1
|
Cantero-Camacho Á, Gallego J. An unexpected RNA distal interaction mode found in an essential region of the hepatitis C virus genome. Nucleic Acids Res 2019; 46:4200-4212. [PMID: 29409065 PMCID: PMC5934655 DOI: 10.1093/nar/gky074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
The 3’X tail is a functionally essential 98-nt sequence located at the 3′-end of the hepatitis C virus (HCV) RNA genome. The domain contains two absolutely conserved dimer linkage sequence (DLS) and k nucleotide segments involved in viral RNA dimerization and in a distal base-pairing interaction with stem-loop 5BSL3.2, respectively. We have previously shown that domain 3’X forms an elongated structure comprising two coaxially stacked SL1’ and SL2’ stem-loops. This conformation favors RNA dimerization by exposing a palindromic DLS segment in an apical loop, but buries in the upper stem of hairpin SL2’ the k nucleotides involved in the distal contact with 5BSL3.2. Using nuclear magnetic resonance spectroscopy and gel electrophoresis experiments, here we show that the establishment of the complex between domain 3’X and stem-loop 5BSL3.2 only requires a rearrangement of the nucleotides forming the upper region of subdomain SL2’. The results indicate that the interaction does not occur through a canonical kissing loop mechanism involving the unpaired nucleotides of two terminal loops, but rather involves a base-paired stem and an apical loop and may result in a kissing three-way junction. On the basis of this information we suggest how the 3’X tail switches between monomer, homodimer and heterodimer states to regulate the HCV viral cycle.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
2
|
Hill AC, Bartley LE, Schroeder SJ. Prohead RNA: a noncoding viral RNA of novel structure and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2016; 7:428-37. [PMID: 26810250 PMCID: PMC5066667 DOI: 10.1002/wrna.1330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
Prohead RNA (pRNA) is an essential component of the powerful Φ29-like bacteriophage DNA packaging motor. However, the specific role of this unique RNA in the Φ29 packaging motor remains unknown. This review examines pRNA as a noncoding RNA of novel structure and function. In order to highlight the reasons for exploring the structure and function of pRNA, we (1) provide an overview of Φ29-like bacteriophage and the Φ29 DNA packaging motor, including putative motor mechanisms and structures of its component parts; (2) discuss pRNA structure and possible roles for pRNA in the Φ29 packaging motor; (3) summarize pRNA self-assembly; and (4) describe the prospective therapeutic applications of pRNA. Many questions remain to be answered in order to connect what is currently known about pRNA structure to its novel function in the Φ29 packaging motor. The knowledge gained from studying the structure, function, and sequence variation in pRNA will help develop tools to better navigate the conformational landscapes of RNA. WIREs RNA 2016, 7:428-437. doi: 10.1002/wrna.1330 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alyssa C Hill
- Department of Microbiology and Plant Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Susan J Schroeder
- Department of Microbiology and Plant Biology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
3
|
Abstract
![]()
Influenza A is an RNA virus with
a genome of eight negative sense
segments. Segment 7 mRNA contains a 3′ splice site for alternative
splicing to encode the essential M2 protein. On the basis of sequence
alignment and chemical mapping experiments, the secondary structure
surrounding the 3′ splice site has an internal loop, adenine
bulge, and hairpin loop when it is in the hairpin conformation that
exposes the 3′ splice site. We report structural features of
a three-dimensional model of the hairpin derived from nuclear magnetic
resonance spectra and simulated annealing with restrained molecular
dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′
splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge
also appears to be dynamic with the A either stacked in the stem or
forming a base triple with a Watson–Crick GC pair. The hairpin
loop is a GAAA tetraloop closed by an AC pair.
Collapse
Affiliation(s)
- Jonathan L Chen
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D Kennedy
- ‡Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Douglas H Turner
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,§Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Insights into the structure and assembly of the bacteriophage 29 double-stranded DNA packaging motor. J Virol 2014; 88:3986-96. [PMID: 24403593 DOI: 10.1128/jvi.03203-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The tailed double-stranded DNA (dsDNA) bacteriophage 29 packages its 19.3-kbp genome into a preassembled procapsid structure by using a transiently assembled phage-encoded molecular motor. This process is remarkable considering that compaction of DNA to near-crystalline densities within the confined space of the capsid requires that the packaging motor work against significant entropic, enthalpic, and DNA-bending energies. The motor consists of three phage-encoded components: the dodecameric connector protein gp10, an oligomeric RNA molecule known as the prohead RNA (pRNA), and the homomeric ring ATPase gp16. Although atomic resolution structures of the connector and different pRNA subdomains have been determined, the mechanism of self-assembly and the resulting stoichiometry of the various motor components on the phage capsid have been the subject of considerable controversy. Here a subnanometer asymmetric cryoelectron microscopy (cryo-EM) reconstruction of a connector-pRNA complex at a unique vertex of the procapsid conclusively demonstrates the pentameric symmetry of the pRNA and illuminates the relative arrangement of the connector and the pRNA. Additionally, a combination of biochemical and cryo-EM analyses of motor assembly intermediates suggests a sequence of molecular events that constitute the pathway by which the motor assembles on the head, thereby reconciling conflicting data regarding pRNA assembly and stoichiometry. Taken together, these data provide new insight into the assembly, structure, and mechanism of a complex molecular machine. IMPORTANCE Viruses consist of a protein shell, or capsid, that protects and surrounds their genetic material. Thus, genome encapsidation is a fundamental and essential step in the life cycle of any virus. In dsDNA viruses, powerful molecular motors essentially pump the viral DNA into a preformed protein shell. This article describes how a viral dsDNA packaging motor self-assembles on the viral capsid and provides insight into its mechanism of action.
Collapse
|
5
|
Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, Lyubchenko Y, Guo P, Chi YI. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (NEW YORK, N.Y.) 2013; 19:1226-37. [PMID: 23884902 PMCID: PMC3753930 DOI: 10.1261/rna.037077.112] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/06/2013] [Indexed: 05/22/2023]
Abstract
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²⁺. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - James A. Endrizzi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire (IBMC-ARN-CNRS) Cristallogenèse & Biologie Structurale, F-67084 Strasbourg, France
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorsE-mail E-mail
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
6
|
Shu Y, Shu D, Haque F, Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc 2013; 8:1635-59. [PMID: 23928498 DOI: 10.1038/nprot.2013.097] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA nanotechnology is a term that refers to the design, fabrication and use of nanoparticles that are mainly composed of RNAs via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nanodelivery platform. This protocol describes the synthesis, assembly and functionalization of pRNA nanoparticles on the basis of three 'toolkits' derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions and an RNA three-way junction for branch extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores and other functionalities can also be fused to the pRNA before the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultralow concentrations. Gene-silencing effects are progressively enhanced with increasing numbers of siRNAs in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nanodelivery scaffold paves a new way for nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3-4 weeks when including in vitro functional assays, or 2-3 months when including in vivo studies.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
7
|
Harjes E, Kitamura A, Zhao W, Morais MC, Jardine PJ, Grimes S, Matsuo H. Structure of the RNA claw of the DNA packaging motor of bacteriophage Φ29. Nucleic Acids Res 2012; 40:9953-63. [PMID: 22879380 PMCID: PMC3479190 DOI: 10.1093/nar/gks724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage ϕ29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33–35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.
Collapse
Affiliation(s)
- Elena Harjes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Structure and assembly of the essential RNA ring component of a viral DNA packaging motor. Proc Natl Acad Sci U S A 2011; 108:7357-62. [PMID: 21471452 DOI: 10.1073/pnas.1016690108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA.
Collapse
|
9
|
Gu X, Schroeder SJ. Different sequences show similar quaternary interaction stabilities in prohead viral RNA self-assembly. J Biol Chem 2011; 286:14419-26. [PMID: 21349846 DOI: 10.1074/jbc.m110.191064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohead RNA (pRNA) is an essential component of the self-assembling ϕ29 bacteriophage DNA packaging motor. Different related species of bacteriophage share only 12% similarity in pRNA sequences. The secondary structure for pRNA is conserved, however. In this study, we present evidence for self-assembly in different pRNA sequences and new measurements of the energetics for the quaternary interactions in pRNA dimers and trimers. The energetics for self-assembly in different pRNA sequences are similar despite very different sequences in the loop-loop interactions. The architecture surrounding the interlocking loops contributes to the stability of the pRNA quaternary interactions, and sequence variation outside the interlocking loops may counterbalance the changes in the loop sequences. Thus, the evolutionary divergence of pRNA sequences maintains not only conservation of function and secondary structure but also stabilities of quaternary interactions. The self-assembly of pRNA can be fine-tuned with variations in magnesium chloride, sodium chloride, temperature, and concentration. The ability to control pRNA self-assembly holds promise for the development of nanoparticle therapeutic applications for this biological molecule. The pRNA system is well suited for future studies to further understand the energetics of RNA tertiary and quaternary interactions, which can provide insight into larger biological assemblies such as viruses and biomolecular motors.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
10
|
Abstract
Like DNA, RNA can be designed and manipulated to produce a variety of different nanostructures. Moreover, RNA has a flexible structure and possesses catalytic functions that are similar to proteins. Although RNA nanotechnology resembles DNA nanotechnology in many ways, the base-pairing rules for constructing nanoparticles are different. The large variety of loops and motifs found in RNA allows it to fold into numerous complicated structures, and this diversity provides a platform for identifying viable building blocks for various applications. The thermal stability of RNA also allows the production of multivalent nanostructures with defined stoichiometry. Here we review techniques for constructing RNA nanoparticles from different building blocks, we describe the distinct attributes of RNA inside the body, and discuss potential applications of RNA nanostructures in medicine. We also offer some perspectives on the yield and cost of RNA production.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiomedical Center, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
11
|
Harris S, Schroeder SJ. Nuclear magnetic resonance structure of the prohead RNA E-loop hairpin. Biochemistry 2010; 49:5989-97. [PMID: 20550192 DOI: 10.1021/bi100393r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Bacillus subtilis phage phi29 packaging motor requires prohead RNA for genome encapsidation. The nuclear magnetic resonance structure of the prohead RNA E-loop hairpin, r(5'AUUGAGUU), is presented and compared to predictions from MC-SYM. The prohead RNA E-loop hairpins contain sequences similar to rRNA hairpins. Comparison of predicted and experimentally determined prohead and ribosomal hairpin structures reveals that sequence similarity is a stronger determinant of hairpin structural similarity than grouping similar types of RNA. All the hairpins contain a U-turn motif but differ in the first noncanonical pair and backbone orientation. These structures provide benchmarks for further improvements in RNA structure predictions from sequence.
Collapse
Affiliation(s)
- Steven Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | |
Collapse
|