both in vitro and in cells. Although the N protein can interact with PABP and eukaryotic initiation factor 4G (eIF4G), the poor interaction efficiency between the poly(A)-bound N protein and eIF4E may explain the observed decreased translation efficiency. In addition to interaction with translation factor eIF4G, the N protein is able to interact with coronavirus nonstructural protein 9 (nsp9), a replicase protein required for replication. The study demonstrates interactions among the poly(A) tail, N protein, and PABP both in vitro and in infected cells. Of the interactions, binding of the poly(A) tail to N protein decreases the interaction efficiency between the poly(A) tail and eIF4E, leading to translation inhibition. The poly(A)-dependent translation inhibition by N protein has not been previously demonstrated and thus extends our understanding of coronavirus gene expression.IMPORTANCE Gene expression in coronavirus is a complicated and dynamic process. In this study, we demonstrated that coronavirus N protein is able to bind to the poly(A) tail with high affinity, establishing N protein as a PABP. We also show how the interplay between coronavirus 3' poly(A) tail, PABP, and N protein regulates gene expression of the coronavirus and host cell. Of the interactions, poly(A) tail binding by the N protein negatively regulates translation, and to our knowledge, this inhibition of translation by binding of the N protein to poly(A) tail has not been previously studied. Accordingly, the study provides fundamental molecular details regarding coronavirus infection and expands our knowledge of coronavirus gene expression.
Collapse
|
16
|
Fleith RC, Mears HV, Leong XY, Sanford TJ, Emmott E, Graham SC, Mansur DS, Sweeney TR. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA. Nucleic Acids Res 2018; 46:5269-5285. [PMID: 29554348 PMCID: PMC6007307 DOI: 10.1093/nar/gky191] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed during the cell-intrinsic immune response to viral infection. IFIT1 inhibits translation by binding directly to the 5' end of foreign RNAs, particularly those with non-self cap structures, precluding the recruitment of the cap-binding eukaryotic translation initiation factor 4F and ribosome recruitment. The presence of IFIT1 imposes a requirement on viruses that replicate in the cytoplasm to maintain mechanisms to avoid its restrictive effects. Interaction of different IFIT family members is well described, but little is known of the molecular basis of IFIT association or its impact on function. Here, we reconstituted different complexes of IFIT1, IFIT2 and IFIT3 in vitro, which enabled us to reveal critical aspects of IFIT complex assembly. IFIT1 and IFIT3 interact via a YxxxL motif present in the C-terminus of each protein. IFIT2 and IFIT3 homodimers dissociate to form a more stable heterodimer that also associates with IFIT1. We show for the first time that IFIT3 stabilizes IFIT1 protein expression, promotes IFIT1 binding to a cap0 Zika virus reporter mRNA and enhances IFIT1 translation inhibition. This work reveals molecular aspects of IFIT interaction and provides an important missing link between IFIT assembly and function.
Collapse
Affiliation(s)
- Renata C Fleith
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Xin Yun Leong
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Thomas J Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
17
|
Panthu B, Ohlmann T, Perrier J, Schlattner U, Jalinot P, Elena-Herrmann B, Rautureau GJP. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems. ACS Synth Biol 2018; 7:218-226. [PMID: 28915016 DOI: 10.1021/acssynbio.7b00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.
Collapse
Affiliation(s)
- Baptiste Panthu
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, F-69007 Lyon, France
| | - Johan Perrier
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble cedex, France
| | - Pierre Jalinot
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Bénédicte Elena-Herrmann
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Gilles J. P. Rautureau
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
18
|
Epstein-Barr Virus Protein EB2 Stimulates Translation Initiation of mRNAs through Direct Interactions with both Poly(A)-Binding Protein and Eukaryotic Initiation Factor 4G. J Virol 2018; 92:JVI.01917-17. [PMID: 29142127 DOI: 10.1128/jvi.01917-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV) expresses several mRNAs produced from intronless genes that could potentially be unfavorably translated compared to cellular spliced mRNAs. To overcome this situation, the virus encodes an RNA-binding protein (RBP) called EB2, which was previously found to both facilitate the export of nuclear mRNAs and increase their translational yield. Here, we show that EB2 binds both nuclear and cytoplasmic cap-binding complexes (CBC and eukaryotic initiation factor 4F [eIF4F], respectively) as well as the poly(A)-binding protein (PABP) to enhance translation initiation of a given messenger ribonucleoparticle (mRNP). Interestingly, such an effect can be obtained only if EB2 is initially bound to the native mRNPs in the nucleus. We also demonstrate that the EB2-eIF4F-PABP association renders translation of these mRNPs less sensitive to translation initiation inhibitors. Taken together, our data suggest that EB2 binds and stabilizes cap-binding complexes in order to increase mRNP translation and furthermore demonstrate the importance of the mRNP assembly process in the nucleus to promote protein synthesis in the cytoplasm.IMPORTANCE Most herpesvirus early and late genes are devoid of introns. However, it is now well documented that mRNA splicing facilitates recruitment on the mRNAs of cellular factors involved in nuclear mRNA export and translation efficiency. To overcome the absence of splicing of herpesvirus mRNAs, a viral protein, EB2 in the case of Epstein-Barr virus, is produced to facilitate the cytoplasmic accumulation of viral mRNAs. Although we previously showed that EB2 also specifically enhances translation of its target mRNAs, the mechanism was unknown. Here, we show that EB2 first is recruited to the mRNA cap structure in the nucleus and then interacts with the proteins eIF4G and PABP to enhance the initiation step of translation.
Collapse
|
19
|
CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun 2018; 9:152. [PMID: 29323119 PMCID: PMC5764992 DOI: 10.1038/s41467-017-02643-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Expansion of G4C2 repeats in the C9ORF72 gene is the most prevalent inherited form of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded transcripts undergo repeat-associated non-AUG (RAN) translation producing dipeptide repeat proteins from all reading frames. We determined cis-factors and trans-factors influencing translation of the human C9ORF72 transcripts. G4C2 translation operates through a 5′–3′ cap-dependent scanning mechanism, requiring a CUG codon located upstream of the repeats and an initiator Met-tRNAMeti. Production of poly-GA, poly-GP, and poly-GR proteins from the three frames is influenced by mutation of the same CUG start codon supporting a frameshifting mechanism. RAN translation is also regulated by an upstream open reading frame (uORF) present in mis-spliced C9ORF72 transcripts. Inhibitors of the pre-initiation ribosomal complex and RNA antisense oligonucleotides selectively targeting the 5′-flanking G4C2 sequence block ribosomal scanning and prevent translation. Finally, we identified an unexpected affinity of expanded transcripts for the ribosomal subunits independently from translation. Repeat-associated non-AUG (RAN) translation contributes to the pathogenic mechanism of several microsatellite expansion diseases. Here the authors delineate the different steps involved in recruiting the ribosome to initiate G4C2 RAN translation to produce poly-Glycine Alanine, poly-Glycine Proline, and poly-Glycine Arginine repeats.
Collapse
|
20
|
RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 2017; 8:2005. [PMID: 29222490 PMCID: PMC5722904 DOI: 10.1038/s41467-017-02200-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation allows for unconventional initiation at disease-causing repeat expansions. As RAN translation contributes to pathogenesis in multiple neurodegenerative disorders, determining its mechanistic underpinnings may inform therapeutic development. Here we analyze RAN translation at G4C2 repeat expansions that cause C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9RAN) and at CGG repeats that cause fragile X-associated tremor/ataxia syndrome. We find that C9RAN translation initiates through a cap- and eIF4A-dependent mechanism that utilizes a CUG start codon. C9RAN and CGG RAN are both selectively enhanced by integrated stress response (ISR) activation. ISR-enhanced RAN translation requires an eIF2α phosphorylation-dependent alteration in start codon fidelity. In parallel, both CGG and G4C2 repeats trigger phosphorylated-eIF2α-dependent stress granule formation and global translational suppression. These findings support a model whereby repeat expansions elicit cellular stress conditions that favor RAN translation of toxic proteins, creating a potential feed-forward loop that contributes to neurodegeneration. A nucleotide repeat expansion in C9orf72 is a common genetic cause of neurodegenerative disorders. Here, the authors provide insight into the molecular mechanism by which this repeat undergoes Repeat-Associated Non-AUG (RAN) translation, implicating the integrated stress response and eIF2α phosphorylation.
Collapse
|
21
|
Deforges J, de Breyne S, Ameur M, Ulryck N, Chamond N, Saaidi A, Ponty Y, Ohlmann T, Sargueil B. Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Res 2017; 45:7382-7400. [PMID: 28449096 PMCID: PMC5499600 DOI: 10.1093/nar/gkx303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Sylvain de Breyne
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Melissa Ameur
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Afaf Saaidi
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Yann Ponty
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Theophile Ohlmann
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
22
|
Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res 2017; 45:6023-6036. [PMID: 28334758 PMCID: PMC5449617 DOI: 10.1093/nar/gkx135] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Certain chemical modifications confer increased stability and low immunogenicity to in vitro transcribed mRNAs, thereby facilitating expression of therapeutically important proteins. Here, we demonstrate that N1-methyl-pseudouridine (N1mΨ) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. Through extensive analysis of various modified transcripts in cell-free translation systems, we deconvolute the different components of the effect on protein expression independent of mRNA stability mechanisms. We show that in addition to turning off the immune/eIF2α phosphorylation-dependent inhibition of translation, the incorporated N1mΨ nucleotides dramatically alter the dynamics of the translation process by increasing ribosome pausing and density on the mRNA. Our results indicate that the increased ribosome loading of modified mRNAs renders them more permissive for initiation by favoring either ribosome recycling on the same mRNA or de novo ribosome recruitment.
Collapse
Affiliation(s)
- Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada.,Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
23
|
Mengardi C, Limousin T, Ricci EP, Soto-Rifo R, Decimo D, Ohlmann T. microRNAs stimulate translation initiation mediated by HCV-like IRESes. Nucleic Acids Res 2017; 45:4810-4824. [PMID: 28077561 PMCID: PMC5416841 DOI: 10.1093/nar/gkw1345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3΄ untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40S ribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3΄ UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks a poly(A) tail at its 3΄ extremity.
Collapse
Affiliation(s)
- Chloé Mengardi
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Taran Limousin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Emiliano P Ricci
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Ricardo Soto-Rifo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Didier Decimo
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
24
|
Panthu B, Terrier O, Carron C, Traversier A, Corbin A, Balvay L, Lina B, Rosa-Calatrava M, Ohlmann T. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs. J Mol Biol 2017; 429:3334-3352. [PMID: 28433538 DOI: 10.1016/j.jmb.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs.
Collapse
Affiliation(s)
- Baptiste Panthu
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Olivier Terrier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Coralie Carron
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Aurélien Traversier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Antoine Corbin
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Laurent Balvay
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France
| | - Bruno Lina
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France; Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculté de médecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 69364 Lyon, France; Inserm, U1111, 69364 Lyon, France; Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon, France; CNRS, UMR5308, 69364 Lyon, France.
| |
Collapse
|
25
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
26
|
Penzo M, Carnicelli D, Montanaro L, Brigotti M. A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes. Nat Protoc 2016; 11:1309-25. [PMID: 27336708 DOI: 10.1038/nprot.2016.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro-transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts. The whole procedure can be completed in ∼2.5 d (plus 2 weeks for RRL preparation and cell expansion time). This protocol can be applied to study intrinsic functional properties (cis-acting element-mediated translation initiation or translational fidelity) of ribosome populations from different sources (including nonhuman origin). It is therefore useful for the characterization of ribosomal function in ribosomopathies and cancer, and it will be applicable in the emerging fields of ribosome diversity and specialized ribosomes.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Domenica Carnicelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Smirnova VV, Terenin IM, Khutornenko AA, Andreev DE, Dmitriev SE, Shatsky IN. Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site? Biochimie 2016; 121:228-37. [DOI: 10.1016/j.biochi.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
|
28
|
In vitro translation of mRNAs that are in their native ribonucleoprotein complexes. Biochem J 2015; 472:111-9. [PMID: 26349537 DOI: 10.1042/bj20150772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022]
Abstract
mRNA is bound to a complex network of hundreds of RNA-binding proteins (RBPs) which constitute the mature ribonucleoprotein (mRNP). Such a complex particle is initially scaffolded in the nucleus and stays associated throughout mRNA's journey to the cytoplasm, where it participates in translation. However, due to the size, complexity and variability of the mRNP, it remains technically challenging to assess its impact on translation. By designing a novel in vitro translational assay, we have been able to compare the translational efficiency of reporter mRNAs that are, or are not, associated with their cognate RBPs. This showed the strong impact of these RBPs on translational efficiency, and revealed intrinsic variations according to the structure of both the mRNA and its nuclear history, e.g. the use of intron-containing mRNA constructs showed that splicing strongly enhanced translation. The present study shows that nuclear and cytoplasmic gene expression steps in vitro are coupled in eukaryotes and this is determined from the very birth of the mRNA in the nucleus by a network of hundreds of RBPs.
Collapse
|
29
|
Lauria F, Tebaldi T, Lunelli L, Struffi P, Gatto P, Pugliese A, Brigotti M, Montanaro L, Ciribilli Y, Inga A, Quattrone A, Sanguinetti G, Viero G. RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Res 2015; 43:e153. [PMID: 26240374 PMCID: PMC4678843 DOI: 10.1093/nar/gkv781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023] Open
Abstract
Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.
Collapse
Affiliation(s)
- Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive, 18-38123 Povo (TN), Italy
| | - Paolo Struffi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Pamela Gatto
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Andrea Pugliese
- Mathematics Department, University of Trento, Via Sommarive, 14-38123 Povo (TN), Italy
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, Midlothian EH8 9AB, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| |
Collapse
|
30
|
Sadier A, Lambert E, Chevret P, Décimo D, Sémon M, Tohmé M, Ruggiero F, Ohlmann T, Pantalacci S, Laudet V. Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evol Biol 2015; 15:129. [PMID: 26134525 PMCID: PMC4489351 DOI: 10.1186/s12862-015-0395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Background Only a handful of signaling pathways are major actors of development and responsible for both the conservation and the diversification of animal morphologies. To explain this twofold nature, gene duplication and enhancer evolution were predominantly put forth as tinkering mechanisms whereas the evolution of alternative isoforms has been, so far, overlooked. We investigate here the role of gain and loss of isoforms using Edaradd, a gene of the Ecodysplasin pathway, implicated in morphological evolution. A previous study had suggested a scenario of isoform gain and loss with an alternative isoform (A) newly gained in mammals but secondarily lost in mouse lineage. Results For a comprehensive view of A and B Edaradd isoforms history during mammal evolution, we obtained sequences for both isoforms in representative mammals and performed in vitro translations to support functional predictions. We showed that the ancestral B isoform is well conserved, whereas the mammal-specific A isoform was lost at least 7 times independently in terminal lineages throughout mammal phylogeny. Then, to gain insights into the functional relevance of this evolutionary pattern, we compared the biological function of these isoforms: i) In cellulo promoter assays showed that they are transcribed from two alternative promoters, only B exhibiting feedback regulation. ii) RT-PCR in various tissues and ENCODE data suggested that B isoform is systematically expressed whereas A isoform showed a more tissue-specific expression. iii) Both isoforms activated the NF-κB pathway in an in cellulo reporter assay, albeit at different levels and with different dynamics since A isoform exhibited feedback regulation at the protein level. Finally, only B isoform could rescue a zebrafish edaradd knockdown. Conclusions These results suggest that the newly evolved A isoform enables modulating EDA signaling in specific conditions and with different dynamics. We speculate that during mammal diversification, A isoform regulation may have evolved rapidly, accompanying and possibly supporting the diversity of ectodermal appendages, while B isoform may have ensured essential roles. This study makes the case to pay greater attention to mosaic loss of evolutionarily speaking “young” isoforms as an important mechanism underlying phenotypic diversity and not simply as a manifestation of neutral evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0395-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexa Sadier
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Elise Lambert
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR5558, Université de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France.
| | - Didier Décimo
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Marie Sémon
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Marie Tohmé
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France.
| | - Sophie Pantalacci
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 du CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
31
|
In vitro translation in a hybrid cell free lysate with exogenous cellular ribosomes. Biochem J 2015; 467:387-98. [PMID: 25628018 DOI: 10.1042/bj20141498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell free protein synthesis systems (CFPS) have been widely used to express proteins and to explore the pathways of gene expression. In the present manuscript, we describe the design of a novel adaptable hybrid in vitro translation system which is assembled with ribosomes isolated from many different origins. We first show that this hybrid system exhibits all important features such as efficiency, sensitivity, reproducibility and the ability to translate specialized mRNAs in less than 1 h. In addition, the unique design of this cell free assay makes it highly adaptable to utilize ribosomes isolated from many different organs, tissues or cell types.
Collapse
|
32
|
Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 2015; 43:3764-75. [PMID: 25779044 PMCID: PMC4402527 DOI: 10.1093/nar/gkv205] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valentina Gandin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Maya David
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Geneviève Virgili
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Maritza Jaramillo
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1N 6N5, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Adi Kimchi
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
33
|
de Laplanche E, Boudria A, Dacheux E, Vincent A, Gadot N, Assade F, Le Corf K, Leroy X, Mège Lechevallier F, Eymin B, Dalla Venezia N, Simonnet H. Low glucose microenvironment of normal kidney cells stabilizes a subset of messengers involved in angiogenesis. Physiol Rep 2015; 3:3/1/e12253. [PMID: 25602014 PMCID: PMC4387757 DOI: 10.14814/phy2.12253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As glucose is a mandatory nutrient for cell proliferation and renewal, it is suspected that glucose microenvironment is sensed by all cell types to regulate angiogenesis. Several glucose-sensing components have been partially described to respond to high glucose levels. However, little is known about the response to low glucose. Here, we used well-differentiated isolated normal rat renal tubules under normal oxygenation conditions to assess the angiogenic response to low glucose. In apparent paradox, but confirming observations made separately in other models, high glucose but also low glucose increased mRNA level of vascular endothelial growth factor A (VEGFA). A subset of mRNAs including hypoxia-inducible factor 1A (HIF1A), angiopoietin receptor (TIE-2), and VEGF receptor 2 (FLK1) were similarly glucose-sensitive and responded to low glucose by increased stability independently of HIF1A and HIF2A proteins. These results contribute to gain some insights as to how normal cells response to low glucose may play a role in the tumor microenvironment.
Collapse
Affiliation(s)
- Elodie de Laplanche
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Asma Boudria
- Institut Albert Bonniot Equipe 2 Bases Moléculaires de la Progression des Cancers du Poumon, INSERM U823/Université Joseph Fourier, Grenoble, F-38000, France
| | - Estelle Dacheux
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Anne Vincent
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Nicolas Gadot
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Department of Pathology, Hôpital Edouard Herriot, Lyon, F-69000, France
| | - Fouzia Assade
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Katy Le Corf
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Xavier Leroy
- Institut de Pathologie, CHRU, Faculté de Médecine, Université de Lille, Lille, F-59000, France
| | | | - Béatrice Eymin
- Institut Albert Bonniot Equipe 2 Bases Moléculaires de la Progression des Cancers du Poumon, INSERM U823/Université Joseph Fourier, Grenoble, F-38000, France
| | - Nicole Dalla Venezia
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| | - Hélène Simonnet
- Université de Lyon, Lyon, F-69000, France Université Lyon 1, Lyon, F-69000, France Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69000, France
| |
Collapse
|
34
|
Soto-Rifo R, Valiente-Echeverria F, Rubilar PS, Garcia-de-Gracia F, Ricci EP, Limousin T, Décimo D, Mouland AJ, Ohlmann T. HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Res 2014; 42:12861-75. [PMID: 25352557 PMCID: PMC4227750 DOI: 10.1093/nar/gku1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a ‘packageable’ gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Fernando Valiente-Echeverria
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Paulina S Rubilar
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Francisco Garcia-de-Gracia
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Emiliano P Ricci
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Taran Limousin
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Didier Décimo
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| |
Collapse
|
35
|
Blanc S, Ruggiero F, Birot AM, Acloque H, Décimo D, Lerat E, Ohlmann T, Samarut J, Mey A. Subcellular localization of ENS-1/ERNI in chick embryonic stem cells. PLoS One 2014; 9:e92039. [PMID: 24643087 PMCID: PMC3958431 DOI: 10.1371/journal.pone.0092039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
The protein of retroviral origin ENS-1/ERNI plays a major role during neural plate development in chick embryos by controlling the activity of the epigenetic regulator HP1γ, but its function in the earlier developmental stages is still unknown. ENS-1/ERNI promoter activity is down-regulated upon differentiation but the resulting protein expression has never been examined. In this study, we present the results obtained with custom-made antibodies to gain further insights into ENS-1 protein expression in Chicken embryonic stem cells (CES) and during their differentiation. First, we show that ENS-1 controls the activity of HP1γ in CES and we examined the context of its interaction with HP1γ. By combining immunofluorescence and western blot analysis we show that ENS-1 is localized in the cytoplasm and in the nucleus, in agreement with its role on gene's promoter activity. During differentiation, ENS-1 decreases in the cytoplasm but not in the nucleus. More precisely, three distinct forms of the ENS-1 protein co-exist in the nucleus and are differently regulated during differentiation, revealing a new level of control of the protein ENS-1. In silico analysis of the Ens-1 gene copies and the sequence of their corresponding proteins indicate that this pattern is compatible with at least three potential regulation mechanisms, each accounting only partially. The results obtained with the anti-ENS-1 antibodies presented here reveal that the regulation of ENS-1 expression in CES is more complex than expected, providing new tracks to explore the integration of ENS-1 in CES cells regulatory networks.
Collapse
Affiliation(s)
- Sophie Blanc
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hervé Acloque
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Génétique Cellulaire-INRA, ENVT, Castanet Tolosan, France
| | - Didier Décimo
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Emmanuelle Lerat
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (JS); (AM)
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (JS); (AM)
| |
Collapse
|
36
|
Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N. Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 2013; 11:e1001564. [PMID: 23700384 PMCID: PMC3660254 DOI: 10.1371/journal.pbio.1001564] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein Q2 competitively binds mRNA poly(A) tails to regulate translational and miRNA-related functions of PABP. Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5′ m7G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs. The regulation of mRNA translation and stability is of paramount importance for almost every cellular function. In eukaryotes, the poly(A) binding protein (PABP) is a central regulator of both global and mRNA-specific translation. PABP simultaneously interacts with the 3′ poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G). These interactions circularize the mRNA and stimulate translation. PABP also regulates specific mRNAs by promoting miRNA-dependent deadenylation and translational repression. A key step in understanding PABP's functions is to identify factors that affect its association with the poly(A) tail. Here we show that the cytoplasmic isoform of the mouse heterogeneous nuclear ribonucleoprotein Q (hnRNP-Q2/SYNCRIP), which exhibits binding preference to poly(A), interacts with the poly(A) tail by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to the poly(A) tail. Depleting hnRNP-Q2 stimulates translation in cell-free extracts and in cultured cells, in agreement with its function as translational repressor. In addition, hnRNP-Q2 impeded miRNA-mediated deadenylation and repression of target mRNAs, which requires PABP. Thus, competition from hnRNP-Q2 provides a novel mechanism by which multiple functions of PABP are regulated. This regulation could play important roles in various biological processes, such as development, viral infection, and human disease.
Collapse
Affiliation(s)
- Yuri V. Svitkin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Alexey E. Karetnikov
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Tommy Alain
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Marc R. Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Arkady Khoutorsky
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sandra Perreault
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Soto-Rifo R, Rubilar PS, Ohlmann T. The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA. Nucleic Acids Res 2013; 41:6286-99. [PMID: 23630313 PMCID: PMC3695493 DOI: 10.1093/nar/gkt306] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here, we show a novel molecular mechanism promoted by the DEAD-box RNA helicase DDX3 for translation of the HIV-1 genomic RNA. This occurs through the adenosine triphosphate-dependent formation of a translation initiation complex that is assembled at the 5′ m7GTP cap of the HIV-1 mRNA. This is due to the property of DDX3 to substitute for the initiation factor eIF4E in the binding of the HIV-1 m7GTP 5′ cap structure where it nucleates the formation of a core DDX3/PABP/eIF4G trimeric complex on the HIV-1 genomic RNA. By using RNA fluorescence in situ hybridization coupled to indirect immunofluorescence, we further show that this viral ribonucleoprotein complex is addressed to compartmentalized cytoplasmic foci where the translation initiation complex is assembled.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69634, France.
| | | | | |
Collapse
|
38
|
Ricci EP, Limousin T, Soto-Rifo R, Rubilar PS, Decimo D, Ohlmann T. miRNA repression of translation in vitro takes place during 43S ribosomal scanning. Nucleic Acids Res 2012; 41:586-98. [PMID: 23161679 PMCID: PMC3592420 DOI: 10.1093/nar/gks1076] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression at multiple levels by repressing translation, stimulating deadenylation and inducing the premature decay of target messenger RNAs (mRNAs). Although the mechanism by which miRNAs repress translation has been widely studied, the precise step targeted and the molecular insights of such repression are still evasive. Here, we have used our newly designed in vitro system, which allows to study miRNA effect on translation independently of deadenylation. By using specific inhibitors of various stages of protein synthesis, we first show that miRNAs target exclusively the early steps of translation with no effect on 60S ribosomal subunit joining, elongation or termination. Then, by using viral proteases and IRES-driven mRNA constructs, we found that translational inhibition takes place during 43S ribosomal scanning and requires both the poly(A) binding protein and eIF4G independently from their physical interaction.
Collapse
Affiliation(s)
- Emiliano P Ricci
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, Inserm U758, Lyon F-69364, France
| | | | | | | | | | | |
Collapse
|
39
|
Eliseeva IA, Ovchinnikov LP, Lyabin DN. Specific PABP effect on translation of YB-1 mRNA is neutralized by polyadenylation through a "mini-loop" at 3' UTR. RNA Biol 2012; 9:1473-87. [PMID: 23134843 DOI: 10.4161/rna.22711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
YB-1 is a multifunctional cold shock domain containing protein that is involved virtually in all DNA- and mRNA-dependent cellular events. Its amount is regulated at the level of both transcription and translation. We showed previously that translation of poly A(-) YB-1 mRNA in vitro is selectively controlled by two proteins, YB-1 and PABP, through their specific and competitive binding to a regulatory element (RE) within 3' UTR of this mRNA. Here, we describe effects of these two proteins on translation of poly A(+) as compared with poly A(-) YB-1 mRNA in a rabbit reticulocyte cell-free translation system. We have found that YB-1 inhibits translation of both poly A(+) and poly A(-) YB-1 mRNAs at the same comparatively low YB-1/mRNA ratio. PABP has no positive effect on translation of poly A(+) YB-1 mRNA, although it has a stimulating effect on translation of poly A(-) YB-1 mRNA. A positive PABP effect on translation of poly A(+) YB-1 mRNA arose after removal of a portion of the sequence between RE and the poly(A) tail and disappeared after its replacement by another non-specific sequence of the same length. We also report that the RE fragment forms a complex with the poly(A) fragment in the presence of rabbit reticulocyte lysate (RRL) proteins. For its formation PABP is necessary but not sufficient. These results are in agreement with the proposed model implying formation of a mini-loop at 3' UTR of YB-1 mRNA that includes RE, RRL proteins and the poly(A) tail.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| | | | | |
Collapse
|
40
|
DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J 2012; 31:3745-56. [PMID: 22872150 DOI: 10.1038/emboj.2012.220] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/11/2012] [Indexed: 11/08/2022] Open
Abstract
Here, we have characterized a step in translation initiation of viral and cellular mRNAs that contain RNA secondary structures immediately at the vicinity of their m(7)GTP cap. This is mediated by the DEAD-box helicase DDX3 which can directly bind to the 5' of the target mRNA where it clamps the entry of eIF4F through an eIF4G and Poly A-binding protein cytoplasmic 1 (PABP) double interaction. This could induce limited local strand separation of the secondary structure to allow 43S pre-initiation complex attachment to the 5' free extremity of the mRNA. We further demonstrate that the requirement for DDX3 is highly specific to some selected transcripts, cannot be replaced or substituted by eIF4A and is only needed in the very early steps of ribosome binding and prior to 43S ribosomal scanning. Altogether, these data define an unprecedented role for a DEAD-box RNA helicase in translation initiation.
Collapse
|
41
|
de Breyne S, Chamond N, Décimo D, Trabaud MA, André P, Sargueil B, Ohlmann T. In vitrostudies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS J 2012; 279:3098-111. [DOI: 10.1111/j.1742-4658.2012.08689.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Paek KY, Park SM, Hong KY, Jang SK. Cap-dependent translation without base-by-base scanning of an messenger ribonucleic acid. Nucleic Acids Res 2012; 40:7541-51. [PMID: 22638585 PMCID: PMC3424581 DOI: 10.1093/nar/gks471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
‘Ribosome scanning’ is the generally accepted mechanism for explaining how a ribosome finds an initiation codon located far removed from the ribosome recruiting site (cap structure). However, the molecular characteristics of ribosome scanning along 5′ untranslated regions (UTRs) remain obscure. Herein, using a rabbit reticulocyte lysate (RRL) system and artificial ribonucleic acid (RNA) constructs composed of a capped leader RNA and an uncapped reporter RNA annealed through a double-stranded RNA (dsRNA) bridge, we show that the ribosome can efficiently bypass a stable, dsRNA region without melting the structure. The insertion of an upstream open reading frame in the capped leader RNA impaired the translation of reporter RNA, indicating that a ribosome associated with the 5′-end explores the regions upstream of the dsRNA bridge in search of the initiation codon. These data indicate that a ribosome may skip part(s) of an messenger RNA 5′UTR without thoroughly scanning it.
Collapse
Affiliation(s)
- Ki Young Paek
- PBC, Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | |
Collapse
|
43
|
The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism. J Virol 2011; 86:2176-87. [PMID: 22156529 DOI: 10.1128/jvi.06223-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.
Collapse
|
44
|
Soto-Rifo R, Limousin T, Rubilar PS, Ricci EP, Décimo D, Moncorgé O, Trabaud MA, André P, Cimarelli A, Ohlmann T. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Res 2011; 40:2653-67. [PMID: 22121214 PMCID: PMC3315320 DOI: 10.1093/nar/gkr1093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 5′-untranslated region (5′-UTR) of the genomic RNA of human immunodeficiency viruses type-1 (HIV-1) and type-2 (HIV-2) is composed of highly structured RNA motifs essential for viral replication that are expected to interfere with Gag and Gag-Pol translation. Here, we have analyzed and compared the properties by which the viral 5′-UTR drives translation from the genomic RNA of both human immunodeficiency viruses. Our results showed that translation from the HIV-2 gRNA was very poor compared to that of HIV-1. This was rather due to the intrinsic structural motifs in their respective 5′-UTR without involvement of any viral protein. Further investigation pointed to a different role of TAR RNA, which was much inhibitory for HIV-2 translation. Altogether, these data highlight important structural and functional differences between these two human pathogens.
Collapse
|
45
|
Ex vivo and in vivo inhibition of human rhinovirus replication by a new pseudosubstrate of viral 2A protease. J Virol 2011; 86:691-704. [PMID: 22072773 DOI: 10.1128/jvi.05263-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses (HRVs) remain a significant public health problem as they are the major cause of both upper and lower respiratory tract infections. Unfortunately, to date no vaccine or antiviral against these pathogens is available. Here, using a high-throughput yeast two-hybrid screening, we identified a 6-amino-acid hit peptide, LVLQTM, which acted as a pseudosubstrate of the viral 2A cysteine protease (2A(pro)) and inhibited its activity. This peptide was chemically modified with a reactive electrophilic fluoromethylketone group to form a covalent linkage with the nucleophilic active-site thiol of the enzyme. Ex vivo and in vivo experiments showed that thus converted, LVLQTM was a strong inhibitor of HRV replication in both A549 cells and mice. To our knowledge, this is the first report validating a compound against HRV infection in a mouse model.
Collapse
|
46
|
Berry KE, Peng B, Koditek D, Beeman D, Pagratis N, Perry JK, Parrish J, Zhong W, Doudna JA, Shih IH. Optimized high-throughput screen for hepatitis C virus translation inhibitors. ACTA ACUST UNITED AC 2011; 16:211-20. [PMID: 21297107 DOI: 10.1177/1087057110391665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatitis C virus (HCV) is a considerable global health problem for which new classes of therapeutics are needed. The authors developed a high-throughput assay to identify compounds that selectively block translation initiation from the HCV internal ribosome entry site (HCV IRES). Rabbit reticulocyte lysate conditions were optimized to faithfully report on authentic HCV IRES-dependent translation relative to a 5' capped mRNA control. The authors screened a library of ~430,000 small molecules for IRES inhibition, leading to ~1700 initial hits. After secondary counterscreening, the vast majority of hits proved to be luciferase and general translation inhibitors. Despite well-optimized in vitro translation conditions, in the end, the authors found no selective HCV IRES inhibitors but did discover a new scaffold of general translation inhibitor. The analysis of these molecules, as well we the finding that a large fraction of false positives resulted from off-target effects, highlights the challenges inherent in screens for RNA-specific inhibitors.
Collapse
Affiliation(s)
- Katherine E Berry
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ricci EP, Limousin T, Soto-Rifo R, Allison R, Pöyry T, Decimo D, Jackson RJ, Ohlmann T. Activation of a microRNA response in trans reveals a new role for poly(A) in translational repression. Nucleic Acids Res 2011; 39:5215-31. [PMID: 21385827 PMCID: PMC3130266 DOI: 10.1093/nar/gkr086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we report that the untreated rabbit reticulocyte lysate contains over 300 different endogenous microRNAs together with the major components of the RNA-induced silencing complex and thus can be used as a model in vitro system to study the effects of microRNAs on gene expression. By using this system, we were able to show that microRNA hybridization to its target resulted in a very rapid and strong inhibition of expression that was exerted exclusively at the level of translation initiation with no involvement of transcript degradation or deadenylation. Moreover, we demonstrate that the magnitude of microRNA-induced repression can only be recapitulated in the context of a competitive translating environment. By using a wide spectrum of competitor cellular and viral RNAs, we could further show that competition was not exerted at the level of general components of the translational machinery, but relied exclusively on the presence of the poly(A) tail with virtually no involvement of the cap structure.
Collapse
Affiliation(s)
- Emiliano P Ricci
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Natural occurrence and physiological role of a truncated eIF4E in the porcine endometrium during implantation. Biochem J 2010; 432:353-63. [DOI: 10.1042/bj20100801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study is the first report providing evidence for a physiological role of a truncated form of the mRNA cap-binding protein eIF4E1 (eukaryotic initiation factor 4E1). Our initial observation was that eIF4E, which mediates the mRNA cap function by recruiting the eIF4F complex (composed of eIF4E, 4G and 4A), occurs in two forms in porcine endometrial tissue in a strictly temporally restricted fashion. The ubiquitous prototypical 25 kDa form of eIF4E was found in ovariectomized and cyclic animals. A new stable 23 kDa variant, however, is predominant during early pregnancy at the time of implantation. Northern blotting, cDNA sequence analysis, in vitro protease assays and MS showed that the 23 kDa form does not belong to a new class of eIF4E proteins. It represents a proteolytically processed variant of eIF4E1, lacking not more than 21 amino acids at the N-terminus. Steroid replacements indicated that progesterone in combination with 17β-oestradiol induced the formation of the 23 kDa eIF4E. Modified cell-free translation systems mimicking the situation in the endometrium revealed that, besides eIF4E, eIF4G was also truncated, but not eIF4A or PABP [poly(A)-binding protein]. The 23 kDa form of eIF4E reduced the repressive function of 4E-BP1 (eIF4E-binding protein 1) and the truncated eIF4G lacked the PABP-binding site. Thus we suggest that the truncated eIF4E provides an alternative regulation mechanism by an altered dynamic of eIF4E/4E-BP1 binding under conditions where 4E-BP1 is hypophosphorylated. Together with the impaired eIF4G–PABP interaction, the modified translational initiation might particularly regulate protein synthesis during conceptus attachment at the time of implantation.
Collapse
|
49
|
Vera-Otarola J, Soto-Rifo R, Ricci EP, Ohlmann T, Darlix JL, López-Lastra M. The 3' untranslated region of the Andes hantavirus small mRNA functionally replaces the poly(A) tail and stimulates cap-dependent translation initiation from the viral mRNA. J Virol 2010; 84:10420-4. [PMID: 20660206 PMCID: PMC2937818 DOI: 10.1128/jvi.01270-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/10/2010] [Indexed: 12/26/2022] Open
Abstract
In the process of translation of eukaryotic mRNAs, the 5' cap and the 3' poly(A) tail interact synergistically to stimulate protein synthesis. Unlike its cellular counterparts, the small mRNA (SmRNA) of Andes hantavirus (ANDV), a member of the Bunyaviridae, lacks a 3' poly(A) tail. Here we report that the 3' untranslated region (3'UTR) of the ANDV SmRNA functionally replaces a poly(A) tail and synergistically stimulates cap-dependent translation initiation from the viral mRNA. Stimulation of translation by the 3'UTR of the ANDV SmRNA was found to be independent of viral proteins and of host poly(A)-binding protein.
Collapse
Affiliation(s)
- Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Ricardo Soto-Rifo
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Emiliano P. Ricci
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Théophile Ohlmann
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Jean-Luc Darlix
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Núcleo Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile, TEV, LaboRetro, Unité de Virologie Humaine, INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
50
|
Sanz MA, Welnowska E, Redondo N, Carrasco L. Translation driven by picornavirus IRES is hampered from Sindbis virus replicons: rescue by poliovirus 2A protease. J Mol Biol 2010; 402:101-17. [PMID: 20643140 DOI: 10.1016/j.jmb.2010.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023]
Abstract
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5'-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2A(pro)) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2A(pro) variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2A(pro) or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2A(pro). These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM,C/Nicolás Cabrera, 1,Universidad Autónoma,Cantoblanco, 28049 Madrid,Spain.
| | | | | | | |
Collapse
|