1
|
Tirado-Class N, Hathaway C, Nelligan A, Nguyen T, Dungrawala H. DCAF14 regulates CDT2 to promote SET8-dependent replication fork protection. Life Sci Alliance 2024; 7:e202302230. [PMID: 37940188 PMCID: PMC10631547 DOI: 10.26508/lsa.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
DDB1- and CUL4-associated factors (DCAFs) CDT2 and DCAF14 are substrate receptors for Cullin4-RING E3 ubiquitin ligase (CRL4) complexes. CDT2 is responsible for PCNA-coupled proteolysis of substrates CDT1, p21, and SET8 during S-phase of cell cycle. DCAF14 functions at stalled replication forks to promote genome stability, but the mechanism is unknown. We find that DCAF14 mediates replication fork protection by regulating CRL4CDT2 activity. Absence of DCAF14 causes increased proteasomal degradation of CDT2 substrates. When forks are challenged with replication stress, increased CDT2 function causes stalled fork collapse and impairs fork recovery in DCAF14-deficient conditions. We further show that stalled fork protection is dependent on CDT2 substrate SET8 and does not involve p21 and CDT1. Like DCAF14, SET8 blocks nuclease-mediated digestion of nascent DNA at remodeled replication forks. Thus, unregulated CDT2-mediated turnover of SET8 triggers nascent strand degradation when DCAF14 is absent. We propose that DCAF14 controls CDT2 activity at stalled replication forks to facilitate SET8 function in safeguarding genomic integrity.
Collapse
Affiliation(s)
- Neysha Tirado-Class
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Caitlin Hathaway
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Anthony Nelligan
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Thuan Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Gautam P, Gupta S, Sachan M. Genome-wide expression profiling reveals novel biomarkers in epithelial ovarian cancer. Pathol Res Pract 2023; 251:154840. [PMID: 37844484 DOI: 10.1016/j.prp.2023.154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most aggressive and frequent malignancy detected among women worldwide. The pathophysiology of OC should, therefore be better understood to identify diagnostic, prognostic, and predictive novel biomarkers necessary for early detection, management, and prognostication. In this study, we aimed to investigate transcriptomic landscape and biomarker through RNA-seq data analysis. Further analysis by Protein Protein network identified top 10 Differentially Expressed Genes (DEGs). KEGG pathway enrichment analysis revealed the significant enrichment of DEGs in basal cell carcinoma, cell cycle and FoxO signalling pathway. The RNA-seq results of 10 DEGs were validated by QRT-PCR and TCGA database. Correlation studies were also performed between gene expression and clinical characteristics followed by survival analysis. Finally, 8 DEGs (CDKN1A, BCL6, CDC45, WNT2, TLR5, AQP5) including two novel DEGs (CSN1S1 and NKILA) were identified showing significant correlations with EOC characteristics. These may serve as interesting biomarkers and novel treatment targets and warrant further investigation into the functional outcome of EOC.
Collapse
Affiliation(s)
- Priyanka Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj 211004, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
4
|
A 4-Gene Signature of CDKN1, FDXR, SESN1 and PCNA Radiation Biomarkers for Prediction of Patient Radiosensitivity. Int J Mol Sci 2021; 22:ijms221910607. [PMID: 34638945 PMCID: PMC8508881 DOI: 10.3390/ijms221910607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
The quest for the discovery and validation of radiosensitivity biomarkers is ongoing and while conventional bioassays are well established as biomarkers, molecular advances have unveiled new emerging biomarkers. Herein, we present the validation of a new 4-gene signature panel of CDKN1, FDXR, SESN1 and PCNA previously reported to be radiation-responsive genes, using the conventional G2 chromosomal radiosensitivity assay. Radiation-induced G2 chromosomal radiosensitivity at 0.05 Gy and 0.5 Gy IR is presented for a healthy control (n = 45) and a prostate cancer (n = 14) donor cohort. For the prostate cancer cohort, data from two sampling time points (baseline and Androgen Deprivation Therapy (ADT)) is provided, and a significant difference (p > 0.001) between 0.05 Gy and 0.5 Gy was evident for all donor cohorts. Selected donor samples from each cohort also exposed to 0.05 Gy and 0.5 Gy IR were analysed for relative gene expression of the 4-gene signature. In the healthy donor cohort, there was a significant difference in gene expression between IR dose for CDKN1, FXDR and SESN1 but not PCNA and no significant difference found between all prostate cancer donors, unless they were classified as radiation-induced G2 chromosomal radiosensitive. Interestingly, ADT had an effect on radiation response for some donors highlighting intra-individual heterogeneity of prostate cancer donors.
Collapse
|
5
|
Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets 2020; 20:240-252. [PMID: 31951183 DOI: 10.2174/1568009620666200115162814] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Carla Tribioli
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| |
Collapse
|
6
|
Li TT, Zhu HB. LKB1 and cancer: The dual role of metabolic regulation. Biomed Pharmacother 2020; 132:110872. [PMID: 33068936 DOI: 10.1016/j.biopha.2020.110872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is an essential serine/threonine kinase frequently associated with Peutz-Jeghers syndrome (PJS). In this review, we provide an overview of the role of LKB1 in conferring protection to cancer cells against metabolic stress and promoting cancer cell survival and invasion. This carcinogenic effect contradicts the previous conclusion that LKB1 is a tumor suppressor gene. Here we try to explain the contradictory effect of LKB1 on cancer from a metabolic perspective. Upon deletion of LKB1, cancer cells experience increased energy as well as oxidative stress, thereby causing genomic instability. Meanwhile, mutated LKB1 cooperates with other metabolic regulatory genes to promote metabolic reprogramming that subsequently facilitates adaptation to strong metabolic stress, resulting in development of a more aggressive malignant phenotype. We aim to specifically discuss the contradictory role of LKB1 in cancer by reviewing the mechanism of LKB1 with an emphasis on metabolic stress and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Bin Zhu
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
7
|
Dutto I, Scalera C, Tillhon M, Ticli G, Passaniti G, Cazzalini O, Savio M, Stivala LA, Gervasini C, Larizza L, Prosperi E. Mutations in CREBBP and EP300 genes affect DNA repair of oxidative damage in Rubinstein-Taybi syndrome cells. Carcinogenesis 2020; 41:257-266. [PMID: 31504229 DOI: 10.1093/carcin/bgz149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is an autosomal-dominant disorder characterized by intellectual disability, skeletal abnormalities, growth deficiency and an increased risk of tumors. RSTS is predominantly caused by mutations in CREBBP or EP300 genes encoding for CBP and p300 proteins, two lysine acetyl-transferases (KAT) playing a key role in transcription, cell proliferation and DNA repair. However, the efficiency of these processes in RSTS cells is still largely unknown. Here, we have investigated whether pathways involved in the maintenance of genome stability are affected in lymphoblastoid cell lines (LCLs) obtained from RSTS patients with mutations in CREBBP or in EP300 genes. We report that RSTS LCLs with mutations affecting CBP or p300 protein levels or KAT activity, are more sensitive to oxidative DNA damage and exhibit defective base excision repair (BER). We have found reduced OGG1 DNA glycosylase activity in RSTS compared to control cell extracts, and concomitant lower OGG1 acetylation levels, thereby impairing the initiation of the BER process. In addition, we report reduced acetylation of other BER factors, such as DNA polymerase β and Proliferating Cell Nuclear Antigen (PCNA), together with acetylation of histone H3. We also show that complementation of CBP or p300 partially reversed RSTS cell sensitivity to DNA damage. These results disclose a mechanism of defective DNA repair as a source of genome instability in RSTS cells.
Collapse
Affiliation(s)
- Ilaria Dutto
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy
| | - Claudia Scalera
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy
| | - Micol Tillhon
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy
| | - Giulio Ticli
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy.,Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata, Pavia, Italy
| | - Gianluca Passaniti
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia Generale, Università di Pavia, Via Ferrata, Pavia, Italy
| | - Monica Savio
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia Generale, Università di Pavia, Via Ferrata, Pavia, Italy
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia Generale, Università di Pavia, Via Ferrata, Pavia, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Genetica Medica, Università degli Studi di Milano, Via A. di Rudinì, Milano, Italy
| | - Lidia Larizza
- Laboratorio di Citogenetica Medica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano, Via Ariosto, Milano, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare, Unità Stabilità del Genoma CNR, Via Abbiategrasso, Pavia, Italy
| |
Collapse
|
8
|
Gsell C, Richly H, Coin F, Naegeli H. A chromatin scaffold for DNA damage recognition: how histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Nucleic Acids Res 2020; 48:1652-1668. [PMID: 31930303 PMCID: PMC7038933 DOI: 10.1093/nar/gkz1229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.
Collapse
Affiliation(s)
- Corina Gsell
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Holger Richly
- Boehringer Ingelheim Pharma, Department of Molecular Biology, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|
10
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|
11
|
Tay VSY, Devaraj S, Koh T, Ke G, Crasta KC, Ali Y. Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis. Sci Rep 2019; 9:19341. [PMID: 31852915 PMCID: PMC6920453 DOI: 10.1038/s41598-019-54554-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
DNA damage and DNA damage response (DDR) pathways in β-cells have received little attention especially in the context of type-2 diabetes. We postulate that p21 plays a key role in DDR by preventing apoptosis, associated through its overexpression triggered by DNA stand breaks (DSBs). Our results show that β-cells from chronic diabetic mice had a greater extent of DSBs as compared to their non-diabetic counterparts. Comet assays and nuclear presence of γH2AX and 53bp1 revealed increased DNA DSBs in 16 weeks old (wo) db/db β-cells as compared to age matched non-diabetic β-cells. Our study of gene expression changes in MIN6 cell line with doxorubicin (Dox) induced DNA damage, showed that the DDR was similar to primary β-cells from diabetic mice. There was significant overexpression of DDR genes, gadd45a and p21 after a 24-hr treatment. Western blot analysis revealed increased cleaved caspase3 over time, suggesting higher frequency of apoptosis due to Dox-induced DNA strand breaks. Inhibition of p21 by pharmacological inhibitor UC2288 under DNA damage conditions (both in Dox-induced MIN6 cells and older db/db islets) significantly increased the incidence of β-cell apoptosis. Our studies confirmed that while DNA damage, specifically DSBs, induced p21 overexpression in β-cells and triggered the p53/p21 cellular response, p21 inhibition exacerbated the frequency of apoptosis.
Collapse
Affiliation(s)
- Vanessa S Y Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Surabhi Devaraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tracy Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Guo Ke
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Karen C Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Al Bitar S, Gali-Muhtasib H. The Role of the Cyclin Dependent Kinase Inhibitor p21 cip1/waf1 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers (Basel) 2019; 11:cancers11101475. [PMID: 31575057 PMCID: PMC6826572 DOI: 10.3390/cancers11101475] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
p21cip1/waf1 mediates various biological activities by sensing and responding to multiple stimuli, via p53-dependent and independent pathways. p21 is known to act as a tumor suppressor mainly by inhibiting cell cycle progression and allowing DNA repair. Significant advances have been made in elucidating the potential role of p21 in promoting tumorigenesis. Here, we discuss the involvement of p21 in multiple signaling pathways, its dual role in cancer, and the importance of understanding its paradoxical functions for effectively designing therapeutic strategies that could selectively inhibit its oncogenic activities, override resistance to therapy and yet preserve its tumor suppressive functions.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| | - Hala Gali-Muhtasib
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| |
Collapse
|
13
|
Dutto I, Scalera C, Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci 2018; 75:1325-1338. [PMID: 29170789 PMCID: PMC11105205 DOI: 10.1007/s00018-017-2717-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
The CREB-binding protein (CREBBP, or in short CBP) and p300 are lysine (K) acetyl transferases (KAT) belonging to the KAT3 family of proteins known to modify histones, as well as non-histone proteins, thereby regulating chromatin accessibility and transcription. Previous studies have indicated a tumor suppressor function for these enzymes. Recently, they have been found to acetylate key factors involved in DNA replication, and in different DNA repair processes, such as base excision repair, nucleotide excision repair, and non-homologous end joining. The growing list of CBP/p300 substrates now includes factors involved in DNA damage signaling, and in other pathways of the DNA damage response (DDR). This review will focus on the role of CBP and p300 in the acetylation of DDR proteins, and will discuss how this post-translational modification influences their functions at different levels, including catalytic activity, DNA binding, nuclear localization, and protein turnover. In addition, we will exemplify how these functions may be necessary to efficiently coordinate the spatio-temporal response to DNA damage. CBP and p300 may contribute to genome stability by fine-tuning the functions of DNA damage signaling and DNA repair factors, thereby expanding their role as tumor suppressors.
Collapse
Affiliation(s)
- Ilaria Dutto
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
- IRB, Carrer Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Claudia Scalera
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
14
|
Mostofa A, Punganuru SR, Madala HR, Srivenugopal KS. S-phase Specific Downregulation of Human O 6-Methylguanine DNA Methyltransferase (MGMT) and its Serendipitous Interactions with PCNA and p21 cip1 Proteins in Glioma Cells. Neoplasia 2018; 20:305-323. [PMID: 29510343 PMCID: PMC5909491 DOI: 10.1016/j.neo.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box) motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.
Collapse
Affiliation(s)
- Agm Mostofa
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Surendra R Punganuru
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Hanumantha Rao Madala
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA.
| |
Collapse
|
15
|
Huang WS, Kuo YH, Kuo HC, Hsieh MC, Huang CY, Lee KC, Lee KF, Shen CH, Tung SY, Teng CC. CIL-102-Induced Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells via Upregulation of p21 and GADD45. PLoS One 2017; 12:e0168989. [PMID: 28068431 PMCID: PMC5221879 DOI: 10.1371/journal.pone.0168989] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is a well-known, major active agent of the alkaloid derivative of Camptotheca acuminata with valuable biological properties, including anti-tumorigenic activity. In this study, we investigated the molecular mechanisms by which CIL-102 mediated the induction of cell death, and we performed cell cycle G2/M arrest to clarify molecular changes in colorectal cancer cells (CRC). Treatment of DLD-1 cells with CIL-102 resulted in triggering the extrinsic apoptosis pathway through the activation of Fas-L, caspase-8 and the induction of Bid cleavage and cytochrome c release in a time-dependent manner. In addition, CIL-102 mediated apoptosis and G2/M arrest by phosphorylation of the Jun N-terminus kinase (JNK1/2) signaling pathway. This resulted in the expression of NFκB p50, p300 and CREB-binding protein (CBP) levels, and in the induction of p21 and GADD45 as well as the decreased association of cdc2/cyclin B. Furthermore, treatment with the JNK1/2 (SP600125), NFκB (PDTI) or the p300/CBP (C646) inhibitors abolished CIL-102-induced cell cycle G2/M arrest and reversed the association of cdc2 with cyclin B. Therefore, we demonstrated that there was an increase in the cellular levels of p21 and GADD45 by CIL-102 reduction in cell viability and cell cycle arrest via the activation of the JNK1/2, NFκB p50, p300 and CBP signaling modules. Collectively, our results demonstrated that CIL-102 induced cell cycle arrest and apoptosis of colon cancer cells by upregulating p21 and GADD45 expression and by activating JNK1/2, NFκB p50 and p300 to provide a new mechanism for CIL-102 treatment.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan
| | - Chien-Heng Shen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Chiayi, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| |
Collapse
|
16
|
Wang YL, Li D, Yang HD, He L, Sun WJ, Duan ZL, Wang Q. The E3 Ubiquitin Ligase CRL4 Regulates Proliferation and Progression Through Meiosis in Chinese Mitten Crab Eriocheir sinensis1. Biol Reprod 2016; 94:65. [DOI: 10.1095/biolreprod.115.137661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
|
17
|
French SW. Chronic alcohol binging injures the liver and other organs by reducing NAD⁺ levels required for sirtuin's deacetylase activity. Exp Mol Pathol 2016; 100:303-6. [PMID: 26896648 DOI: 10.1016/j.yexmp.2016.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 01/07/2023]
Abstract
NAD(+) levels are markedly reduced when blood alcohol levels are high during binge drinking. This causes liver injury to occur because the enzymes that require NAD(+) as a cofactor such as the sirtuin de-acetylases cannot de-acetylate acetylated proteins such as acetylated histones. This prevents the epigenetic changes that regulate metabolic processes and which prevent organ injury such as fatty liver in response to alcohol abuse. Hyper acetylation of numerous regulatory proteins develops. Systemic multi-organ injury occurs when NAD(+) is reduced. For instance the Circadian clock is altered if NAD(+) is not available. Cell cycle arrest occurs due to up regulation of cell cycle inhibitors leading to DNA damage, mutations, apoptosis and tumorigenesis. NAD(+) is linked to aging in the regulation of telomere stability. NAD(+) is required for mitochondrial renewal. Alcohol dehydrogenase is present in every visceral organ in the body so that there is a systemic reduction of NAD(+) levels in all of these organs during binge drinking.
Collapse
Affiliation(s)
- Samuel W French
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90509, United States
| |
Collapse
|
18
|
Dutto I, Sukhanova M, Tillhon M, Cazzalini O, Stivala LA, Scovassi AI, Lavrik O, Prosperi E. p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates. PLoS One 2016; 11:e0146031. [PMID: 26730949 PMCID: PMC4701469 DOI: 10.1371/journal.pone.0146031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022] Open
Abstract
The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.
Collapse
Affiliation(s)
- Ilaria Dutto
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso, 207, Pavia, Italy
| | - Maria Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Prospekt Lavrentiev 8, Novosibirsk, Russian Federation
| | - Micol Tillhon
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso, 207, Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Immunologia e Patologia, Università di Pavia, Via Ferrata 9, Pavia, Italy
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Immunologia e Patologia, Università di Pavia, Via Ferrata 9, Pavia, Italy
| | - A. Ivana Scovassi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso, 207, Pavia, Italy
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Prospekt Lavrentiev 8, Novosibirsk, Russian Federation
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso, 207, Pavia, Italy
- * E-mail:
| |
Collapse
|
19
|
Assessing Cell Cycle Independent Function of the CDK Inhibitor p21(CDKN¹A) in DNA Repair. Methods Mol Biol 2016; 1336:123-39. [PMID: 26231713 DOI: 10.1007/978-1-4939-2926-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21(CDKN1A) is a small protein that is able to regulate many important cell functions, often independently of its activity of CDK inhibitor. In addition to cell cycle, this protein regulates cell transcription, apoptosis, cell motility, and DNA repair. In particular, p21 may participate in different DNA repair processes, like the nucleotide excision repair (NER), base excision repair (BER), and double-strand breaks (DSB) repair, because of its ability to interact with DNA repair proteins, such as proliferating cell nuclear antigen (PCNA), a master regulator of many DNA transactions. Although this role has been debated for a long time, the influence of p21 in DNA repair has been now established. However, it remain to be clarified how this role is coupled to proteasomal degradation that has been shown to occur after DNA damage. This chapter describes procedures to study p21 protein recruitment to localized DNA damage sites in the cell nucleus. In particular, we describe a technique based on local irrradiation with UV light through a polycarbonate filter with micropores; an in situ lysis procedure to detect chromatin-bound proteins by immunofluorescence; a cell fractionation procedure to study chromatin association of p21 by Western blot analysis, and p21 protein-protein interactions by an immunoprecipitation assay.
Collapse
|
20
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
21
|
Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC, Stivala LA, Prosperi E. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res 2014; 42:8433-48. [PMID: 24939902 PMCID: PMC4117764 DOI: 10.1093/nar/gku533] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Sabrina Sommatis
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20100, Italy
| | - Alexander Rapp
- Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Tiziana Nardo
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Daniela Necchi
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | | | - Lucia A Stivala
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| |
Collapse
|
22
|
Salahshoor MR, Dastjerdi MN, Jalili C, Mardani M, Khazaei M, Darehdor AS, Valiani A, Roshankhah S. Combination of Salermide and Cholera Toxin B Induce Apoptosis in MCF-7 but Not in MRC-5 Cell Lines. Int J Prev Med 2013; 4:1402-13. [PMID: 24498496 PMCID: PMC3898446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sirtuin1 is an enzyme that deacetylates histones and several non-histone proteins including P53 during the stress. P300 is a member of the histone acetyl transferase family and enzyme that acetylates histones. Hereby, this study describes the potency combination of Salermide as a Sirtuin1 inhibitor and cholera toxin B (CTB) as a P300 activator to induce apoptosis Michigan Cancer Foundation-7 (MCF-7) and MRC-5. METHODS Cells were cultured and treated with a combination of Salermide and CTB respectively at concentrations of 80.56 and 85.43 μmol/L based on inhibitory concentration 50 indexes at different times. The percentage of apoptotic cells were measured by flow cytometry. Real-time polymerase chain reaction was performed to estimate the messenger ribonucleic acid expression of Sirtuin1 and P300 in cells. Enzyme linked immunosorbent assay and Bradford protein techniques were used to detect the endogenous levels of total and acetylated P53 protein generated in both cell lines. RESULTS Our findings indicated that the combination of two drugs could effectively induced apoptosis in MCF-7 significantly higher than MRC-5. We showed that expression of Sirtuin1 and P300 was dramatically down-regulated with increasing time by the combination of Salermide and CTB treatment in MCF-7, but not MRC-5. The acetylated and total P53 protein levels were increased more in MCF-7 than MRC-5 with incubated combination of drugs at different times. Combination of CTB and Salermide in 72 h through decreasing expression of Sirtuin1 and P300 genes induced acetylation of P53 protein and consequently showed the most apoptosis in MCF-7 cells, but it could be well-tolerated in MRC-5. CONCLUSION Therefore, combination of drugs could be used as an anticancer agent.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Dr. Mehdi Nikbakht Dastjerdi, Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Cyrus Jalili
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Shabanizadeh Darehdor
- Department of Anatomical Sciences and Molecular Biology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Valiani
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Cazzalini O, Perucca P, Mocchi R, Sommatis S, Prosperi E, Stivala LA. DDB2 association with PCNA is required for its degradation after UV-induced DNA damage. Cell Cycle 2013; 13:240-8. [PMID: 24200966 PMCID: PMC3906241 DOI: 10.4161/cc.26987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/23/2022] Open
Abstract
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21(CDKN1A) (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Roberto Mocchi
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Sabrina Sommatis
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR; Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| |
Collapse
|
24
|
Dastjerdi MN, Salahshoor MR, Mardani M, Rabbani M, Hashemibeni B, Gharagozloo M, Kazemi M, Esmaeil N, Roshankhah S, Golmohammadi R, Mobarakian M. The apoptotic effects of sirtuin1 inhibitor on the MCF-7 and MRC-5 cell lines. Res Pharm Sci 2013; 8:79-89. [PMID: 24019817 PMCID: PMC3764679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sirtuin1 (SIRT1) is an enzyme that deacetylates histones and several nonhistone proteins including p53 during stress and plays an important role in the survival of tumor cells. Hereby, this study describes the potency of salermide as a SIRT1 inhibitor to induce apoptosis in the MCF-7 and MRC-5 cell lines. MCF7 and MRC-5 cell lines were cultured in RPMI-1640 and treated with or without salermide at concentration of 80.56 μmol/L, based on the half-maximal inhibitory concentration (IC50) index at different times (24, 48 and72 h). The IC50 value was established for the salermide in MCF-7. The percentage of apoptotic cells was measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA expression of sirtuin1 in MCF-7 and MRC-5 with salermide at different times. ELISA and Bradford protein techniques were used to detect endogenous levels of total and acetylated p53 protein generated in MCF-7 and MRC-5 cells. Our findings indicated that salermide can induce apoptosis in MCF-7 significantly more effective than MRC-5 cells. We showed that the expression of SIRT1 was dramatically down-regulated by increasing the time of salermide treatment in MCF-7 but not MRC-5 and that the acetylated and total p53 protein levels were increased more in MCF-7 than MRC-5. Salermide, by decreasing the expression of sirtuin1 gene, can induce acetylation of P53 protein and consequently induce significant cell death in MCF-7 that was well tolerated in MRC-5.
Collapse
Affiliation(s)
- M Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M R Salahshoor
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Rabbani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - B Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Gharagozloo
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - M Kazemi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - N Esmaeil
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sh Roshankhah
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - R Golmohammadi
- Department of Basic Medical Sciences, Faculty of Medicine, Sabzevar University of Medical Sciences, I.R. Iran
| | - M Mobarakian
- Department of plant protection, Faculty of Agriculture, Razi University, Kermanshah, I.R. Iran
| |
Collapse
|
25
|
Dastjerdi MN, Salahshoor MR, Mardani M, Hashemibeni B, Roshankhah S. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines. Adv Biomed Res 2013; 2:24. [PMID: 23977652 PMCID: PMC3748634 DOI: 10.4103/2277-9175.108005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Background: P300 is a member of the mammalian histone acetyl transferase (HAT) family, an enzyme that acetylates histones and several non-histone proteins including P53 (the most important tumor suppressor gene) during stress, which plays an important role in the apoptosis of tumor cells. Hereby, this study describes the potency of CTB (Cholera Toxin B subunit) as a P300 activator to induce apoptosis in a breast cancer cell line (MCF-7) and a lung fibroblast cell line (MRC-5) as a non-tumorigenic control sample. Materials and Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with or without CTB at a concentration of 85.43 μmol/L, based on half-maximal inhibitory concentration (IC50) index at different times (24, 48 and 72 h). The percentage of apoptotic cells were measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with CTB at different times. ELISA and Bradford protein techniques were used to detect levels of total and acetylated P53 protein generated in MCF-7 and MRC-5. Results: Our findings indicated that CTB could effectively induce apoptosis in MCF-7 significantly higher than MRC-5. We showed that expression of P300 was up-regulated by increasing time of CTB treatment in MCF-7 but not in MRC-5 and the acetylated and total P53 protein levels were increased more in MCF-7 cells than MRC-5. Conclusion: CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|
26
|
Wang QE, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani AA. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res 2012; 41:1722-33. [PMID: 23275565 PMCID: PMC3561975 DOI: 10.1093/nar/gks1312] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER.
Collapse
Affiliation(s)
- Qi-En Wang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Romanov VS, Pospelov VA, Pospelova TV. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. BIOCHEMISTRY (MOSCOW) 2012; 77:575-84. [PMID: 22817456 DOI: 10.1134/s000629791206003x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.
Collapse
Affiliation(s)
- V S Romanov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
28
|
Souto-García A, Fernández-Somoano A, Pascual T, Álvarez-Avellón SM, Tardón A. Association of p21 Ser31Arg and p53 Arg72Pro polymorphisms with lung cancer risk in CAPUA study. LUNG CANCER-TARGETS AND THERAPY 2012; 3:69-78. [PMID: 28210126 DOI: 10.2147/lctt.s35287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The aim of this study was to investigate how Ser31Arg polymorphisms in p21 may modify lung cancer susceptibility. Because p21 is the major downstream mediator of p53, we analyzed the combined effect of two polymorphisms, p21 Ser31Arg and TP53 Arg72Pro, to elucidate whether polymorphic variants determine the risk of lung cancer. METHODS This was designed as a hospital-based case-control study, and included 675 cases and 675 control subjects matched by ethnicity, gender, and age. Genotypes were determined by polymerase chain reaction restriction fragment length polymorphism, and multivariate unconditional logistic regression was performed to analyze the results. RESULTS Subjects who carried the p21 Ser31Arg allele had a higher risk of lung cancer (adjusted odds ratio [OR] 1.38; 95% confidence interval [CI] 0.99-2.03). This risk was increased in men aged younger than 55 years (adjusted OR 2.35; 95% CI 1.00-5.51). Smokers had an increased risk of lung cancer (adjusted OR 2.23; 95% CI 1.24-4.02). Men younger than 55 years carrying risk alleles for both genes (p21 Ser31Arg and TP53 Arg72Pro) had an increased risk (adjusted OR 5.78; 95% CI 1.38-24.19), as did smokers with both risk alleles (adjusted OR 4.52; 95% CI 1.52-13.50). CONCLUSION The presence of both variant alleles increased the risk of developing lung cancer in men, particularly in smokers younger than 55 years.
Collapse
Affiliation(s)
- Ana Souto-García
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Ana Fernández-Somoano
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Teresa Pascual
- Pneumology Department, Cabueñes Hospital, Gijón, Asturias, Spain
| | - Sara M Álvarez-Avellón
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Adonina Tardón
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
29
|
Abstract
Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER) is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4) or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.
Collapse
|
30
|
Tillhon M, Cazzalini O, Nardo T, Necchi D, Sommatis S, Stivala LA, Scovassi AI, Prosperi E. p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG. DNA Repair (Amst) 2012; 11:844-52. [PMID: 22954786 DOI: 10.1016/j.dnarep.2012.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/03/2012] [Accepted: 08/03/2012] [Indexed: 01/01/2023]
Abstract
Nucleotide excision repair (NER) is an important DNA repair mechanism through which cells remove bulky DNA lesions. Following DNA damage, the histone acetyltransferase (HAT) p300 (also referred to as lysine acetyltransferase or KAT) is known to associate with proliferating cell nuclear antigen (PCNA), a master regulator of DNA replication and repair processes. This interaction, which results in HAT inhibition, may be dissociated by the cell cycle inhibitor p21(CDKN1A), thereby restoring p300 activity; however, the role of this protein interplay is still unclear. Here, we report that silencing p300 or its homolog CREB-binding protein (CBP) by RNA interference (RNAi) significantly reduces DNA repair synthesis in human fibroblasts. In addition, we determined whether p300 and CBP may associate with and acetylate specific NER factors such as XPG, the 3'-endonuclease that is involved in the incision/excision step and is known to interact with PCNA. Our results show that p300 and CBP interact with XPG, which has been found to be acetylated in vivo. XPG is acetylated by p300 in vitro, and this reaction is inhibited by PCNA. Knocking down both p300/CBP by RNAi or by chemical inhibition with curcumin greatly reduced XPG acetylation, and a concomitant accumulation of the protein at DNA damage sites was observed. The ability of p21 to bind PCNA was found to regulate the interaction between p300 and XPG, and an abnormal accumulation of XPG at DNA damage sites was also found in p21(-/-) fibroblasts. These results indicate an additional function of p300/CBP in NER through the acetylation of XPG protein in a PCNA-p21 dependent manner.
Collapse
Affiliation(s)
- Micol Tillhon
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sokolović A, Montenegro-Miranda PS, de Waart DR, Cappai RMN, Duijst S, Sokolović M, Bosma PJ. Overexpression of insulin like growth factor binding protein 5 reduces liver fibrosis in chronic cholangiopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:996-1003. [PMID: 22434064 DOI: 10.1016/j.bbadis.2012.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/12/2012] [Accepted: 02/26/2012] [Indexed: 01/01/2023]
Abstract
The ATP-binding cassette, sub-family B member 4 knock-out mouse (Abcb4(-/-)) is a relevant model for chronic cholangiopathy in man. Due to the lack of this P-glycoprotein in the canalicular membrane of hepatocytes, the secretion of phospholipids into bile is absent, resulting in increased bile toxicity. Expression of insulin like growth factor binding protein 5 (Igfbp5) increases in time in the livers of these mice. It is unclear whether this induction is a consequence of or plays a role in the progression of liver pathology. The aim of this study was therefore to investigate the effect of IGFBP5 induction on the progression of liver fibrosis caused by chronic cholangiopathy. IGFBP5 and, as a control, green fluorescent protein were overexpressed in the hepatocytes of Abcb4(-/-) mice, using an adeno-associated viral vector (AAV). Progression of liver fibrosis was studied 3, 6, and 12 weeks after vector injection by analyzing serum parameters, collagen deposition, expression of pro-fibrotic genes, inflammation and oxidative stress. A single administration of the AAV vectors provided prolonged expression of IGFBP5 and GFP in the livers of Abcb4(-/-) mice. Compared to GFP control, fractional liver weight, extracellular matrix deposition and amount of activated hepatic stellate cells significantly decreased in IGFBP5 overexpressing mice even 12 weeks after treatment. This effect was not due to a change in bile composition, but driven by reduced inflammation, oxidative stress, and proliferation. Overexpression of IGFBP5 seems to have a protective effect on liver pathology in this model for chronic cholangiopathy.
Collapse
Affiliation(s)
- Aleksandar Sokolović
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
PML contributes to p53-independent p21 up-regulation in gamma-irradiation induced DNA damage responses. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4566-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Howie HL, Koop JI, Weese J, Robinson K, Wipf G, Kim L, Galloway DA. Beta-HPV 5 and 8 E6 promote p300 degradation by blocking AKT/p300 association. PLoS Pathog 2011; 7:e1002211. [PMID: 21901101 PMCID: PMC3161984 DOI: 10.1371/journal.ppat.1002211] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/05/2011] [Indexed: 12/25/2022] Open
Abstract
The E6 oncoprotein from high-risk genus alpha human papillomaviruses (α-HPVs), such as HPV 16, has been well characterized with respect to the host-cell proteins it interacts with and corresponding signaling pathways that are disrupted due to these interactions. Less is known regarding the interacting partners of E6 from the genus beta papillomaviruses (β-HPVs); however, it is generally thought that β-HPV E6 proteins do not interact with many of the proteins known to bind to α-HPV E6. Here we identify p300 as a protein that interacts directly with E6 from both α- and β-HPV types. Importantly, this association appears much stronger with β-HPV types 5 and 8-E6 than with α-HPV type 16-E6 or β-HPV type 38-E6. We demonstrate that the enhanced association between 5/8-E6 and p300 leads to p300 degradation in a proteasomal-dependent but E6AP-independent manner. Rather, 5/8-E6 inhibit the association of AKT with p300, an event necessary to ensure p300 stability within the cell. Finally, we demonstrate that the decreased p300 protein levels concomitantly affect downstream signaling events, such as the expression of differentiation markers K1, K10 and Involucrin. Together, these results demonstrate a unique way in which β-HPV E6 proteins are able to affect host-cell signaling in a manner distinct from that of the α-HPVs.
Collapse
Affiliation(s)
- Heather L. Howie
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jennifer I. Koop
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joleen Weese
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kristin Robinson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Greg Wipf
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Leslie Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes. PLoS One 2011; 6:e22088. [PMID: 21789216 PMCID: PMC3137613 DOI: 10.1371/journal.pone.0022088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/15/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histones constitute a type of essential nuclear proteins important for chromatin structure and functions. The expression of major histones is strictly confined to the S phase of a cell cycle and tightly coupled to DNA replication. METHODOLOGY/PRINCIPAL FINDINGS With RT-qPCR and ChIP assays, we investigated transcriptional regulation of the S-phase specific histone genes and found that the acetylation level of histones on core histone gene promoters fluctuated during cell cycle in a pattern similar to RNA polymerase II association. Further, we showed that CBP/p300 and SIRT1 were recruited to histone gene promoters in an NPAT-dependent manner, knockdown of which affected histone acetylation on histone gene promoters and histone gene transcription. SIGNIFICANCE These observations contribute to further understanding of the mechanism by which the expression of canonical histone genes is regulated, and also implicate a link between histone expression and DNA damage repair and cell metabolism.
Collapse
|
35
|
|
36
|
Averbeck NB, Durante M. Protein acetylation within the cellular response to radiation. J Cell Physiol 2011; 226:962-7. [DOI: 10.1002/jcp.22466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Cazzalini O, Donà F, Savio M, Tillhon M, Maccario C, Perucca P, Stivala LA, Scovassi AI, Prosperi E. p21CDKN1A participates in base excision repair by regulating the activity of poly(ADP-ribose) polymerase-1. DNA Repair (Amst) 2010; 9:627-35. [PMID: 20303835 DOI: 10.1016/j.dnarep.2010.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 02/07/2023]
Abstract
The cell cycle inhibitor p21(CDKN1A) has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21(-/-) human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21(-/-) human fibroblasts than in parental p21(+/+) cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21(-/-) than in p21(+/+) fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase beta, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Dipartimento di Medicina Sperimentale, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boqué N, Campión J, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Some cyclin-dependent kinase inhibitors-related genes are regulated by vitamin C in a model of diet-induced obesity. Biol Pharm Bull 2010; 32:1462-8. [PMID: 19652391 DOI: 10.1248/bpb.32.1462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this research was to investigate differential gene expression of cyclin-dependent kinase inhibitors (CKIs) in white adipose tissue (WAT) and liver from high-fat fed male Wistar rats with or without vitamin C (VC) supplementation (750 mg/kg of body weight). After 56 d of experimentation, animals fed on a cafeteria diet increased significantly body weights and total body fat. Reverse transcription-polymerase chain reaction (RT-PCR) studies showed that cafeteria diet decreased p21 and p57 mRNA expression in subcutaneous WAT and increased p21 mRNA in liver. Overall, these data provide new information about the role of high fat intake on mRNA levels of several CKIs with implications in adipogenesis, cell metabolism and weight homeostasis. Interestingly, VC supplementation partially prevented diet-induced adiposity and increased p27 mRNA in liver without any changes in the other tissues and genes analyzed. Thus, hepatic mRNA changes induced by ascorbic acid indicate a possible role of these genes in diet-induced oxidative stress processes.
Collapse
Affiliation(s)
- Noemí Boqué
- Institute of Nutrition and Food Science, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
39
|
Bandyopadhyay K, Banères JL, Martin A, Blonski C, Parello J, Gjerset RA. Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 2009; 8:2779-88. [PMID: 19652528 DOI: 10.4161/cc.8.17.9416] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acetyl group turnover on specific lysine epsilon-amino groups of the core chromosomal histones regulates DNA accessibility function, and the acetylating and deacetylating enzymes that govern the turnover provide important targets for the development of anti-cancer drugs. Histone deacetylase (HDAC) inhibitors have been developed and evaluated extensively in clinical trials, while the development of inhibitors of histone acetyltransferase (HAT) has proceeded more slowly. Here we have examined the cellular effects of an S-substituted coenzyme A (CoA) inhibitor of histone acetylation, consisting of spermidine (Spd) linked to the S-terminus of CoA through a thioglycolic acid linkage (adduct abbreviated as Spd-CoA), as well as the effects of a truncated Spd-CoA derivative lacking the negatively charged portion of the CoA moiety. While exposure of cancer cells to Spd-CoA has little effect on cell viability, it causes a rapid inhibition of histone acetylation that correlates with a transient arrest of DNA synthesis, a transient delay in S-phase progression, and an inhibition of nucleotide excision repair and DNA double strand break repair. These effects correlate with increased cellular sensitivity to the DNA-targeted chemotherapeutic drugs, cisplatin (Platinol()) and 5-fluorouracil, to the DNA damaging drug, camptothecin, and to UV-C irradiation. The sensitization effects of Spd-CoA are not observed in normal cells due to a barrier to uptake. The truncated Spd-CoA derivative displays similar but enhanced chemosensitization effects, suggesting that further modifications of the Spd-CoA structure could further improve potency. The results demonstrate that Spd-CoA and its truncated version are efficiently and selectively internalized into cancer cells, and suggest that the resulting inhibition of acetylation-dependent DNA repair enhances cellular sensitivity to DNA damage. These and related inhibitors of histone acetylation could therefore constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.
Collapse
|
40
|
Yu Y, Cai JP, Tu B, Wu L, Zhao Y, Liu X, Li L, McNutt MA, Feng J, He Q, Yang Y, Wang H, Sekiguchi M, Zhu WG. Proliferating cell nuclear antigen is protected from degradation by forming a complex with MutT Homolog2. J Biol Chem 2009; 284:19310-20. [PMID: 19419956 DOI: 10.1074/jbc.m109.015289] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) has been demonstrated to interact with multiple proteins involved in several metabolic pathways such as DNA replication and repair. However, there have been fewer reports about whether these PCNA-binding proteins influence stability of PCNA. Here, we observed a physical interaction between PCNA and MutT homolog2 (MTH2), a new member of the MutT-related proteins that hydrolyzes 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP). In several unstressed human cancer cell lines and in normal human fibroblast cells, PCNA and MTH2 formed a complex and their mutual binding fragments were confirmed. It was intriguing that PCNA and MTH2 were dissociated dependent on acetylation of PCNA, which in turn induced degradation of PCNA in response to UV irradiation, but not in response to other forms of DNA-damaging stress. To further explore the link between dissociation of PCNA-MTH2 and degradation of PCNA, RNAi against MTH2 was performed to mimic the dissociated status of PCNA to evaluate changes in the half-life of PCNA. Knockdown of MTH2 significantly promoted degradation of PCNA, suggesting that the physiological interaction of PCNA-MTH2 may confer protection from degradation for PCNA, whereas UV irradiation accelerates PCNA degradation by inducing dissociation of PCNA-MTH2. Moreover, secondary to degradation of PCNA, UV-induced inhibition of DNA synthesis or cell cycle progression was enhanced. Collectively, our data demonstrate for the first time that PCNA is protected by this newly identified partner molecule MTH2, which is related to DNA synthesis and cell cycle progression.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Education Ministry), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Savio M, Coppa T, Cazzalini O, Perucca P, Necchi D, Nardo T, Stivala LA, Prosperi E. Degradation of p21CDKN1A after DNA damage is independent of type of lesion, and is not required for DNA repair. DNA Repair (Amst) 2009; 8:778-85. [PMID: 19321391 DOI: 10.1016/j.dnarep.2009.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/03/2009] [Accepted: 02/20/2009] [Indexed: 12/16/2022]
Abstract
The inhibitor of cyclin-dependent kinases p21CDKN1A plays a fundamental role in several pathways involved in the DNA damage response, like checkpoint-mediated cell cycle arrest, transcription, apoptosis, and DNA repair. Although p21 protein level is regulated by proteasomal degradation, the relationship of this process with DNA repair pathways is not yet clear. In addition, the role of protein/protein interaction in regulating turnover of p21 protein, is controversial. Here, we show that in human fibroblasts treated with agents inducing lesions repaired through nucleotide excision repair (NER), or base excision repair (BER), p21 degradation was triggered more by the extent, than by the type of DNA damage, or consequent DNA repair pathway. In fact, lowering the amount of DNA damage resulted in an increased stability of p21 protein. Overexpression of p21 was found to obscure degradation, both for p21wt and a p21 mutant unable to bind PCNA (p21PCNA-). However, when expressed to lower levels, turnover of p21 protein after DNA damage was greatly influenced by interaction with PCNA, since p21PCNA- was more efficiently degraded than wild-type protein. Interestingly, a p21 mutant protein unable to localize in the nucleus because of mutations in the NLS region, was not degraded after DNA damage, thus indicating that nuclear localization is necessary for p21 turnover. Removal of p21 was not required for NER activity, since inhibition of p21 degradation by caffeine did not affect the UV-induced recruitment of repair proteins, such as PCNA and DNA polymerase delta, nor significantly influence DNA repair synthesis, as determined by autoradiography. These results indicate that degradation of p21 is not dependent on a particular DNA repair pathway, and is not required for efficient DNA repair.
Collapse
Affiliation(s)
- Monica Savio
- Dipartimento di Medicina Sperimentale, sez. Patologia Generale C. Golgi, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 777] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
43
|
Gruel G, Voisin P, Vaurijoux A, Roch-Lefevre S, Grégoire E, Maltere P, Petat C, Gidrol X, Voisin P, Roy L. Broad modulation of gene expression in CD4+ lymphocyte subpopulations in response to low doses of ionizing radiation. Radiat Res 2008; 170:335-44. [PMID: 18763857 DOI: 10.1667/rr1147.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 04/17/2008] [Indexed: 11/03/2022]
Abstract
To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using microarray technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56+, CD4+ and CD8+ cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25k oligonucleotide microarrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4+ cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4+ cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4+ cells could help to understand the mechanisms involved in low-dose response and allow their detection.
Collapse
Affiliation(s)
- Gaëtan Gruel
- Laboratoire de Dosimétrie Biologique, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim Y, Starostina NG, Kipreos ET. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 2008; 22:2507-19. [PMID: 18794348 DOI: 10.1101/gad.1703708] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The faithful replication of genomic DNA is crucial for maintaining genome stability. In eukaryotes, DNA rereplication is prevented by the temporal regulation of replication licensing. Replication-licensing factors are required to form prereplicative complexes during G1 phase, but are inactivated in S phase to prevent rereplication. A vertebrate CUL4 CRL ubiquitin ligase (CRL4) complex containing Cdt2 as the substrate recognition subunit promotes proper DNA replication, in part, by degrading the replication-licensing factor Cdt1 during S phase. We show that the Caenorhabditis elegans CRL4(Cdt2) complex has a conserved role in degrading Cdt1. Furthermore, we show that CRL4(Cdt2) restrains replication licensing in both C. elegans and humans by targeting the degradation of the cyclin-dependent kinase (CDK) inhibitors CKI-1 and p21(Cip1), respectively. Human CRL4(Cdt2) targets the degradation of p21 in S phase, with the in vivo ubiquitylation of p21 by CRL4(Cdt2) dependent on p21 binding to PCNA. Inactivation of Cdt2 induces rereplication, which requires the presence of the CDK inhibitor p21. Strikingly, coinactivation of CRL4(Cdt2) and SCF(Skp2) (which redundantly targets p21 degradation) prevents the nuclear export of the replication-licensing factor Cdc6 during S phase, and the block on nuclear export is dependent on p21. Our work defines the degradation of p21 as a critical aspect of replication licensing in human cells.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602 USA
| | | | | |
Collapse
|