1
|
Khatib JB, Nicolae CM, Moldovan GL. Role of Translesion DNA Synthesis in the Metabolism of Replication-associated Nascent Strand Gaps. J Mol Biol 2024; 436:168275. [PMID: 37714300 PMCID: PMC10842951 DOI: 10.1016/j.jmb.2023.168275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. https://twitter.com/JudeBKhatib
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
2
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
3
|
Duan M, Sivapragasam S, Antony JS, Ulibarri J, Hinz JM, Poon GMK, Wyrick JJ, Mao P. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 2022; 11:73943. [PMID: 35289750 PMCID: PMC8970589 DOI: 10.7554/elife.73943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jacob S Antony
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| |
Collapse
|
4
|
Shin U, Nakhro K, Oh CK, Carrington B, Song H, Varshney GK, Kim Y, Song H, Jeon S, Robbins G, Kim S, Yoon S, Choi YJ, Kim YJ, Burgess S, Kang S, Sood R, Lee Y, Myung K. Large-scale generation and phenotypic characterization of zebrafish CRISPR mutants of DNA repair genes. DNA Repair (Amst) 2021; 107:103173. [PMID: 34390914 DOI: 10.1016/j.dnarep.2021.103173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
A systematic knowledge of the roles of DNA repair genes at the level of the organism has been limited due to the lack of appropriate experimental approaches using animal model systems. Zebrafish has become a powerful vertebrate genetic model system with availability due to the ease of genome editing and large-scale phenotype screening. Here, we generated zebrafish mutants for 32 DNA repair and replication genes through multiplexed CRISPR/Cas9-mediated mutagenesis. Large-scale phenotypic characterization of our mutant collection revealed that three genes (atad5a, ddb1, pcna) are essential for proper embryonic development and hematopoiesis; seven genes (apex1, atrip, ino80, mre11a, shfm1, telo2, wrn) are required for growth and development during juvenile stage and six genes (blm, brca2, fanci, rad51, rad54l, rtel1) play critical roles in sex development. Furthermore, mutation in six genes (atad5a, brca2, polk, rad51, shfm1, xrcc1) displayed hypersensitivity to DNA damage agents. Our zebrafish mutant collection provides a unique resource for understanding of the roles of DNA repair genes at the organismal level.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Khriezhanuo Nakhro
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Anatomy, School of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - HeaIn Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yeongjae Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyemin Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sangeun Jeon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gabrielle Robbins
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sangin Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suhyeon Yoon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yong Jun Choi
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yoo Jung Kim
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoonsung Lee
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
5
|
Katerji M, Duerksen-Hughes PJ. DNA damage in cancer development: special implications in viral oncogenesis. Am J Cancer Res 2021; 11:3956-3979. [PMID: 34522461 PMCID: PMC8414375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 06/13/2023] Open
Abstract
DNA lesions arise from a combination of physiological/metabolic sources and exogenous environmental influences. When left unrepaired, these alterations accumulate in the cells and can give rise to mutations that change the function of important proteins (i.e. tumor suppressors, oncoproteins), or cause chromosomal rearrangements (i.e. gene fusions) that also result in the deregulation of key cellular molecules. Progressive acquisition of such genetic changes promotes uncontrolled cell proliferation and evasion of cell death, and hence plays a key role in carcinogenesis. Another less-studied consequence of DNA damage accumulating in the host genome is the integration of oncogenic DNA viruses such as Human papillomavirus, Merkel cell polyomavirus, and Hepatitis B virus. This critical step of viral-induced carcinogenesis is thought to be particularly facilitated by DNA breaks in both viral and host genomes. Therefore, the impact of DNA damage on carcinogenesis is magnified in the case of such oncoviruses via the additional effect of increasing integration frequency. In this review, we briefly present the various endogenous and exogenous factors that cause different types of DNA damage. Next, we discuss the contribution of these lesions in cancer development. Finally, we examine the amplified effect of DNA damage in viral-induced oncogenesis and summarize the limited data existing in the literature related to DNA damage-induced viral integration. To conclude, additional research is needed to assess the DNA damage pathways involved in the transition from viral infection to cancer. Discovering that a certain DNA damaging agent increases the likelihood of viral integration will enable the development of prophylactic and therapeutic strategies designed specifically to prevent such integration, with an ultimate goal of reducing or eliminating these viral-induced malignancies.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Basic Science, Loma Linda University School of Medicine Loma Linda, CA 92354, USA
| | | |
Collapse
|
6
|
Kay JE, Corrigan JJ, Armijo AL, Nazari IS, Kohale IN, Torous DK, Avlasevich SL, Croy RG, Wadduwage DN, Carrasco SE, Dertinger SD, White FM, Essigmann JM, Samson LD, Engelward BP. Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice. Cell Rep 2021; 34:108864. [PMID: 33730582 PMCID: PMC8527524 DOI: 10.1016/j.celrep.2021.108864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.
Collapse
Affiliation(s)
- Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Amanda L Armijo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ilana S Nazari
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Ishwar N Kohale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | | | - Robert G Croy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Dushan N Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | | | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| |
Collapse
|
7
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Wang Z, Xiao W. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage. Curr Genet 2020; 66:1019-1028. [PMID: 32623695 DOI: 10.1007/s00294-020-01092-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/04/2023]
Abstract
Certain replication-blocking lesions can escape DNA repair and must be bypassed to prevent fork collapse and cell death. Budding yeast DNA-damage tolerance consists of translesion DNA synthesis (TLS) and template switch. TLS utilizes specialized DNA polymerases to insert nucleotides opposite the damage site, followed by extension, allowing continual replication in the presence of lesions on the template DNA. Meanwhile, Rev1 is additionally required for the subsequent extension step of TLS regardless of the initial insertion polymerase utilized. Here we assess relative contributions of two Y-family TLS polymerases, Rev1 and Polη, in bypassing lesions induced by various types of DNA-damaging agents. Our experimental results collectively indicate that yeast cells preferentially utilize relatively error-free TLS polymerase(s) to bypass given lesions, and that the mutagenic TLS polymerase may serve as a backup. Interestingly, if Polη is unable to serve as a TLS polymerase under certain circumstances, it may be counter-active. The cooperation among TLS polymerases may strike a balance between survival and stress-induced mutagenesis. These observations indicate that specialized Y-family DNA polymerases have evolved to deal with different types of environmental genotoxic stresses.
Collapse
Affiliation(s)
- Zihao Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
9
|
Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 2020; 66:635-655. [PMID: 32236653 DOI: 10.1007/s00294-020-01071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
10
|
Seelinger M, Søgaard CK, Otterlei M. The Human RAD5 Homologs, HLTF and SHPRH, Have Separate Functions in DNA Damage Tolerance Dependent on The DNA Lesion Type. Biomolecules 2020; 10:biom10030463. [PMID: 32192191 PMCID: PMC7175315 DOI: 10.3390/biom10030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Abstract
Helicase-like transcription factor (HLTF) and SNF2, histone-linker, PHD and RING finger domain-containing helicase (SHPRH), the two human homologs of yeast Rad5, are believed to have a vital role in DNA damage tolerance (DDT). Here we show that HLTF, SHPRH and HLTF/SHPRH knockout cell lines show different sensitivities towards UV-irradiation, methyl methanesulfonate (MMS), cisplatin and mitomycin C (MMC), which are drugs that induce different types of DNA lesions. In general, the HLTF/SHPRH double knockout cell line was less sensitive than the single knockouts in response to all drugs, and interestingly, especially to MMS and cisplatin. Using the SupF assay, we detected an increase in the mutation frequency in HLTF knockout cells both after UV- and MMS-induced DNA lesions, while we detected a decrease in mutation frequency over UV lesions in the HLTF/SHPRH double knockout cells. No change in the mutation frequency was detected in the HLTF/SHPRH double knockout cell line after MMS treatment, even though these cells were more resistant to MMS and grew faster than the other cell lines after treatment with DNA damaging agents. This phenotype could possibly be explained by a reduced activation of checkpoint kinase 2 (CHK2) and MCM2 (a component of the pre-replication complex) after MMS treatment in cells lacking SHPRH. Our data reveal both distinct and common roles of the human RAD5 homologs dependent on the nature of DNA lesions, and identified SHPRH as a regulator of CHK2, a central player in DNA damage response.
Collapse
|
11
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Mammalian DNA Polymerase Kappa Activity and Specificity. Molecules 2019; 24:molecules24152805. [PMID: 31374881 PMCID: PMC6695781 DOI: 10.3390/molecules24152805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Collapse
|
13
|
Meas R, Wyrick JJ, Smerdon MJ. Nucleosomes Regulate Base Excision Repair in Chromatin. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:29-36. [PMID: 31388331 PMCID: PMC6684245 DOI: 10.1016/j.mrrev.2017.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromatin is a significant barrier to many DNA damage response (DDR) factors, such as DNA repair enzymes, that process DNA lesions to reduce mutations and prevent cell death; yet, paradoxically, chromatin also has a critical role in many signaling pathways that regulate the DDR. The primary level of DNA packaging in chromatin is the nucleosome core particle (NCP), consisting of DNA wrapped around an octamer of the core histones H2A, H2B, H3 and H4. Here, we review recent studies characterizing how the packaging of DNA into nucleosomes modulates the activity of the base excision repair (BER) pathway and dictates BER subpathway choice. We also review new evidence indicating that the histone amino-terminal tails coordinately regulate multiple DDR pathways during the repair of alkylation damage in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Rithy Meas
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| | - Michael J. Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
14
|
McIntyre J, Sobolewska A, Fedorowicz M, McLenigan MP, Macias M, Woodgate R, Sledziewska-Gojska E. DNA polymerase ι is acetylated in response to S N2 alkylating agents. Sci Rep 2019; 9:4789. [PMID: 30886224 PMCID: PMC6423139 DOI: 10.1038/s41598-019-41249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
DNA polymerase iota (Polι) belongs to the Y-family of DNA polymerases that are involved in DNA damage tolerance through their role in translesion DNA synthesis. Like all other Y-family polymerases, Polι interacts with proliferating cell nuclear antigen (PCNA), Rev1, ubiquitin and ubiquitinated-PCNA and is also ubiquitinated itself. Here, we report that Polι also interacts with the p300 acetyltransferase and is acetylated. The primary acetylation site is K550, located in the Rev1-interacting region. However, K550 amino acid substitutions have no effect on Polι's ability to interact with Rev1. Interestingly, we find that acetylation of Polι significantly and specifically increases in response to SN2 alkylating agents and to a lower extent to SN1 alkylating and oxidative agents. As we have not observed acetylation of Polι's closest paralogue, DNA polymerase eta (Polη), with which Polι shares many functional similarities, we believe that this modification might exclusively regulate yet to be determined, and separate function(s) of Polι.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mikolaj Fedorowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
15
|
Akagi J, Yokoi M, Cho YM, Toyoda T, Ohmori H, Hanaoka F, Ogawa K. Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair (Amst) 2017; 61:76-85. [PMID: 29247828 DOI: 10.1016/j.dnarep.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.
Collapse
Affiliation(s)
- Junichi Akagi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo Prefecture 657-8501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture 305-8577, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
16
|
Mao P, Brown AJ, Malc EP, Mieczkowski PA, Smerdon MJ, Roberts SA, Wyrick JJ. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity. Genome Res 2017; 27:1674-1684. [PMID: 28912372 PMCID: PMC5630031 DOI: 10.1101/gr.225771.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Ewa P Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
17
|
Ignatov A, Bondarenko K, Makarova A. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Acta Naturae 2017; 9:12-26. [PMID: 29104772 PMCID: PMC5662270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a major cause of replication interruption, mutations, and cell death. DNA damage is removed by several types of repair processes. The involvement of specialized DNA polymerases in replication provides an important mechanism that helps tolerate persistent DNA damage. Specialized DNA polymerases incorporate nucleotides opposite lesions with high efficiency but demonstrate low accuracy of DNA synthesis. In this review, we summarize the types and mechanisms of formation and repair of non-bulky DNA lesions, and we provide an overview of the role of specialized DNA polymerases in translesion DNA synthesis.
Collapse
Affiliation(s)
- A.V. Ignatov
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
- Department of Molecular Biology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - K.A. Bondarenko
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| | - A.V. Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| |
Collapse
|
18
|
Jatsenko T, Sidorenko J, Saumaa S, Kivisaar M. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS One 2017; 12:e0170719. [PMID: 28118378 PMCID: PMC5261740 DOI: 10.1371/journal.pone.0170719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis.
Collapse
Affiliation(s)
- Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| | - Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (MK); (TJ)
| |
Collapse
|
19
|
Kanemaru Y, Suzuki T, Sassa A, Matsumoto K, Adachi N, Honma M, Numazawa S, Nohmi T. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis. Genes Environ 2017; 39:6. [PMID: 28077981 PMCID: PMC5219776 DOI: 10.1186/s41021-016-0067-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
Background Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. Results We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. Conclusions These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and also that the established cell lines are useful for evaluating the genotoxicity of chemicals from multiple endpoints in different genetic backgrounds of Pol κ. Electronic supplementary material The online version of this article (doi:10.1186/s41021-016-0067-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-0064 Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Present Addresses: Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 Japan
| | - Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043 Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-0064 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan ; Present Addresses: Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
20
|
Malvezzi S, Angelov T, Sturla SJ. Minor Groove 3-Deaza-Adenosine Analogues: Synthesis and Bypass in Translesion DNA Synthesis. Chemistry 2016; 23:1101-1109. [PMID: 27862447 DOI: 10.1002/chem.201604289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 11/07/2022]
Abstract
Anticancer drugs that alkylate DNA in the minor groove may give rise to 3-alkyl-adenosine adducts that interfere with replication, inducing apoptosis in rapidly dividing cancer cells. However, translesion DNA synthesis (TLS) by polymerase enzymes (Pols) with the capacity to bypass DNA adducts may contribute to damage tolerance and drug resistance. 3-Alkyl-adenosine adducts are unstable and depurinate, which is a barrier to addressing chemical and enzymatic aspects of how they impact the progress of DNA Pols. To characterize structure-based relationships of 3-adenine alkylation relevant to cancer drugs on duplex stability and DNA Pol-catalyzed DNA synthesis, we synthesized stable 3-deaza-3-alkyl-adenosine analogues, including 3-deaza-3-phenethyl-adenosine and 3-deaza-3-methoxynaphthylethyl-adenosine, and incorporated them into oligonucleotides. A moderate reduction of duplex stability was observed on the basis of thermal denaturation data. Replication studies using purified Y-family human DNA Pols hPol η, κ, and ι indicated that these enzymes can perform TLS over the modified bases. hPol η had higher misincorporation rates when synthesizing opposite the modified bases compared with adenine, whereas hPol κ and ι maintained high fidelity. These results provide insight into how alterations in chemical structure reduce bypass of minor-groove adducts, and provide novel chemical probes for evaluating minor-groove DNA alkylation.
Collapse
Affiliation(s)
- Stefano Malvezzi
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Todor Angelov
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| |
Collapse
|
21
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
22
|
Nikolova EN, Zhou H, Gottardo FL, Alvey HS, Kimsey IJ, Al-Hashimi HM. A historical account of Hoogsteen base-pairs in duplex DNA. Biopolymers 2016; 99:955-68. [PMID: 23818176 DOI: 10.1002/bip.22334] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 11/05/2022]
Abstract
In 1957, a unique pattern of hydrogen bonding between N3 and O4 on uracil and N7 and N6 on adenine was proposed to explain how poly(rU) strands can associate with poly(rA)-poly(rU) duplexes to form triplexes. Two years later, Karst Hoogsteen visualized such a noncanonical A-T base-pair through X-ray analysis of co-crystals containing 9-methyladenine and 1-methylthymine. Subsequent X-ray analyses of guanine and cytosine derivatives yielded the expected Watson-Crick base-pairing, but those of adenine and thymine (or uridine) did not yield Watson-Crick base-pairs, instead favoring "Hoogsteen" base-pairing. More than two decades ensued without experimental "proof" for A-T Watson-Crick base-pairs, while Hoogsteen base-pairs continued to surface in AT-rich sequences, closing base-pairs of apical loops, in structures of DNA bound to antibiotics and proteins, damaged and chemically modified DNA, and in polymerases that replicate DNA via Hoogsteen pairing. Recently, NMR studies have shown that base-pairs in duplex DNA exist as a dynamic equilibrium between Watson-Crick and Hoogsteen forms. There is now little doubt that Hoogsteen base-pairs exist in significant abundance in genomic DNA, where they can expand the structural and functional versatility of duplex DNA beyond that which can be achieved based only on Watson-Crick base-pairing. Here, we provide a historical account of the discovery and characterization of Hoogsteen base-pairs, hoping that this will inform future studies exploring the occurrence and functional importance of these alternative base-pairs.
Collapse
Affiliation(s)
- Evgenia N Nikolova
- Department of Chemistry & Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109-1055; Integrative Structural & Computational Biology Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
| | | | | | | | | | | |
Collapse
|
23
|
Delarami HS, Ebrahimi A. Theoretical investigation of the backbone···π and π···π stacking interactions in substituted-benzene||3-methyl-2′-deoxyadenosine: a perspective to the DNA repair. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1118569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hojat Samareh Delarami
- Computational Quantum Chemistry Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
24
|
Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 2015; 527:254-8. [PMID: 26524531 DOI: 10.1038/nature15728] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/18/2015] [Indexed: 01/10/2023]
Abstract
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Rongxin Shi
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Zachary D Parsons
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
25
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
26
|
Malvezzi S, Sturla SJ, Tanasova M. Quantification of pyrophosphate as a universal approach to determine polymerase activity and assay polymerase inhibitors. Anal Biochem 2015; 478:1-7. [PMID: 25772306 DOI: 10.1016/j.ab.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022]
Abstract
The importance of DNA polymerases in biology and biotechnology, and their recognition as potential therapeutic targets, drives development of methods for deriving kinetic characteristics of polymerases and their propensity to perform polynucleotide synthesis over modified DNA templates. Among various polymerases, translesion synthesis (TLS) polymerases enable cells to avoid the cytotoxic stalling of replicative DNA polymerases at chemotherapy-induced DNA lesions, thereby leading to drug resistance. Identification of TLS inhibitors to overcome drug-resistance necessitates the development of appropriate high-throughput assays. Since polymerase-mediated DNA synthesis involves the release of inorganic pyrophosphate (PPi), we established a universal and fast method for monitoring the progress of DNA polymerases based on the quantification of PPi with a fluorescence-based assay that we coupled to in vitro primer extension reactions. The established assay has a nanomolar detection limit in PPi and enables the evaluation of single nucleotide incorporation and DNA synthesis progression kinetics. The results demonstrated that the developed assay is a reliable method for monitoring TLS and identifying nucleoside and nucleotide-based TLS inhibitors.
Collapse
Affiliation(s)
- S Malvezzi
- Department of Health Sciences and Technology, ETH Zurich Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - S J Sturla
- Department of Health Sciences and Technology, ETH Zurich Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - M Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
27
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Starostenko LV, Rechkunova NI, Lebedeva NA, Kolbanovskiy A, Geacintov NE, Lavrik OI. Human DNA polymerases catalyze lesion bypass across benzo[ a ]pyrene-derived DNA adduct clustered with an abasic site. DNA Repair (Amst) 2014; 24:1-9. [DOI: 10.1016/j.dnarep.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/10/2014] [Accepted: 10/03/2014] [Indexed: 01/30/2023]
|
29
|
Guarino E, Cojoc G, García-Ulloa A, Tolić IM, Kearsey SE. Real-time imaging of DNA damage in yeast cells using ultra-short near-infrared pulsed laser irradiation. PLoS One 2014; 9:e113325. [PMID: 25409521 PMCID: PMC4237433 DOI: 10.1371/journal.pone.0113325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.
Collapse
Affiliation(s)
- Estrella Guarino
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Iva M. Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
The effect of intramolecular hydrogen bond on the N-glycosidic bond strength in 3-methyl-2′-deoxyadenosine: a quantum chemical study. Struct Chem 2014. [DOI: 10.1007/s11224-014-0493-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Selection of dinB alleles suppressing survival loss upon dinB overexpression in Escherichia coli. J Bacteriol 2014; 196:3023-35. [PMID: 24914188 DOI: 10.1128/jb.01782-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE(+) cells because the dnaE915 allele is known to have an altered genetic interaction with dinB(+) compared to its interaction with dnaE(+). Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB(+) upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE(+) strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.
Collapse
|
32
|
Cafarelli TM, Rands TJ, Godoy VG. The DinB•RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:92-102. [PMID: 24243543 DOI: 10.1002/em.21826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Alkylation DNA lesions are ubiquitous, and result from normal cellular metabolism as well as from treatment with methylating agents and chemotherapeutics. DNA damage tolerance by translesion synthesis DNA polymerases has an important role in cellular resistance to alkylating agents. However, it is not yet known whether Escherichia coli (E. coli) DNA Pol IV (DinB) alkylation lesion bypass efficiency and fidelity in vitro are similar to those inferred by genetic analyses. We hypothesized that DinB-mediated bypass of 3-deaza-3-methyladenine, a stable analog of 3-methyladenine, the primary replication fork-stalling alkylation lesion, would be of high fidelity. We performed here the first kinetic analyses of E. coli DinB•RecA binary complexes. Whether alone or in a binary complex, DinB inserted the correct deoxyribonucleoside triphosphate (dNTP) opposite either lesion-containing or undamaged template; the incorporation of other dNTPs was largely inefficient. DinB prefers undamaged DNA, but the DinB•RecA binary complex increases its catalytic efficiency on lesion-containing template, perhaps as part of a regulatory mechanism to better respond to alkylation damage. Notably, we find that a DinB derivative with enhanced affinity for RecA, either alone or in a binary complex, is less efficient and has a lower fidelity than DinB or DinB•RecA. This finding contrasts our previous genetic analyses. Therefore, mutagenesis resulting from alkylation lesions is likely limited in cells by the activity of DinB•RecA. These two highly conserved proteins play an important role in maintaining genomic stability when cells are faced with ubiquitous DNA damage. Kinetic analyses are important to gain insights into the mechanism(s) regulating TLS DNA polymerases.
Collapse
|
33
|
PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African trypanosome. Mol Cell 2014; 52:554-65. [PMID: 24267450 PMCID: PMC3898837 DOI: 10.1016/j.molcel.2013.10.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023]
Abstract
Faithful copying of the genome is essential for life. In eukaryotes, a single archaeo-eukaryotic primase (AEP), DNA primase, is required for the initiation and progression of DNA replication. Here we have identified additional eukaryotic AEP-like proteins with DNA-dependent primase and/or polymerase activity. Uniquely, the genomes of trypanosomatids, a group of kinetoplastid protozoa of significant medical importance, encode two PrimPol-like (PPL) proteins. In the African trypanosome, PPL2 is a nuclear enzyme present in G2 phase cells. Following PPL2 knockdown, a cell-cycle arrest occurs after the bulk of DNA synthesis, the DNA damage response is activated, and cells fail to recover. Consistent with this phenotype, PPL2 replicates damaged DNA templates in vitro, including templates containing the UV-induced pyrimidine-pyrimidone (6-4) photoproduct. Furthermore, PPL2 accumulates at sites of nuclear DNA damage. Taken together, our results indicate an essential role for PPL2 in postreplication tolerance of endogenous DNA damage, thus allowing completion of genome duplication. Trypanosomatids contain two archaeo-eukaryotic primase-polymerase-like proteins PPL2 is essential in the pathogenic bloodstream form African trypanosome PPL2 suppresses DNA damage and allows completion of chromosomal replication PPL2 mediates translesion DNA synthesis
Collapse
|
34
|
Kimsey I, Al-Hashimi HM. Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids. Curr Opin Struct Biol 2014; 24:72-80. [PMID: 24721455 DOI: 10.1016/j.sbi.2013.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
There are a growing number of studies reporting the observation of purine-pyrimidine base-pairs that are seldom observed in unmodified nucleic acids because they entail the loss of energetically favorable interactions or require energetically costly base ionization or tautomerization. These high energy purine-pyrimidine base-pairs include G•C(+) and A•T Hoogsteen base-pairs, which entail ∼180° rotation of the purine base in a Watson-Crick base-pair, protonation of cytosine N3, and constriction of the C1'-C1' distance by ∼2.5Å. Other high energy pure-pyrimidine base-pairs include G•T, G•U, and A•C mispairs that adopt Watson-Crick like geometry through either base ionization or tautomerization. Although difficult to detect and characterize using biophysical methods, high energy purine-pyrimidine base-pairs appear to be more common than once thought. They further expand the structural and functional diversity of canonical and non-canonical nucleic acid base-pairs.
Collapse
Affiliation(s)
- Isaac Kimsey
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
35
|
Comparison of the biological effects of MMS and Me-lex, a minor groove methylating agent: clarifying the role of N3-methyladenine. Mutat Res 2013; 759:45-51. [PMID: 24211855 DOI: 10.1016/j.mrfmmm.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/16/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
Abstract
N3-methyladenine (3-mA), generated by the reaction of methylating agents with DNA, is considered a highly toxic but weakly mutagenic lesion. However, due to its intrinsic instability, some of the biological effects of the adduct can result from the formation of the corresponding depurination product [an apurinic (AP)-site]. Previously, we exploited Me-lex, i.e. {1-methyl-4-[1-methyl-4-(3-methoxysulfonylpropanamido)pyrrole-2-carboxamido]-pyrrole-2 carboxamido}propane, a minor groove equilibrium binder with selectivity for A/T rich sequences that efficiently reacts with DNA to afford 3-mA as the dominant product, to probe the biology of this lesion. Using human p53 cDNA as a target in a yeast system, a weak increase in mutagenicity was observed in the absence of Mag1 (3-methyladenine-DNA glycosylase 1, mag1), the enzyme devoted to remove 3-mA from DNA. Moreover, a significant increase in mutagenicity occurred in the absence of the enzymes involved in the repair of AP-sites (AP endonucleases 1 and 2, apn1apn2). Since methyl methanesulfonate (MMS) has been extensively used to explore the biological effects of 3-mA, even though it produces 3-mA in low relative yield, we compared the toxicity and mutagenicity induced by MMS and Me-lex in yeast. A mutagenesis reporter plasmid was damaged in vitro by MMS and then transformed into wild-type and Translesion Synthesis (TLS) Polζ (REV3) and Polη (RAD30) deficient strains. Furthermore, a mag1rad30 double mutant strain was constructed and transformed with the DNA plasmid damaged in vitro by Me-lex. The results confirm the important role of Polζ in the mutagenic bypass of MMS and Me-lex induced lesions, with Polη contributing only towards the bypass of Me-lex induced lesions, mainly in an error-free way. Previous and present results point towards the involvement of AP-sites, derived from the depurination of 3-mA, in the observed toxicity and mutagenicity.
Collapse
|
36
|
Iyer P, Srinivasan A, Singh SK, Mascara GP, Zayitova S, Sidone B, Fouquerel E, Svilar D, Sobol RW, Bobola MS, Silber JR, Gold B. Synthesis and characterization of DNA minor groove binding alkylating agents. Chem Res Toxicol 2013; 26:156-68. [PMID: 23234400 PMCID: PMC3618862 DOI: 10.1021/tx300437x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.
Collapse
Affiliation(s)
- Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ajay Srinivasan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sreelekha K. Singh
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard P. Mascara
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sevara Zayitova
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Brian Sidone
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Elise Fouquerel
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
| | - David Svilar
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert W. Sobol
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Human Genetics, University of Pittsburgh 15213
| | - Michael S. Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105
| | - John R. Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
37
|
A single residue unique to DinB-like proteins limits formation of the polymerase IV multiprotein complex in Escherichia coli. J Bacteriol 2013; 195:1179-93. [PMID: 23292773 DOI: 10.1128/jb.01349-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The activity of DinB is governed by the formation of a multiprotein complex (MPC) with RecA and UmuD. We identified two highly conserved surface residues in DinB, cysteine 66 (C66) and proline 67 (P67). Mapping on the DinB tertiary structure suggests these are noncatalytic, and multiple-sequence alignments indicate that they are unique among DinB-like proteins. To investigate the role of the C66-containing surface in MPC formation, we constructed the dinB(C66A) derivative. We found that DinB(C66A) copurifies with its interacting partners, RecA and UmuD, to a greater extent than DinB. Notably, copurification of RecA with DinB is somewhat enhanced in the absence of UmuD and is further increased for DinB(C66A). In vitro pulldown assays also indicate that DinB(C66A) binds RecA and UmuD better than DinB. We note that the increased affinity of DinB(C66A) for UmuD is RecA dependent. Thus, the C66-containing binding surface appears to be critical to modulate interaction with UmuD, and particularly with RecA. Expression of dinB(C66A) from the chromosome resulted in detectable differences in dinB-dependent lesion bypass fidelity and homologous recombination. Study of this DinB derivative has revealed a key surface on DinB, which appears to modulate the strength of MPC binding, and has suggested a binding order of RecA and UmuD to DinB. These findings will ultimately permit the manipulation of these enzymes to deter bacterial antibiotic resistance acquisition and to gain insights into cancer development in humans.
Collapse
|
38
|
Makarova AV, Kulbachinskiy AV. Structure of human DNA polymerase iota and the mechanism of DNA synthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:547-61. [PMID: 22817454 DOI: 10.1134/s0006297912060016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.
Collapse
Affiliation(s)
- A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Kurchatova 2, 123182 Moscow, Russia.
| | | |
Collapse
|
39
|
Bobola MS, Kolstoe DD, Blank A, Chamberlain MC, Silber JR. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide. Front Oncol 2012; 2:176. [PMID: 23230562 PMCID: PMC3515961 DOI: 10.3389/fonc.2012.00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O(6)-methylguanine (O(6)-meG) mediates GBM cell killing. Moreover, low or absent expression of O(6)-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O(6)-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O(6)-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O(6)-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O(6)-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.
Collapse
Affiliation(s)
- Michael S. Bobola
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - Douglas D. Kolstoe
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - A. Blank
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - Marc C. Chamberlain
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
- Department of Neurology, University of Washington Medical CenterSeattle, WA, USA
| | - John R. Silber
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| |
Collapse
|
40
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
41
|
Lupari E, Ventura I, Marcon F, Aquilina G, Dogliotti E, Fortini P. Pol kappa partially rescues MMR-dependent cytotoxicity of O6-methylguanine. DNA Repair (Amst) 2012; 11:579-86. [PMID: 22487424 DOI: 10.1016/j.dnarep.2012.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/19/2022]
Abstract
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous sources of DNA damage. DNA integrity is maintained by the coordinated action of DNA damage response mechanisms and DNA repair. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage but are potentially error-prone. Here, we investigate the role of DNA polymerase κ (pol κ) in TLS across alkylated lesions by silencing this polymerase (pol) in human cells using transient small RNA interference. We show that human pol κ has a significant protective role against methyl nitrosourea (MNU)-associated cytotoxicity without affecting significantly mutagenicity. The increase in MNU-induced cytotoxicity when pol κ is down-regulated was affected by the levels of O6-methylguanine DNA methyltransferase and fully abolished when mismatch repair (MMR) was defective. Following MNU treatment, the cell cycle profile was unaffected by the pol κ status. The downregulation of pol κ caused a severe delay in the onset of the second mitosis that was fully dependent on the presence of O6-methylguanine ( O6-meGua) lesions. After MNU exposure, in the absence of pol κ, the frequency of sister chromatid exchanges was unaffected whereas the induction of RAD 51 foci increased. We propose that pol κ partially protects human cells from the MMR-dependent cytotoxicity of O6-meGua lesions by restoring the integrity of replicated duplexes containing single-stranded gaps generated opposite O6-meGua facilitated by RAD 51 binding.
Collapse
Affiliation(s)
- Eliana Lupari
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Rome, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Pryor JM, Washington MT. Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein. DNA Repair (Amst) 2011; 10:1138-44. [PMID: 21975119 PMCID: PMC3197757 DOI: 10.1016/j.dnarep.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022]
Abstract
Rev1 is a eukaryotic DNA polymerase that rescues replication forks stalled at sites of DNA damage by inserting nucleotides opposite the damaged template bases. Yeast genetic studies suggest that Rev1 plays an important role in rescuing replication forks stalled at one of the most common forms of DNA damage, an abasic site; however, steady state kinetic studies suggest that an abasic site acts as a significant block to nucleotide incorporation by Rev1. Here we examined the pre-steady state kinetics of nucleotide incorporation by yeast Rev1 with damaged and non-damaged DNA substrates. We found that yeast Rev1 is capable of rapid nucleotide incorporation, but only a small fraction of the protein molecules possessed this robust activity. We characterized the nucleotide incorporation by the catalytically robust fraction of yeast Rev1 and found that it efficiently incorporated dCTP opposite a template abasic site under pre-steady state conditions. We conclude from these studies that the abasic site is a cognate lesion for Rev1.
Collapse
Affiliation(s)
- John M. Pryor
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| |
Collapse
|
43
|
Makarova IV, Kazakov AA, Makarova AV, Khaidarova NV, Kozikova LV, Nenasheva VV, Gening LV, Tarantul VZ, Andreeva LE. Transient expression and activity of human DNA polymerase iota in loach embryos. Biotechnol Lett 2011; 34:205-12. [PMID: 21983970 DOI: 10.1007/s10529-011-0764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/29/2011] [Indexed: 01/14/2023]
Abstract
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Collapse
Affiliation(s)
- Irina V Makarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of Russian Academy of Sciences, 2 Kurchatov Sq, Moscow, Russia, 123182
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Monti P, Broxson C, Inga A, Wang RW, Menichini P, Tornaletti S, Gold B, Fronza G. 3-Methyl-3-deazaadenine, a stable isostere of N3-methyl-adenine, is efficiently bypassed by replication in vivo and by transcription in vitro. DNA Repair (Amst) 2011; 10:861-8. [PMID: 21676659 DOI: 10.1016/j.dnarep.2011.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The goal of the present work was to determine the impact of N3-methyladenine (3-mA), an important lesion generated by many environmental agents and anticancer drugs, on in vivo DNA replication and in vitro RNA transcription. Due to 3-mA chemical instability, the stable isostere 3-methyl-3-deazaadenine (3-m-c(3)A) was site specifically positioned into an oligodeoxynucleotide. The oligomer was, then incorporated into a vector system that is rapidly converted to ssDNA inside yeast cells and requires DNA replication opposite the lesion for plasmid clonal selection. For control purposes, an adenine or a stable apurinic/apyrimidinic (AP)-lesion was placed at the same site. The presence of each lesion in the oligonucleotide was confirmed by MALDI-TOF analysis. Plasmids were then transfected into yeast cells. While the AP-site dramatically reduced plasmid replication in all strains, the 3-m-c(3)A had a slight effect in the rad30 background which significantly increased only in a rev3rad30 background. Considering TLS events opposite 3-m-c(3)A, the lack of Polη was associated with a substantial increase in AT>GC transitions (p=0.0011), while in the absence of Polζ only events derived from an error free bypass were detected. The 3-m-c(3)A also did not affect in vitro transcription, while the AP-site was a strong block to T7 RNA progression when located in the transcribed strand. We conclude that, in these experimental systems, 3-m-c(3)A is efficiently bypassed by replication in vivo and by transcription in vitro.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Benson RW, Norton MD, Lin I, Du Comb WS, Godoy VG. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents. PLoS One 2011; 6:e19944. [PMID: 21614131 PMCID: PMC3096655 DOI: 10.1371/journal.pone.0019944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/07/2011] [Indexed: 12/16/2022] Open
Abstract
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2)-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.
Collapse
Affiliation(s)
- Ryan W. Benson
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Matthew D. Norton
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Ida Lin
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - William S. Du Comb
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Veronica G. Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| |
Collapse
|
46
|
Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 2011; 42:237-49. [PMID: 21396873 DOI: 10.1016/j.molcel.2011.02.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 10/29/2010] [Accepted: 02/23/2011] [Indexed: 12/27/2022]
Abstract
Postreplication repair (PRR) pathways play important roles in restarting stalled replication forks and regulating mutagenesis. In yeast, Rad5-mediated damage avoidance and Rad18-mediated translesion synthesis (TLS) are two forms of PRR. Two Rad5-related proteins, SHPRH and HLTF, have been identified in mammalian cells, but their specific roles in PRR are unclear. Here, we show that HLTF and SHPRH suppress mutagenesis in a damage-specific manner, preventing mutations induced by UV and MMS, respectively. Following UV, HLTF enhances PCNA monoubiquitination and recruitment of TLS polymerase η, while also inhibiting SHPRH function. In contrast, MMS promotes the degradation of HLTF and the interactions of SHPRH with Rad18 and polymerase κ. Our data suggest not only that cells differentially utilize HLTF and SHPRH for different forms of DNA damage, but also, surprisingly, that HLTF and SHPRH may coordinate the two main branches of PRR to choose the proper bypass mechanism for minimizing mutagenesis.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
47
|
Gutierrez A, Elez M, Clermont O, Denamur E, Matic I. Escherichia coli YafP protein modulates DNA damaging property of the nitroaromatic compounds. Nucleic Acids Res 2011; 39:4192-201. [PMID: 21300638 PMCID: PMC3105422 DOI: 10.1093/nar/gkr050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli SOS functions constitute a multifaceted response to DNA damage. We undertook to study the role of yafP, a SOS gene with unknown function. yafP is part of an operon also containing the dinB gene coding for DNA Polymerase IV (PolIV). Our phylogenetic analysis showed that the gene content of this operon is variable but that the dinB and the yafP genes are conserved in the majority of E. coli natural isolates. Therefore, we studied if these proteins are functionally linked. Using a murine septicaemia model, we showed that YafP activity reduced the bacterial fitness in the absence of PolIV. Similarly, YafP increased cytotoxicity of two DNA damaging nitroaromatic compounds, 4-nitroquinoline-1-oxide (NQO) and nitrofurazone, in the absence of PolIV. The fact that PolIV counterbalances YafP-induced cytotoxicity could explain why these two genes are transcriptionally linked. We also studied the involvement of YafP in genotoxic-stress induced mutagenesis and found that PolIV and YafP reduced NQO-induced mutagenicity. The YafP antimutator activity was independent of the PolIV activity. Given that YafP was annotated as a putative acetyltransferase, it could be that YafP participates in the metabolic transformation of genotoxic compounds, hence modulating the balance between their mutagenicity and cytotoxicity.
Collapse
Affiliation(s)
- Arnaud Gutierrez
- Faculté de Médecine Paris Descartes, Inserm U1001, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Makarova AV, Grabow C, Gening LV, Tarantul VZ, Tahirov TH, Bessho T, Pavlov YI. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota. PLoS One 2011; 6:e16612. [PMID: 21304950 PMCID: PMC3031609 DOI: 10.1371/journal.pone.0016612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022] Open
Abstract
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
Collapse
Affiliation(s)
- Alena V. Makarova
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Corinn Grabow
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leonid V. Gening
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
| | - Vyacheslav Z. Tarantul
- Institute of Molecular Genetics of Russian Academy of Science, Moscow, Russian Federation
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
49
|
An unprecedented nucleic acid capture mechanism for excision of DNA damage. Nature 2010; 468:406-11. [PMID: 20927102 DOI: 10.1038/nature09428] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/17/2010] [Indexed: 01/22/2023]
Abstract
DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.
Collapse
|
50
|
Settles S, Wang RW, Fronza G, Gold B. Effect of n3-methyladenine and an isosteric stable analogue on DNA polymerization. J Nucleic Acids 2010; 2010. [PMID: 20936169 PMCID: PMC2945674 DOI: 10.4061/2010/426505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/25/2010] [Indexed: 01/21/2023] Open
Abstract
N3-methyladenine (3-mA) is a cytotoxic lesion formed by the reaction of DNA with many methylating agents, including antineoplastic drugs, environmental agents and endogenously generated compounds. The toxicity of 3-mA has been attributed to its ability to block DNA polymerization. Using Me-lex, a compound that selectively and efficiently reacts with DNA to afford 3-mA, we have observed in yeast a mutational hotspot at the 5'-terminus of an A(4) tract. In order to explore the potential role of sequence-dependent DNA polymerase bypass of 3-mA, we developed an in vitro system to prepare 3-mA modified substrates using Me-lex. We detail the effects of 3-mA, its stable isostere analogue, 3-methyl-3-deazaadenine, 3-deazaadenine and an THF abasic site on DNA polymerization within an A(4) sequence. The methyl group on 3-mA and 3-methyl-3-deazaadenine has a pronounced inhibitory effect on DNA polymerization. There was no sequence selectivity for the bypass of any of the lesions, except for the abasic site, which was most efficiently by-passed when it was on the 5'-terminus of the A(4) tract. The results indicate that the weak mutational pattern induced by Me-lex may result form the depurination of 3-mA to an abasic site that is bypassed in a sequence dependent context.
Collapse
Affiliation(s)
- Samuel Settles
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | |
Collapse
|