1
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Yandrapally S, Sarkar S, Banerjee S. HIV-1 Tat commandeers nuclear export of Rev-viral RNA complex by controlling hnRNPA2-mediated splicing. J Virol 2023; 97:e0104423. [PMID: 37905837 PMCID: PMC10688328 DOI: 10.1128/jvi.01044-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure. This study focuses on understanding the molecular mechanism behind such cell-specific disparities. We show that one of the key mechanisms is the regulation of heterogenous nuclear ribonucleoprotein A2, a host factor involved in alternative splicing and RNA processing, by HIV-1 Tat in CD4+ T lymphocytes, not observed in astrocytes. This regulation causes an increase in the levels of unspliced/partially spliced viral RNA and nuclear export of Rev-RNA complexes which results in high viral propagation in CD4+ T lymphocytes. The study reveals a new mechanism imposed by HIV on host cells that determines the fate of infection.
Collapse
Affiliation(s)
- Sriram Yandrapally
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Satarupa Sarkar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Cheng D, Semmens K, McManus E, Chen Q, Meerzaman D, Wang X, Hafner M, Lewis BA, Takahashi H, Devaiah BN, Gegonne A, Singer DS. The nuclear transcription factor, TAF7, is a cytoplasmic regulator of protein synthesis. SCIENCE ADVANCES 2021; 7:eabi5751. [PMID: 34890234 PMCID: PMC8664259 DOI: 10.1126/sciadv.abi5751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The TFIID component, TAF7, has been extensively characterized as essential for transcription and is critical for cell proliferation and differentiation. Here, we report that TAF7 is a previously unknown RNA chaperone that contributes to the regulation of protein synthesis. Mechanistically, TAF7 binds RNAs in the nucleus and delivers them to cytoplasmic polysomes. A broad spectrum of target RNA species, including the HIV-1 transactivation response element, binds TAF7 through consensus CUG motifs within the 3′ untranslated region. Export to the cytoplasm depends on a TAF7 nuclear export signal and occurs by an exportin 1–dependent pathway. Notably, disrupting either TAF7’s RNA binding or its export from the nucleus results in retention of target messenger RNAs in the nucleus and reduced levels of the protein products of TAF7-target RNAs. Thus, TAF7, an essential transcription factor, plays a key role in the regulation of RNA translation, thereby potentially connecting these processes.
Collapse
Affiliation(s)
- Dan Cheng
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kevin Semmens
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Elizabeth McManus
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Brian A. Lewis
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | | | - Anne Gegonne
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
TAR RNA Mediated Folding of a Single-Arginine-Mutant HIV-1 Tat Protein within HeLa Cells Experiencing Intracellular Crowding. Int J Mol Sci 2021; 22:ijms22189998. [PMID: 34576162 PMCID: PMC8468913 DOI: 10.3390/ijms22189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
The various effects of native protein folding on the stability and folding rate of intrinsically disordered proteins (IDPs) in crowded intracellular environments are important in biomedicine. Although most studies on protein folding have been conducted in vitro, providing valuable insights, studies on protein folding in crowded intracellular environments are scarce. This study aimed to explore the effects of intracellular molecular crowding on the folding of mutant transactivator HIV-1 Tat based on intracellular interactions, including TAR RNA, as proof of the previously reported chaperna-RNA concept. Considering that the Tat-TAR RNA motif binds RNA, we assessed the po tential function of TAR RNA as a chaperna for the refolding of R52Tat, a mutant in which the argi nine (R) residues at R52 have been replaced with alanine (A) by site-directed mutagenesis. We mon itored Tat-EGFP and Tat folding in HeLa cells via time-lapse fluorescence microscopy and biolayer interferometry using EGFP fusion as an indicator for folding status. These results show that the refolding of R52A Tat was stimulated well at a 0.3 μM TAR RNA concentration; wild-type Tat refolding was essentially abolished because of a reduction in the affinity for TAR RNA at that con centration. The folding and refolding of R52Tat were mainly promoted upon stimulation with TAR RNA. Our findings provide novel insights into the therapeutic potential of chaperna-mediated fold ing through the examination of as-yet-unexplored RNA-mediated protein folding as well as viral genetic variants that modulate viral evolutionary linkages for viral diseases inside a crowded intra cellular environment.
Collapse
|
5
|
Gamba E, Sosic A, Saccone I, Magli E, Frecentese F, Gatto B. Multiple in Vitro Inhibition of HIV-1 Proteins by 2,6-Dipeptidyl-anthraquinone Conjugates Targeting the PBS RNA. ACS Med Chem Lett 2020; 11:949-955. [PMID: 32435410 DOI: 10.1021/acsmedchemlett.9b00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/23/2020] [Indexed: 11/28/2022] Open
Abstract
We recently reported a series of 2,6-dipeptidyl-anthraquinone conjugates (AQs) as Trans-Activation Response element (TAR) RNA-binding agents able to inhibit in vitro the HIV-1 nucleocapsid (NC) protein-mediated processes. Because NC is a highly adaptable nucleic acid chaperone assisting several crucial steps along reverse transcription, in this study we investigate the ability of AQs to interact with other virus-derived nucleic acid structures thus potentially inhibiting multiple NC functions. Focusing on the HIV-1 Primer Binding Site (PBS) RNA sequence, we demonstrate that properly substituted dipeptidyl-anthraquinone conjugates efficiently inhibit the NC-mediated primer annealing in the low micromolar range. Similarly, we extended the analysis to the HIV-1 trans-activator of transcription (Tat) peptide, which has been recently shown to mimic the annealer functions of NC upon interacting with the same nucleic acid regulatory sequences. Our results highlight how RNA-targeting agents can act as multimode inhibitors of key viral proteins affecting their chaperone activity in reverse transcription processes.
Collapse
Affiliation(s)
- Elia Gamba
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Alice Sosic
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Irene Saccone
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Elisa Magli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Barbara Gatto
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
6
|
Nowacka M, Fernandes H, Kiliszek A, Bernat A, Lach G, Bujnicki JM. Specific interaction of zinc finger protein Com with RNA and the crystal structure of a self-complementary RNA duplex recognized by Com. PLoS One 2019; 14:e0214481. [PMID: 31022205 PMCID: PMC6483171 DOI: 10.1371/journal.pone.0214481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 11/18/2022] Open
Abstract
The bacteriophage Mu Com is a small zinc finger protein that binds to its cognate mom mRNA and activates its translation. The Mom protein, in turn, elicits a chemical modification (momification) of the bacteriophage genome, rendering the DNA resistant to cleavage by bacterial restriction endonucleases, and thereby protecting it from defense mechanisms of the host. We examined the basis of specificity in Com-RNA interactions by in vitro selection and probing of RNA structure. We demonstrated that Com recognizes a sequence motif within a hairpin-loop structure of its target RNA. Our data support the model of Com interaction with mom mRNA, in which Com binds to the short hairpin structure proximal to the so-called translation inhibition structure. We also observed that Com binds its target motif weakly if it is within an RNA duplex. These results suggest that the RNA structure, in addition to its sequence, is crucial for Com to recognize its target and that RNA conformational changes may constitute another level of Mom regulation. We determined a crystal structure of a Com binding site variant designed to form an RNA duplex preferentially. Our crystal model forms a 19-mer self-complementary double helix composed of the canonical and non-canonical base pairs. The helical parameters of crystalized RNA indicate why Com may bind it more weakly than a monomeric hairpin form.
Collapse
Affiliation(s)
- Martyna Nowacka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- * E-mail: ; (JMB)
| | - Humberto Fernandes
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agata Bernat
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Grzegorz Lach
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M. Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- * E-mail: ; (JMB)
| |
Collapse
|
7
|
Marques M, Ramos B, Soares AR, Ribeiro D. Cellular Proteostasis During Influenza A Virus Infection-Friend or Foe? Cells 2019; 8:cells8030228. [PMID: 30857287 PMCID: PMC6468813 DOI: 10.3390/cells8030228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
In order to efficiently replicate, viruses require precise interactions with host components and often hijack the host cellular machinery for their own benefit. Several mechanisms involved in protein synthesis and processing are strongly affected and manipulated by viral infections. A better understanding of the interplay between viruses and their host-cell machinery will likely contribute to the development of novel antiviral strategies. Here, we discuss the current knowledge on the interactions between influenza A virus (IAV), the causative agent for most of the annual respiratory epidemics in humans, and the host cellular proteostasis machinery during infection. We focus on the manipulative capacity of this virus to usurp the cellular protein processing mechanisms and further review the protein quality control mechanisms in the cytosol and in the endoplasmic reticulum that are affected by this virus.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Raquel Soares
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
The multiple roles of the nucleocapsid in retroviral RNA conversion into proviral DNA by reverse transcriptase. Biochem Soc Trans 2017; 44:1427-1440. [PMID: 27911725 DOI: 10.1042/bst20160101-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/27/2023]
Abstract
Retroviruses are enveloped plus-strand RNA viruses that can cause cancer, immunodeficiency and neurological disorder in human and animals. Retroviruses have several unique properties, such as a genomic RNA in a dimeric form found in the virus, and a replication strategy called 'copy-and-paste' during which the plus-strand genomic RNA is converted into a double-stranded DNA, subsequently integrated into the cellular genome. Two essential viral enzymes, reverse transcriptase (RT) and integrase (IN), direct this 'copy-and-paste' replication. RT copies the genomic RNA generating the double-stranded proviral DNA, while IN catalyzes proviral DNA integration into the cellular DNA, then called the provirus. In that context, a major component of the virion core, the nucleocapsid protein (NC), was found to be a potent nucleic-acid chaperone that assists RT during the conversion of the genomic RNA into proviral DNA. Here we briefly review the interplay of NC with viral nucleic-acids, which enables rapid and faithful folding and hybridization of complementary sequences, and with active RT thus providing assistance to the synthesis of the complete proviral DNA. Because of its multiple roles in retrovirus replication, NC could be viewed as a two-faced Janus-chaperone acting on viral nucleic-acids and enzymes.
Collapse
|
9
|
Kim JM, Choi HS, Seong BL. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. RNA Biol 2017; 14:926-937. [PMID: 28418268 DOI: 10.1080/15476286.2017.1311455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The trans-activator Tat protein of HIV-1 belongs to the large family of intrinsically disordered proteins (IDPs), and is known to recruit various host proteins for the transactivation of viral RNA synthesis. Tat protein interacts with the transactivator response RNA (TAR RNA), exhibiting RNA chaperone activities for structural rearrangement of interacting RNAs. Here, considering that Tat-TAR RNA interaction is mutually cooperative, we examined the potential role of TAR RNA as Chaperna - RNA that provides chaperone function to proteins - for the folding of HIV-1 Tat. Using EGFP fusion as an indirect indicator for folding status, we monitored Tat-EGFP folding in HeLa cells via time-lapse fluorescence microscopy. The live cell imaging showed that the rate and the extent of folding of Tat-EGFP were stimulated by TAR RNA. The purified Tat-EGFP was denatured and the fluorescence was monitored in vitro under renaturation condition. The fluorescence was significantly increased by TAR RNA, and the mutations in TAR RNA that affected the interaction with Tat protein failed to promote Tat refolding. The results suggest that TAR RNA stabilizes Tat as unfolded, but prevents it from misfolding, and maintaining its folding competence for interaction with multiple host factors toward its transactivation. The Chaperna function of virally encoded RNA in establishing proteome link at the viral-host interface provides new insights to as yet largely unexplored RNA mediated protein folding in normal and dysregulated cellular metabolism.
Collapse
Affiliation(s)
- Jung Min Kim
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , South Korea.,b Vaccine Translational Research Center , Yonsei University , Seoul , South Korea
| | - Hee Sun Choi
- c Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Baik Lin Seong
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , South Korea.,b Vaccine Translational Research Center , Yonsei University , Seoul , South Korea
| |
Collapse
|
10
|
Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ. Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 2015; 43:7414-31. [PMID: 26160887 PMCID: PMC4551931 DOI: 10.1093/nar/gkv695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
11
|
A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol 2015; 89:4827-36. [PMID: 25673710 DOI: 10.1128/jvi.03440-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Previously, we reported that a mutant of Tat referred to as Nullbasic inhibits HIV-1 reverse transcription although the mechanism of action is unknown. Here we show that Nullbasic is a reverse transcriptase (RT) binding protein that targets the reverse transcription complex rather than directly inhibiting RT activity. An interaction between Nullbasic and RT was observed by using coimmunoprecipitation and pulldown assays, and a direct interaction was measured by using a biolayer interferometry assay. Mixtures of recombinant 6×His-RT and Nullbasic-FLAG-V5-6×His at molar ratios of up to 1:20,000 did not inhibit RT activity in standard homopolymer primer template assays. An analysis of virus made by cells that coexpressed Nullbasic showed that Nullbasic copurified with virus particles, indicating that it was a virion protein. In addition, analysis of reverse transcription complexes (RTCs) isolated from cells infected with wild type or Nullbasic-treated HIV-1 showed that Nullbasic reduced the levels of viral DNA in RTC fractions. In addition, a shift in the distribution of viral DNA and CAp24 to less-dense non-RTC fractions was observed, indicating that RTC activity from Nullbasic-treated virus was impaired. Further analysis showed that viral cores isolated from Nullbasic-treated HIV undergo increased disassembly in vitro compared to untreated HIV-1. To our knowledge, this is the first description of an antiviral protein that inhibits reverse transcription by targeting the RTC and affecting core stability. IMPORTANCE HIV-1 infection is treated by using combinations of antiretroviral drugs that target independent steps of virus replication. A newly described antiviral protein called Nullbasic can also inhibit a combination of different steps in virus replication (transcription, reverse transcription, and Rev-mediated viral mRNA transport), although the precise mechanism of action is unknown. This study shows that Nullbasic can inhibit reverse transcription by binding to the viral enzyme called reverse transcriptase, which results in accelerated uncoating of the viral core and instability of the viral apparatus called the reverse transcription complex (RTC). This unique antiviral activity may inform development of other RTC inhibitors, as well as providing a unique investigative tool for dissecting the RTC cellular composition.
Collapse
|
12
|
Tang F, Xia H, Wang P, Yang J, Zhao T, Zhang Q, Hu Y, Zhou X. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB. Virology 2014; 464-465:353-364. [PMID: 25113906 PMCID: PMC7112070 DOI: 10.1016/j.virol.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg2+ and Zn2+, were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71.
Collapse
Affiliation(s)
- Fenfen Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Peipei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Tianyong Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| |
Collapse
|
13
|
Sleiman D, Bernacchi S, Xavier Guerrero S, Brachet F, Larue V, Paillart JC, Tisne C. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail. RNA Biol 2014; 11:906-20. [PMID: 25144404 DOI: 10.4161/rna.29546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.
Collapse
|
14
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
15
|
Putting an 'End' to HIV mRNAs: capping and polyadenylation as potential therapeutic targets. AIDS Res Ther 2013; 10:31. [PMID: 24330569 PMCID: PMC3874655 DOI: 10.1186/1742-6405-10-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 01/27/2023] Open
Abstract
Like most cellular mRNAs, the 5′ end of HIV mRNAs is capped and the 3′ end matured by the process of polyadenylation. There are, however, several rather unique and interesting aspects of these post-transcriptional processes on HIV transcripts. Capping of the highly structured 5′ end of HIV mRNAs is influenced by the viral TAT protein and a population of HIV mRNAs contains a trimethyl-G cap reminiscent of U snRNAs involved in splicing. HIV polyadenylation involves active repression of a promoter-proximal polyadenylation signal, auxiliary upstream regulatory elements and moonlighting polyadenylation factors that have additional impacts on HIV biology outside of the constraints of classical mRNA 3’ end formation. This review describes these post-transcriptional novelties of HIV gene expression as well as their implications in viral biology and as possible targets for therapeutic intervention.
Collapse
|
16
|
Xing L, Niu M, Zhao X, Kleiman L. Roles of the linker region of RNA helicase A in HIV-1 RNA metabolism. PLoS One 2013; 8:e78596. [PMID: 24223160 PMCID: PMC3819368 DOI: 10.1371/journal.pone.0078596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022] Open
Abstract
RNA helicase A (RHA) promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNALys3 to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs) that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNALys3 annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNALys3 annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5′-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xia Zhao
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (LX); (LK)
| |
Collapse
|
17
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doetsch M, Stampfl S, Fürtig B, Beich-Frandsen M, Saxena K, Lybecker M, Schroeder R. Study of E. coli Hfq's RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents. Nucleic Acids Res 2012; 41:487-97. [PMID: 23104381 PMCID: PMC3592463 DOI: 10.1093/nar/gks942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq’s activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq’s strand displacement as well as its annealing activity are strongly dependent on the substrate’s GC-content. However, this is due to Hfq’s preferred binding of AU-rich sequences and not to the substrate’s thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq’s strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq’s thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other.
Collapse
Affiliation(s)
- Martina Doetsch
- Department for Biochemistry, Max F Perutz Laboratories, Dr-Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012; 2012:140601. [PMID: 22888405 PMCID: PMC3409536 DOI: 10.1155/2012/140601] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022] Open
Abstract
Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity—in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases—HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.
Collapse
|
20
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
21
|
Batisse J, Guerrero S, Bernacchi S, Sleiman D, Gabus C, Darlix JL, Marquet R, Tisné C, Paillart JC. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Res 2012; 169:361-76. [PMID: 22728817 DOI: 10.1016/j.virusres.2012.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.
Collapse
Affiliation(s)
- Julien Batisse
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
23
|
Ivanyi-Nagy R, Darlix JL. Fuzziness in the Core of the Human Pathogenic Viruses HCV and HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:142-58. [DOI: 10.1007/978-1-4614-0659-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 2011; 410:565-81. [PMID: 21762801 DOI: 10.1016/j.jmb.2011.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
Abstract
One salient feature of reverse transcription in retroviruses, notably in the human immunodeficiency virus type 1, is that it requires the homologous nucleocapsid (NC) protein acting as a chaperoning partner of the genomic RNA template and the reverse transcriptase, from the initiation to the completion of viral DNA synthesis. This short review on the NC protein of human immunodeficiency virus type 1 aims at briefly presenting the flexible nature of NC protein, how it interacts with nucleic acids via its invariant zinc fingers and flanking basic residues, and the possible mechanisms that account for its multiple functions in the early steps of virus replication, notably in the obligatory strand transfer reactions during viral DNA synthesis by the reverse transcriptase enzyme.
Collapse
|
25
|
Guichard C, Ivanyi-Nagy R, Sharma KK, Gabus C, Marc D, Mély Y, Darlix JL. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides. Nucleic Acids Res 2011; 39:8544-58. [PMID: 21737432 PMCID: PMC3201874 DOI: 10.1093/nar/gkr554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.
Collapse
Affiliation(s)
- Cécile Guichard
- Unité de Virologie Humaine INSERM, ENS, IFR 128, 46 allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
26
|
A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials 2011; 32:6264-76. [PMID: 21636125 DOI: 10.1016/j.biomaterials.2011.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/03/2011] [Indexed: 02/02/2023]
Abstract
The piggyBac (PB) transposable element has recently accumulated enormous attention as a tool for the transgenesis in various eukaryotic organisms. Arginine-rich cell-penetrating peptides (CPPs) are protein transduction domains containing a large amount of basic amino acids that were found to be capable of delivering biologically active macromolecules into living cells. In this study, we demonstrate a strategy, which we called "transposoduction", which is a one-plasmid gene delivery system mediated by the nontoxic CPP-piggyBac transposase (CPP-PBase) fusion protein to accomplish both protein transduction and transposition. CPPs were proven to be able to synchronously deliver covalently linked PBase and noncovalently linked a cis plasmid into human cells. The expression of promoterless reporter genes coding for red (dTomato) and yellow (mOrange) fluorescent proteins (RFP and YFP) with PB elements could be detected in cells treated with the PBase-expressing plasmid after 3 days indicating transposition of coding regions to downstream of endogenous promoter sequences. An enhanced green fluorescent protein (EGFP) plasmid-based excision assay further confirmed the efficiency of the bifunctional CPP-PBase fusion protein. In conclusion, this strategy representing a combinational concept of both protein transduction and mobile transposition may provide tremendous potential for safe and efficient cell line transformation, gene therapy and functional genomics.
Collapse
|
27
|
Abstract
The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA–protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.
Collapse
Affiliation(s)
- Martina Doetsch
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
28
|
Grigorov B, Bocquin A, Gabus C, Avilov S, Mély Y, Agopian A, Divita G, Gottikh M, Witvrouw M, Darlix JL. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex. Nucleic Acids Res 2011; 39:5586-96. [PMID: 21447560 PMCID: PMC3141241 DOI: 10.1093/nar/gkr117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.
Collapse
Affiliation(s)
- Boyan Grigorov
- Laboretro, INSERM #758, ENS Lyon, 46 allée d'Italie, 69364 Lyon, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasboug, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Comparative analysis of RNA/protein dynamics for the arginine-rich-binding motif and zinc-finger-binding motif proteins encoded by HIV-1. Biophys J 2011; 99:3454-62. [PMID: 21081095 DOI: 10.1016/j.bpj.2010.09.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 11/24/2022] Open
Abstract
We report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively. The competition binding data presented here suggest that the specific nucleic acid binding interactions of Tat and Rev can effectively compete with the general nucleic acid binding/chaperone functions of the nucleocapsid protein, and thus may in principle help regulate critical events during the HIV life cycle.
Collapse
|
30
|
Doetsch M, Fürtig B, Gstrein T, Stampfl S, Schroeder R. The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res 2011; 39:4405-18. [PMID: 21297117 PMCID: PMC3105384 DOI: 10.1093/nar/gkq1339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The annealing of nucleic acids to (partly) complementary RNA or DNA strands is involved in important cellular processes. A variety of proteins have been shown to accelerate RNA/RNA annealing but their mode of action is still mainly uncertain. In order to study the mechanism of protein-facilitated acceleration of annealing we selected a short peptide, HIV-1 Tat(44–61), which accelerates the reaction efficiently. The activity of the peptide is strongly regulated by mono- and divalent cations which hints at the importance of electrostatic interactions between RNA and peptide. Mutagenesis of the peptide illustrated the dominant role of positively charged amino acids in RNA annealing—both the overall charge of the molecule and a precise distribution of basic amino acids within the peptide are important. Additionally, we found that Tat(44–61) drives the RNA annealing reaction via entropic rather than enthalpic terms. One-dimensional-NMR data suggest that the peptide changes the population distribution of possible RNA structures to favor an annealing-prone RNA conformation, thereby increasing the fraction of colliding RNA molecules that successfully anneal.
Collapse
Affiliation(s)
- Martina Doetsch
- Max F Perutz Laboratories, Dr Bohrgasse 9/5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
31
|
Zamotaiev OM, Postupalenko VY, Shvadchak VV, Pivovarenko VG, Klymchenko AS, Mély Y. Improved hydration-sensitive dual-fluorescence labels for monitoring peptide-nucleic acid interactions. Bioconjug Chem 2010; 22:101-7. [PMID: 21174445 DOI: 10.1021/bc100434d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmentally sensitive labels constitute a new, attractive tool for monitoring biomolecular interactions. 3-Hydroxychromone derivatives are of particular interest because they undergo excited-state intramolecular proton transfer (ESIPT) showing dual emission highly sensitive to environmental hydration. To overcome the drawbacks of the previously developed label for sensing protein-DNA interactions based on 2-furanyl-3-hydroxychromone (FC), a series of hydration-sensitive labels based on 3-hydroxy-4'-methoxyflavone have been synthesized. As compared to FC, the new labels display higher sensitivity of the ratio of their two emission bands (N*/T*) to solvent polarity and H-bond donor ability, as well as higher fluorescence quantum yields in water. Moreover, they show higher pK(a) values of their 3-hydroxyl group, allowing their application at neutral pH without interference of anionic forms. To illustrate the applications of these labels, we covalently coupled them to the N-terminus of the Tat(44-61) peptide that corresponds to the basic domain of the HIV-1 Tat protein. This coupling did not modify the nucleic acid chaperone properties of the peptide. Binding of oligonucleotides of varying length, sequence, and strandedness to the labeled peptides induced dramatic change in the N*/T* ratio of their two emission bands. This change indicated that the level of probe hydration in the peptide/oligonucleotide complexes decreases in the following order: short ssDNAs ≫ long ssDNAs > DNA hairpins > dsDNAs. The level of probe hydration was related to the ability of the probe to stack with the DNA bases or base pairs in the various complexes. The changes in the N*/T* ratio upon interaction of the labeled Tat peptides with DNA were about 3-fold larger with the new probes as compared to the parent FC label, in line with the higher sensitivity of the new probes to the environment. One of these labels, presenting the most compact geometry, showed the highest sensitivity, probably due to its optimal stacking with the DNA bases. Thus, the new hydration-sensitive labels appear as improved highly sensitive tools to site-selectively monitor the binding of peptides to oligonucleotides and nucleic acids.
Collapse
Affiliation(s)
- Oleksandr M Zamotaiev
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
32
|
Gangaramani DR, Eden EL, Shah M, Destefano JJ. The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity. RNA Biol 2010; 7:820-9. [PMID: 21045553 DOI: 10.4161/rna.7.6.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poliovirus 3AB protein is the first picornavirus protein demonstrated to have nucleic acid chaperone activity. Further characterization of 3AB demonstrates that the C-terminal 22 amino acids (3B region (also referred to as VPg), amino acid 88-109) of the protein is required for chaperone activity, as mutations in this region abrogate nucleic acid binding and chaperone function. Protein 3B alone has no chaperone activity as determined by established assays that include the ability to stimulate nucleic acid hybridization in a primer-template annealing assay, helix-destabilization in a nucleic acid unwinding assay, or aggregation of nucleic acids. In contrast, the putative 3AB C-terminal cytoplasmic domain (C terminal amino acids 81-109, 3B + the last 7 C-terminal amino acids of 3A, termed 3B+7 in this report) possesses strong activity in these assays, albeit at much higher concentrations than 3AB. The characteristics of several mutations in 3B+7 are described here, as well as a model proposing that 3B+7 is the site of the "intrinsic" chaperone activity of 3AB while the 3A N-terminal region (amino acids 1-58) and/or membrane anchor domain (amino acids 59-80) serve to increase the effective concentration of the 3B+7 region leading to the potent chaperone activity of 3AB.
Collapse
Affiliation(s)
- Divya R Gangaramani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
33
|
Boudier C, Storchak R, Sharma KK, Didier P, Follenius-Wund A, Muller S, Darlix JL, Mély Y. The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription. J Mol Biol 2010; 400:487-501. [PMID: 20493881 DOI: 10.1016/j.jmb.2010.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
The main function of the HIV-1 trans-activator of transcription (Tat protein) is to promote the transcription of the proviral DNA by the host RNA polymerase which leads to the synthesis of large quantities of the full length viral RNA. Tat is also thought to be involved in the reverse transcription (RTion) reaction by a still unknown mechanism. The recently reported nucleic acid annealing activity of Tat might explain, at least in part, its role in RTion. To further investigate this possibility, we carried out a fluorescence study on the mechanism by which the full length Tat protein (Tat(1-86)) and the basic peptide (44-61) direct the annealing of complementary viral DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, essential for the early steps of RTion. Though both Tat(1-86) and the Tat(44-61) peptide were unable to melt the lower half of the cTAR stem, they strongly promoted cTAR/dTAR annealing through non-specific attraction between the peptide-bound oligonucleotides. Using cTAR and dTAR mutants, this Tat promoted-annealing was found to be nucleated through the thermally frayed 3'/5' termini, resulting in an intermediate with 12 intermolecular base pairs, which then converts into the final extended duplex. Moreover, we found that Tat(1-86) was as efficient as the nucleocapsid protein NCp7, a major nucleic acid chaperone of HIV-1, in promoting cTAR/dTAR annealing, and could act cooperatively with NCp7 during the annealing reaction. Taken together, our data are consistent with a role of Tat in the stimulation of the obligatory strand transfers during viral DNA synthesis by reverse transcriptase.
Collapse
Affiliation(s)
- C Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xiao A, Wong J, Luo H. Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 2010; 155:1021-31. [DOI: 10.1007/s00705-010-0691-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/02/2010] [Indexed: 02/08/2023]
|
35
|
Van Duyne R, Kehn-Hall K, Carpio L, Kashanchi F. Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case. Expert Rev Proteomics 2010; 6:515-26. [PMID: 19811073 DOI: 10.1586/epr.09.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 is a small retrovirus that wreaks havoc on the human immune system. It is a puzzle to the scientific community how a virus that encodes only nine proteins can take complete control of its host and redirect the cell to complete replication or maintain latency when necessary. One way to explain the control elicited by HIV-1 is through numerous protein partners that exist between viral and host proteins, allowing HIV-1 to be intimately involved in virtually every aspect of cellular biology. In addition, we postulate that the complexity exerted by HIV-1 can not merely be explained by the large number of protein-protein interactions documented in the literature but, rather, cell-type-specific interactions and post-translational modifications of viral proteins must be taken into account. We use HIV-1 Tat and its influence on viral transcription as an example of cell-type-specific complexity. The influence of post-translational modifications (acetylation and methylation), as well as subcellular localization on Tat binding partners, is also discussed.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
36
|
Reymond C, Beaudoin JD, Perreault JP. Modulating RNA structure and catalysis: lessons from small cleaving ribozymes. Cell Mol Life Sci 2009; 66:3937-50. [PMID: 19718544 PMCID: PMC2777235 DOI: 10.1007/s00018-009-0124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/12/2023]
Abstract
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today's knowledge in the field.
Collapse
Affiliation(s)
- Cedric Reymond
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Denis Beaudoin
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4 Canada
| |
Collapse
|
37
|
Charnay N, Ivanyi-Nagy R, Soto-Rifo R, Ohlmann T, López-Lastra M, Darlix JL. Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein. Retrovirology 2009; 6:74. [PMID: 19671151 PMCID: PMC2739156 DOI: 10.1186/1742-4690-6-74] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) Tat protein is a major viral transactivator required for HIV-1 replication. In the nucleus Tat greatly stimulates the synthesis of full-length transcripts from the HIV-1 promoter by causing efficient transcriptional elongation. Tat induces elongation by directly interacting with the bulge of the transactivation response (TAR) RNA, a hairpin-loop located at the 5'-end of all nascent viral transcripts, and by recruiting cellular transcriptional co-activators. In the cytoplasm, Tat is thought to act as a translational activator of HIV-1 mRNAs. Thus, Tat plays a central role in the regulation of HIV-1 gene expression both at the level of mRNA and protein synthesis. The requirement of Tat in these processes poses an essential question on how sufficient amounts of Tat can be made early on in HIV-1 infected cells to sustain its own synthesis. To address this issue we studied translation of the Tat mRNA in vitro and in human cells using recombinant monocistronic and dicistronic RNAs containing the 5' untranslated region (5'-UTR) of Tat RNA. RESULTS This study shows that the Tat mRNA can be efficiently translated both in vitro and in cells. Furthermore, our data suggest that translation initiation from the Tat mRNA probably occurs by a internal ribosome entry site (IRES) mechanism. Finally, we show that Tat protein can strongly stimulate translation from its cognate mRNA in a TAR dependent fashion. CONCLUSION These results indicate that Tat mRNA translation is efficient and benefits from a feedback stimulation by the Tat protein. This translational control mechanism would ensure that minute amounts of Tat mRNA are sufficient to generate enough Tat protein required to stimulate HIV-1 replication.
Collapse
Affiliation(s)
- Nicolas Charnay
- LaboRetro, Unité de Virologie Humaine INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | | | | | | | | | | |
Collapse
|
38
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|