1
|
Lin Y, Chen Y, Zeng Y, Zhang S, Zhang Z, Chen Y, Gong J, Lai Z. Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour. PLANTA 2021; 253:41. [PMID: 33475870 DOI: 10.1007/s00425-021-03564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes. MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youjing Zeng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - YuKun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiawei Gong
- Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Ou J, Liu H, Nirala NK, Stukalov A, Acharya U, Green MR, Zhu LJ. dagLogo: An R/Bioconductor package for identifying and visualizing differential amino acid group usage in proteomics data. PLoS One 2020; 15:e0242030. [PMID: 33156866 PMCID: PMC7647101 DOI: 10.1371/journal.pone.0242030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
Sequence logos have been widely used as graphical representations of conserved nucleic acid and protein motifs. Due to the complexity of the amino acid (AA) alphabet, rich post-translational modification, and diverse subcellular localization of proteins, few versatile tools are available for effective identification and visualization of protein motifs. In addition, various reduced AA alphabets based on physicochemical, structural, or functional properties have been valuable in the study of protein alignment, folding, structure prediction, and evolution. However, there is lack of tools for applying reduced AA alphabets to the identification and visualization of statistically significant motifs. To fill this gap, we developed an R/Bioconductor package dagLogo, which has several advantages over existing tools. First, dagLogo allows various formats for input sets and provides comprehensive options to build optimal background models. It implements different reduced AA alphabets to group AAs of similar properties. Furthermore, dagLogo provides statistical and visual solutions for differential AA (or AA group) usage analysis of both large and small data sets. Case studies showed that dagLogo can better identify and visualize conserved protein sequence patterns from different types of inputs and can potentially reveal the biological patterns that could be missed by other logo generators.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Regeneration NEXT, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Haibo Liu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Usha Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael R. Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Obert T, Vďačný P. Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene. BMC Evol Biol 2020; 20:37. [PMID: 32171235 PMCID: PMC7071660 DOI: 10.1186/s12862-020-1601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Various ecological groups of earthworms very likely constitute sharply isolated niches that might permit speciation of their symbiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different host groups. The nuclear highly variable ITS1–5.8S-ITS2 region and the hypervariable D1/D2 region of the 28S rRNA gene have proven to be useful tools for the delimitation of species boundaries in closely related free-living ciliate taxa. In the present study, the power of these molecular markers as well as of the secondary structure of the ITS2 molecule were tested for the first time in order to discriminate the species of endosymbiotic ciliates that were isolated from the gastrointestinal tract of three ecologically different groups of lumbricid earthworms. Results Nineteen new ITS1–5.8S-ITS2 region and D1/D2-28S rRNA gene sequences were obtained from five astome species (Anoplophrya lumbrici, A. vulgaris, Metaradiophrya lumbrici, M. varians, and Subanoplophrya nodulata comb. n.), which were living in the digestive tube of three ecological groups of earthworms. Phylogenetic analyses of the rRNA locus and secondary structure analyses of the ITS2 molecule robustly resolved their phylogenetic relationships and supported the distinctness of all five species, although previous multivariate morphometric analyses were not able to separate congeners in the genera Anoplophrya and Metaradiophrya. The occurrence of all five taxa, as delimited by molecular analyses, was perfectly correlated with the ecological groups of their host earthworms. Conclusions The present study indicates that morphology-based taxonomy of astome ciliates needs to be tested in the light of molecular and ecological data as well. The use of morphological identification alone is likely to miss species that are well delimited based on molecular markers and ecological traits and can lead to the underestimation of diversity and overestimation of host range. An integrative approach along with distinctly increased taxon sampling would be helpful to assess the consistency of the eco-evolutionary trend in astome ciliates.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic.
| |
Collapse
|
4
|
Zhu S, Li Q, Chen S, Wang Y, Zhou L, Zeng C, Dong J. Phylogenetic analysis of Uncaria species based on internal transcribed spacer (ITS) region and ITS2 secondary structure. PHARMACEUTICAL BIOLOGY 2018; 56:548-558. [PMID: 30392423 PMCID: PMC6225500 DOI: 10.1080/13880209.2018.1499780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 05/31/2023]
Abstract
CONTEXT The plant genus Uncaria (Rubiaceae), also known as Gouteng, is the source of an important traditional Chinese medicine. Misidentification and adulteration of Gouteng affect the safety and efficacy of the medication. Phylogenetic relationships among the species of this genus are unknown. OBJECTIVE The present study sought to detect the phylogenetic relationships based on internal transcribed spacer (ITS) region of all 12 species of Uncaria recorded in the Flora of China. MATERIALS AND METHODS Accession of seven species of Uncaria served as reference samples. ITS region was used for polymerase chain reaction (PCR) amplification of the reference samples representing 39 specimens. Distance analysis, species discrimination, and secondary structure of ITS2 were used to assess the ability of ITS sequence in authenticating. The phylogenetic relationships were detected using three methods: Bayesian inference (BI), maximum likelihood (ML), and neighbor joining (NJ). RESULTS Five species of traditional Chinese medicine Gouteng were well resolved in molecular phylogenetic tree. Besides, Uncaria lancifolia Hutch. was closer to U. rhynchophylloides F.C. How and U. sessilifructus Roxb. was closer to U. laevigata Wall. within the tree. Further, we also found that ITS2 secondary structure can be a candidate tool in distinguishing two closely related species U. yunnanensis K.C.Hsia and U. lanosa Wall. For accurate identification of different species of Uncaria based on species-specific nucleotide sites, a consensus sequences database with all 12 species is established. DISCUSSIONS AND CONCLUSIONS The results are able to discriminate Uncaria species and illustrate the phylogenetic relationships, which are essential for the investigation of adulterants and misidentifications of Uncaria.
Collapse
Affiliation(s)
- Shuang Zhu
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qiwei Li
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shanchong Chen
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yesheng Wang
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Lin Zhou
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Changqing Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jun Dong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Alwin Prem Anand A, Huber C, Asnet Mary J, Gallus N, Leucht C, Klafke R, Hirt B, Wizenmann A. Expression and function of microRNA-9 in the mid-hindbrain area of embryonic chick. BMC DEVELOPMENTAL BIOLOGY 2018; 18:3. [PMID: 29471810 PMCID: PMC5824543 DOI: 10.1186/s12861-017-0159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Background MiR-9 is a small non-coding RNA that is highly conserved between species and primarily expressed in the central nervous system (CNS). It is known to influence proliferation and neuronal differentiation in the brain and spinal cord of different vertebrates. Different studies have pointed to regional and species-specific differences in the response of neural progenitors to miR-9. Methods In ovo and ex ovo electroporation was used to overexpress or reduce miR-9 followed by mRNA in situ hybridisation and immunofluorescent stainings to evaluate miR- expression and the effect of changed miR-9 expression. Results We have investigated the expression and function of miR-9 during early development of the mid-hindbrain region (MH) in chick. Our analysis reveals a closer relationship of chick miR-9 to mammalian miR-9 than to fish and a dynamic expression pattern in the chick neural tube. Early in development, miR-9 is diffusely expressed in the entire brain, bar the forebrain, and it becomes more restricted to specific areas of the CNS at later stages. MiR-9 overexpression at HH9–10 results in a reduction of FGF8 expression and premature neuronal differentiation in the mid-hindbrain boundary (MHB). Within the midbrain miR-9 does not cause premature neuronal differentiation it rather reduces proliferation in the midbrain. Conclusion Our findings indicate that miR-9 has regional specific effects in the developing mid-hindbrain region with a divergence of response of regional progenitors. Electronic supplementary material The online version of this article (10.1186/s12861-017-0159-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Carola Huber
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Robert-Bosch-Krankenhaus, Auerbachstraße 110, 70376, Stuttgart, Germany
| | - John Asnet Mary
- Department of Zoology, Fatima College, Madurai, Tamilnadu, 625018, India
| | - Nancy Gallus
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.,Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christoph Leucht
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Oesterbergstrasse 3, D-72074, Tuebingen, Germany.
| |
Collapse
|
6
|
Asha S, Soniya EV. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages. Sci Rep 2017; 7:41052. [PMID: 28145468 PMCID: PMC5286533 DOI: 10.1038/srep41052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/16/2016] [Indexed: 01/27/2023] Open
Abstract
Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.
Collapse
Affiliation(s)
- Srinivasan Asha
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - E V Soniya
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
7
|
Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Mol Phylogenet Evol 2016; 102:128-44. [DOI: 10.1016/j.ympev.2016.05.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022]
|
8
|
Asha S, Sreekumar S, Soniya EV. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling. PLANT CELL REPORTS 2016; 35:53-63. [PMID: 26400683 DOI: 10.1007/s00299-015-1866-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 05/24/2023]
Abstract
Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.
Collapse
Affiliation(s)
- Srinivasan Asha
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - Sweda Sreekumar
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - E V Soniya
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
9
|
Maddelein D, Colaert N, Buchanan I, Hulstaert N, Gevaert K, Martens L. The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Res 2015; 43:W543-6. [PMID: 25897125 PMCID: PMC4489316 DOI: 10.1093/nar/gkv385] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022] Open
Abstract
The iceLogo web server and SOAP service implement the previously published iceLogo algorithm. iceLogo builds on probability theory to visualize protein consensus sequences in a format resembling sequence logos. Peptide sequences are compared against a reference sequence set that can be tailored to the studied system and the used protocol. As such, not only over- but also underrepresented residues can be visualized in a statistically sound manner, which further allows the user to easily analyse and interpret conserved sequence patterns in proteins. The web application and SOAP service can be found free and open to all users without the need for a login on http://iomics.ugent.be/icelogoserver/main.html.
Collapse
Affiliation(s)
- Davy Maddelein
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Niklaas Colaert
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Iain Buchanan
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Niels Hulstaert
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, B-9000 Ghent, Belgium Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Roca AI. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos. BMC Proc 2014; 8:S6. [PMID: 25237393 PMCID: PMC4155610 DOI: 10.1186/1753-6561-8-s2-s6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
Collapse
Affiliation(s)
- Alberto I Roca
- ProfileGrid.org, P.O. Box 6414, Irvine, California 92616, USA
| |
Collapse
|
11
|
Olsen LR, Kudahl UJ, Simon C, Sun J, Schönbach C, Reinherz EL, Zhang GL, Brusic V. BlockLogo: visualization of peptide and sequence motif conservation. J Immunol Methods 2013; 400-401:37-44. [PMID: 24001880 DOI: 10.1016/j.jim.2013.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/20/2013] [Accepted: 08/25/2013] [Indexed: 12/21/2022]
Abstract
BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://met-hilab.bu.edu/blocklogo/.
Collapse
Affiliation(s)
- Lars Rønn Olsen
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang TH, Huang HY, Hsu JBK, Weng SL, Horng JT, Huang HD. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 2013; 14 Suppl 2:S4. [PMID: 23369107 PMCID: PMC3549854 DOI: 10.1186/1471-2105-14-s2-s4] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work extends it by incorporating more comprehensive and updated data sources and analytical approaches into a new platform. Methods and results An integrated web-based system, RegRNA 2.0, has been developed for comprehensively identifying the functional RNA motifs and sites in an input RNA sequence. Numerous data sources and analytical approaches are integrated, and several types of functional RNA motifs and sites can be identified by RegRNA 2.0: (i) splicing donor/acceptor sites; (ii) splicing regulatory motifs; (iii) polyadenylation sites; (iv) ribosome binding sites; (v) rho-independent terminator; (vi) motifs in mRNA 5'-untranslated region (5'UTR) and 3'UTR; (vii) AU-rich elements; (viii) C-to-U editing sites; (ix) riboswitches; (x) RNA cis-regulatory elements; (xi) transcriptional regulatory motifs; (xii) user-defined motifs; (xiii) similar functional RNA sequences; (xiv) microRNA target sites; (xv) non-coding RNA hybridization sites; (xvi) long stems; (xvii) open reading frames; (xviii) related information of an RNA sequence. User can submit an RNA sequence and obtain the predictive results through RegRNA 2.0 web page. Conclusions RegRNA 2.0 is an easy to use web server for identifying regulatory RNA motifs and functional sites. Through its integrated user-friendly interface, user is capable of using various analytical approaches and observing results with graphical visualization conveniently. RegRNA 2.0 is now available at http://regrna2.mbc.nctu.edu.tw.
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Jung S, Schlick T. Candidate RNA structures for domain 3 of the foot-and-mouth-disease virus internal ribosome entry site. Nucleic Acids Res 2012; 41:1483-95. [PMID: 23275533 PMCID: PMC3561949 DOI: 10.1093/nar/gks1302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The foot-and-mouth-disease virus (FMDV) utilizes non-canonical translation initiation for viral protein synthesis, by forming a specific RNA structure called internal ribosome entry site (IRES). Domain 3 in FMDV IRES is phylogenetically conserved and highly structured; it contains four-way junctions where intramolecular RNA–RNA interactions serve as a scaffold for the RNA to fold for efficient IRES activity. Although the 3D structure of domain 3 is crucial to exploring and deciphering the initiation mechanism of translation, little is known. Here, we employ a combination of various modeling approaches to propose candidate tertiary structures for the apical region of domain 3, thought to be crucial for IRES function. We begin by modeling junction topology candidates and build atomic 3D models consistent with available experimental data. We then investigate each of the four candidate 3D structures by molecular dynamics simulations to determine the most energetically favorable configurations and to analyze specific tertiary interactions. Only one model emerges as viable containing not only the specific binding site for the GNRA tetraloop but also helical arrangements which enhance the stability of domain 3. These collective findings, together with available experimental data, suggest a plausible theoretical tertiary structure of the apical region in FMDV IRES domain 3.
Collapse
Affiliation(s)
- Segun Jung
- Department of Chemistry, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | |
Collapse
|
14
|
Lim HC, Leaw CP, Su SNP, Teng ST, Usup G, Mohammad-Noor N, Lundholm N, Kotaki Y, Lim PT. MORPHOLOGY AND MOLECULAR CHARACTERIZATION OF PSEUDO-NITZSCHIA (BACILLARIOPHYCEAE) FROM MALAYSIAN BORNEO, INCLUDING THE NEW SPECIES PSEUDO-NITZSCHIA CIRCUMPORA SP. NOV. JOURNAL OF PHYCOLOGY 2012; 48:1232-47. [PMID: 27011282 DOI: 10.1111/j.1529-8817.2012.01213.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/30/2012] [Indexed: 05/12/2023]
Abstract
Field sampling was undertaken to investigate the occurrence of Pseudo-nitzschia Peragallo species in eight locations along the coast of Malaysian Borneo. A total of 108 strains of Pseudo-nitzschia species were isolated, and their morphology examined with SEM and TEM. Additionally, molecular data from nuclear-encoded partial LSU rDNA, and ITS regions, were characterized. A total of five species were confidently identified based on a combination of distinct morphological characteristics and supporting molecular evidence: P. brasiliana Lundholm, Hasle & Fryxell, P. cuspidata (Hasle) Hasle, P. dolorosa Lundholm & Moestrup, P. micropora Priisholm, Moestrup & Lundholm, and P. pungens (Grunow) Hasle var. pungens. However, one morphotype from Sarawak, while somewhat similar to P. caciantha, showed significant morphological distinction from this and any other of the currently described species. Most notably this morphotype possessed a characteristic pore arrangement in the poroids, with the fine pores in each perforation sector arranged in circles. Pair-wise sequence comparison of the LSU rDNA between this unidentified morphotype and P. caciantha Lundholm, Moestrup & Hasle, revealed 2.7% genetic divergence. Phylogenetic analyses strongly supported the monophyly of the morphotype. Based upon these supporting data it is here described as a new species, Pseudo-nitzschia circumpora sp. nov. A key to the six species of Pseudo-nitzschia from Malaysian Borneo is presented. Molecular signatures for all species were established based on structural comparisons of ITS2 rRNA transcripts.
Collapse
Affiliation(s)
- Hong-Chang Lim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Chui-Pin Leaw
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Suriyanti Nyun-Pau Su
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Sing-Tung Teng
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Gires Usup
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Normawaty Mohammad-Noor
- Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, 25200, Malaysia
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, Copenhagen, 1307, Denmark
| | - Yuichi Kotaki
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Po-Teen Lim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| |
Collapse
|
15
|
Abstract
SUMMARY With the increasing amount of newly discovered non-coding RNAs, the interactions between RNA molecules become an increasingly important aspect for characterizing their functionality. Many computational tools have been developed to predict the formation of duplexes between two RNAs, either based on single sequences or alignments of homologous sequences. Here, we present RILogo, a program to visualize inter- and intramolecular base pairing between two RNA molecules. The input for RILogo is a pair of structure-annotated sequences or alignments. In the latter case, RILogo displays the alignments in the form of sequence logos, including the mutual information of base paired columns. We also introduce two novel mutual information based measures that weigh the covariance information by the evolutionary distances of the aligned sequences. We show that the new measures have an increased accuracy compared with previous mutual information measures. AVAILABILITY AND IMPLEMENTATION RILogo is freely available as a stand-alone program and is accessible via a web server at http://rth.dk/resources/rilogo. CONTACT pmenzel@gmail.com SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter Menzel
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark.
| | | | | |
Collapse
|
16
|
Abstract
Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
17
|
Sharma V, Murphy DP, Provan G, Baranov PV. CodonLogo: a sequence logo-based viewer for codon patterns. Bioinformatics 2012; 28:1935-6. [PMID: 22595210 PMCID: PMC3389775 DOI: 10.1093/bioinformatics/bts295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motivation: Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. Results: We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. Availability: The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/. Contact:p.baranov@ucc.ie or brave.oval.pan@gmail.com
Collapse
Affiliation(s)
- Virag Sharma
- Department of Biochemistry, College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
18
|
Lee TY, Lin ZQ, Hsieh SJ, Bretaña NA, Lu CT. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences. Bioinformatics 2011; 27:1780-7. [DOI: 10.1093/bioinformatics/btr291] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Abstract
BACKGROUND A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species. We sought to address this problem by developing a computational system for automated mapping of miRNAs within and across species. Given the sequence of a known miRNA in one species it is relatively straightforward to determine likely loci of that miRNA in other species. Our primary goal is not the discovery of novel miRNAs but the mapping of validated miRNAs in one species to their most likely orthologues in other species. RESULTS We present MapMi, a computational system for automated miRNA mapping across and within species. This method has a sensitivity of 92.20% and a specificity of 97.73%. Using the latest release (v14) of miRBase, we obtained 10,944 unannotated potential miRNAs when MapMi was applied to all 21 species in Ensembl Metazoa release 2 and 46 species from Ensembl release 55. CONCLUSIONS The pipeline and an associated web-server for mapping miRNAs are freely available on http://www.ebi.ac.uk/enright-srv/MapMi/. In addition precomputed miRNA mappings of miRBase miRNAs across a large number of species are provided.
Collapse
|
20
|
Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009; 10:328. [PMID: 19821977 PMCID: PMC2767369 DOI: 10.1186/1471-2105-10-328] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/12/2009] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNAs (miRNAs), small non-coding RNAs of 19 to 25 nt, play important roles in gene regulation in both animals and plants. In the last few years, the oligonucleotide microarray is one high-throughput and robust method for detecting miRNA expression. However, the approach is restricted to detecting the expression of known miRNAs. Second-generation sequencing is an inexpensive and high-throughput sequencing method. This new method is a promising tool with high sensitivity and specificity and can be used to measure the abundance of small-RNA sequences in a sample. Hence, the expression profiling of miRNAs can involve use of sequencing rather than an oligonucleotide array. Additionally, this method can be adopted to discover novel miRNAs. Results This work presents a systematic approach, miRExpress, for extracting miRNA expression profiles from sequencing reads obtained by second-generation sequencing technology. A stand-alone software package is implemented for generating miRNA expression profiles from high-throughput sequencing of RNA without the need for sequenced genomes. The software is also a database-supported, efficient and flexible tool for investigating miRNA regulation. Moreover, we demonstrate the utility of miRExpress in extracting miRNA expression profiles from two Illumina data sets constructed for the human and a plant species. Conclusion We develop miRExpress, which is a database-supported, efficient and flexible tool for detecting miRNA expression profile. The analysis of two Illumina data sets constructed from human and plant demonstrate the effectiveness of miRExpress to obtain miRNA expression profiles and show the usability in finding novel miRNAs.
Collapse
Affiliation(s)
- Wei-Chi Wang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009; 460:711-6. [PMID: 19661910 PMCID: PMC2724670 DOI: 10.1038/nature08237] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/22/2009] [Indexed: 02/08/2023]
Abstract
Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS and other serious health threats. Viral replication is regulated at many levels, including the use of conserved genomic RNA structures. Most potential regulatory elements in viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests that RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions, including splice site acceptors and hypervariable regions. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by previously unrecognized regulatory motifs and that extensive RNA structure constitutes an important component of the genetic code.
Collapse
Affiliation(s)
- Joseph M Watts
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schwarz R, Seibel PN, Rahmann S, Schoen C, Huenerberg M, Müller-Reible C, Dandekar T, Karchin R, Schultz J, Müller T. Detecting species-site dependencies in large multiple sequence alignments. Nucleic Acids Res 2009; 37:5959-68. [PMID: 19661281 PMCID: PMC2764451 DOI: 10.1093/nar/gkp634] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sequence alignments (MSAs) are one of the most important sources of information in sequence analysis. Many methods have been proposed to detect, extract and visualize their most significant properties. To the same extent that site-specific methods like sequence logos successfully visualize site conservations and sequence-based methods like clustering approaches detect relationships between sequences, both types of methods fail at revealing informational elements of MSAs at the level of sequence–site interactions, i.e. finding clusters of sequences and sites responsible for their clustering, which together account for a high fraction of the overall information of the MSA. To fill this gap, we present here a method that combines the Fisher score-based embedding of sequences from a profile hidden Markov model (pHMM) with correspondence analysis. This method is capable of detecting and visualizing group-specific or conflicting signals in an MSA and allows for a detailed explorative investigation of alignments of any size tractable by pHMMs. Applications of our methods are exemplified on an alignment of the Neisseria surface antigen LP2086, where it is used to detect sites of recombinatory horizontal gene transfer and on the vitamin K epoxide reductase family to distinguish between evolutionary and functional signals.
Collapse
Affiliation(s)
- Roland Schwarz
- Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2/E1, 97080, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chang TH, Huang HD, Wu LC, Yeh CT, Liu BJ, Horng JT. Computational identification of riboswitches based on RNA conserved functional sequences and conformations. RNA (NEW YORK, N.Y.) 2009; 15:1426-1430. [PMID: 19460868 PMCID: PMC2704089 DOI: 10.1261/rna.1623809] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Riboswitches are cis-acting genetic regulatory elements within a specific mRNA that can regulate both transcription and translation by interacting with their corresponding metabolites. Recently, an increasing number of riboswitches have been identified in different species and investigated for their roles in regulatory functions. Both the sequence contexts and structural conformations are important characteristics of riboswitches. None of the previously developed tools, such as covariance models (CMs), Riboswitch finder, and RibEx, provide a web server for efficiently searching homologous instances of known riboswitches or considers two crucial characteristics of each riboswitch, such as the structural conformations and sequence contexts of functional regions. Therefore, we developed a systematic method for identifying 12 kinds of riboswitches. The method is implemented and provided as a web server, RiboSW, to efficiently and conveniently identify riboswitches within messenger RNA sequences. The predictive accuracy of the proposed method is comparable with other previous tools. The efficiency of the proposed method for identifying riboswitches was improved in order to achieve a reasonable computational time required for the prediction, which makes it possible to have an accurate and convenient web server for biologists to obtain the results of their analysis of a given mRNA sequence. RiboSW is now available on the web at http://RiboSW.mbc.nctu.edu.tw/.
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Department of Computer Science and Information Engineering, National Central University, Jhongli 320, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Huang HY, Chang HY, Chou CH, Tseng CP, Ho SY, Yang CD, Ju YW, Huang HD. sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 2008; 37:D150-4. [PMID: 19015153 PMCID: PMC2686527 DOI: 10.1093/nar/gkn852] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Small non-coding RNAs (sRNAs) carry out a variety of biological functions and affect protein synthesis and protein activities in prokaryotes. Recently, numerous sRNAs and their targets were identified in Escherichia coli and in other bacteria. It is crucial to have a comprehensive resource concerning the annotation of small non-coding RNAs in microbial genomes. This work presents an integrated database, namely sRNAMap, to collect the sRNA genes, the transcriptional regulators of sRNAs and the sRNA target genes by integrating a variety of biological databases and by surveying literature. In this resource, we collected 397 sRNAs, 62 regulators/sRNAs and 60 sRNAs/targets in 70 microbial genomes. Additionally, more valuable information of the sRNAs, such as the secondary structure of sRNAs, the expressed conditions of sRNAs, the expression profiles of sRNAs, the transcriptional start sites of sRNAs and the cross-links to other biological databases, are provided for further investigation. Besides, various textual and graphical interfaces were designed and implemented to facilitate the data access in sRNAMap. sRNAMap is available at http://sRNAMap.mbc.nctu.edu.tw/.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|