1
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Fu S, Tan R, Feng Y, Yu P, Mo Y, Xiao W, Wang S, Zhang J. N-methyl-N-nitrosourea induces zebrafish anomalous angiogenesis through Wnt/β-catenin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113674. [PMID: 35623148 DOI: 10.1016/j.ecoenv.2022.113674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
N-methyl-N-nitrosourea (MNU) is a prevalent environmental carcinogen, which leads to tumors in various organs in animal models, while the mechanisms involved were still not fully understood. It is well known that anomalous angiogenesis is a key step in tumorigenesis and progression. In this study, we found that MNU induced abnormal angiogenesis which was accompanied by upregulation of rspo1, p53 and vegfaa in zebrafish embryos. Moreover, it revealed that MNU-induced ectopic sprouting of blood vessels was significantly reduced in rspo1-knockdown but not p53-knockdown embryos, indicating that rspo1 was necessary for MNU-induced abnormal angiogenesis. Additionally, pharmaceutical activation or inhibition of Wnt/β-catenin signaling pathway using (2'Z,3'E)- 6-bromoindirubin-3'-oxime or CCT036477 significantly increased or inhibited the pro-angiogenic effect of MNU on developing zebrafish embryos, which was confirmed by the effect of proliferation and migration in MNU-treated bEnd.3 cells. These data together indicated that rspo1/Wnt/β-catenin/vegfaa axis is involved in the modulation of MNU-induced anomalous angiogenesis.
Collapse
Affiliation(s)
- Saifang Fu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Rongbang Tan
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
3
|
Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets. Curr Drug Metab 2020; 21:186-198. [DOI: 10.2174/1389200221666200408083950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/28/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
Glioblastoma, the most common primary brain tumor, has been recognized as one of the most lethal and
fatal human tumors. It has a dismal prognosis, and survival after diagnosis is less than 15 months. Surgery and radiotherapy
are the only available treatment options at present. However, numerous approaches have been made to upgrade
in vivo and in vitro models with the primary goal of assessing abnormal molecular pathways that would be
suitable targets for novel therapeutic approaches. Novel drugs, delivery systems, and immunotherapy strategies to
establish new multimodal therapies that target the molecular pathways involved in tumor initiation and progression in
glioblastoma are being studied. The goal of this review was to describe the pathophysiology, neurodegeneration
mechanisms, signaling pathways, and future therapeutic targets associated with glioblastomas. The key features have
been detailed to provide an up-to-date summary of the advancement required in current diagnosis and therapeutics
for glioblastoma. The role of nanoparticulate system graphene quantum dots as suitable therapy for glioblastoma has
also been discussed.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| | - Jigar Shah
- Department of Pharmaceutics, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, 382481, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, Korea
| |
Collapse
|
4
|
Cao Y, Chen Y, Huang Y, Liu Z, Li G. In vitro study of human mutL homolog 1 hypermethylation in inducing drug resistance of esophageal carcinoma. Ir J Med Sci 2016; 186:257-263. [DOI: 10.1007/s11845-016-1401-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
5
|
Moriwaki T, Kato Y, Nakamura C, Ishikawa S, Zhang-Akiyama QM. A novel DNA damage response mediated by DNA mismatch repair in Caenorhabditis elegans: induction of programmed autophagic cell death in non-dividing cells. Genes Cancer 2015; 6:341-55. [PMID: 26413217 PMCID: PMC4575921 DOI: 10.18632/genesandcancer.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/28/2015] [Indexed: 12/11/2022] Open
Abstract
DNA mismatch repair (MMR) contributes to genome integrity by correcting errors of DNA polymerase and inducing cell death in response to DNA damage. Dysfunction of MMR results in increased mutation frequency and cancer risk. Clinical researches revealed that MMR abnormalities induce cancers of non-dividing tissues, such as kidney and liver. However, how MMR suppresses cancer in non-dividing tissues is not understood. To address that mechanism, we analyzed the roles of MMR in non-dividing cells using Caenorhabditis elegans (C. elegans), in which all somatic cells are non-dividing in the adult stage. In this study, we used stable MMR-mutant lines with a balancer chromosome. First, we confirmed that deficiency of MMR leads to resistance to various mutagens in C. elegans dividing cells. Next, we performed drug resistance assays, and found that MMR-deficient adult worms were resistant to SN1-type alkylating and oxidizing agents. In addition, dead cell staining and reporter assays of an autophagy-related gene demonstrated that the cell death was autophagic cell death. Interestingly, this autophagic cell death was not suppressed by caffeine, implying that MMR induces death of non-dividing cells in an atl-1-independent manner. Hence, we propose the hypothesis that MMR prevents cancers in non-dividing tissues by directly inducing cell death.
Collapse
Affiliation(s)
- Takahito Moriwaki
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Yuichi Kato
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Chihiro Nakamura
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Satoru Ishikawa
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
6
|
Bodakuntla S, Libi AV, Sural S, Trivedi P, Lahiri M. N-nitroso-N-ethylurea activates DNA damage surveillance pathways and induces transformation in mammalian cells. BMC Cancer 2014; 14:287. [PMID: 24758542 PMCID: PMC4021545 DOI: 10.1186/1471-2407-14-287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/16/2014] [Indexed: 01/06/2023] Open
Abstract
Background The DNA damage checkpoint signalling cascade sense damaged DNA and coordinates cell cycle arrest, DNA repair, and/or apoptosis. However, it is still not well understood how the signalling system differentiates between different kinds of DNA damage. N-nitroso-N-ethylurea (NEU), a DNA ethylating agent induces both transversions and transition mutations. Methods Immunoblot and comet assays were performed to detect DNA breaks and activation of the canonical checkpoint signalling kinases following NEU damage upto 2 hours. To investigate whether mismatch repair played a role in checkpoint activation, knock-down studies were performed while flow cytometry analysis was done to understand whether the activation of the checkpoint kinases was cell cycle phase specific. Finally, breast epithelial cells were grown as 3-dimensional spheroid cultures to study whether NEU can induce upregulation of vimentin as well as disrupt cell polarity of the breast acini, thus causing transformation of epithelial cells in culture. Results We report a novel finding that NEU causes activation of major checkpoint signalling kinases, Chk1 and Chk2. This activation is temporally controlled with Chk2 activation preceding Chk1 phosphorylation, and absence of cross talk between the two parallel signalling pathways, ATM and ATR. Damage caused by NEU leads to the temporal formation of both double strand and single strand breaks. Activation of checkpoints following NEU damage is cell cycle phase dependent wherein Chk2 is primarily activated during G2-M phase whilst in S phase, there is immediate Chk1 phosphorylation and delayed Chk2 response. Surprisingly, the mismatch repair system does not play a role in checkpoint activation, at doses and duration of NEU used in the experiments. Interestingly, NEU caused disruption of the well-formed polarised spheroid archithecture and upregulation of vimentin in three-dimensional breast acini cultures of non-malignant breast epithelial cells upon NEU treatment indicating NEU to have the potential to cause early transformation in the cells. Conclusion NEU causes damage in mammalian cells in the form of double strand and single strand breaks that temporally activate the major checkpoint signalling kinases without the occurrence of cross-talk between the pathways. NEU also appear to cause transformation in three-dimensional spheroid cultures.
Collapse
Affiliation(s)
| | | | | | | | - Mayurika Lahiri
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.
| |
Collapse
|
7
|
Ramos AA, Pedro DFN, Lima CF, Collins AR, Pereira-Wilson C. Development of a new application of the comet assay to assess levels of O6-methylguanine in genomic DNA (CoMeth). Free Radic Biol Med 2013; 60:41-8. [PMID: 23391575 DOI: 10.1016/j.freeradbiomed.2013.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/27/2022]
Abstract
O(6)-methylguanine (O(6)meG) is one of the most premutagenic, precarcinogenic, and precytotoxic DNA lesions formed by alkylating agents. Repair of this DNA damage is achieved by the protein MGMT, which transfers the alkyl groups from the O(6) position of guanine to a cysteine residue in its active center. Because O(6)meG repair by MGMT is a stoichiometric reaction that irreversibly inactivates MGMT, which is subsequently degraded, the repair capacity of O(6)meG lesions is dependent on existing active MGMT molecules. In the absence of active MGMT, O(6)meG is not repaired, and during replication, O(6)meG:T mispairs are formed. The MMR system recognizes these mispairs and introduces a gap into the strand. If O(6)meG remains in one of the template strands the futile MMR repair process will be repeated, generating more strand breaks (SBs). The toxicity of O(6)meG is, therefore, dependent on MMR and DNA SB induction of cell death. MGMT, on the other hand, protects against O(6)meG toxicity by removing the methyl residue from the guanine. Although removal of O(6)meG makes MGMT an important anticarcinogenic mechanism of DNA repair, its activity significantly decreases the efficacy of cancer chemotherapeutic drugs that aim at achieving cell death through the action of the MMR system on unrepaired O(6)meG lesions. Here, we report on a modification of the comet assay (CoMeth) that allows the qualitative assessment of O(6)meG lesions after their conversion to strand breaks in proliferating MMR-proficient cells after MGMT inhibition. This functional assay allows the testing of compounds with effects on O(6)meG levels, as well as on MGMT or MMR activity, in a proliferating cell system. The expression of MGMT and MMR genes is often altered by promoter methylation, and new epigenetically active compounds are being designed to increase chemotherapeutic efficacy. The CoMeth assay allows the testing of compounds with effects on O(6)meG, MGMT, or MMR activity. This proliferating cell system complements other methodologies that look at effects on these parameters individually through analytical chemistry or in vitro assays with recombinant proteins.
Collapse
Affiliation(s)
- Alice A Ramos
- Center of Molecular and Environmental Biology, Department of Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
8
|
Taira K, Kaneto S, Nakano K, Watanabe S, Takahashi E, Arimoto S, Okamoto K, Schaaper RM, Negishi K, Negishi T. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents. Mutagenesis 2013; 28:341-50. [PMID: 23446177 PMCID: PMC3630523 DOI: 10.1093/mutage/get010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O(6)-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the F'prolac from strain CC102 (F'CC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O(6)-alkylguanine. The results showed the repair of O(6)-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O(6)-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells.
Collapse
Affiliation(s)
- Kentaro Taira
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Satomi Kaneto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Kota Nakano
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Shinji Watanabe
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Eizo Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Sakae Arimoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Keinosuke Okamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530, Japan
- NIEHS, Research Triangle Park, NC 27709, USA and
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | | | - Kazuo Negishi
- Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama 362-0806, Japan
| | - Tomoe Negishi
- *To whom correspondence should be addressed. Tel: +81 86 251 7946; Fax: +81 86 251 7926; E-mail:
| |
Collapse
|
9
|
Pei DS, Strauss PR. Zebrafish as a model system to study DNA damage and repair. Mutat Res 2013; 743-744:151-159. [PMID: 23211879 DOI: 10.1016/j.mrfmmm.2012.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 05/20/2023]
Abstract
Zebrafish (Danio rerio) have become a popular vertebrate model to study embryological development, because of unique advantages not found in other model systems. Zebrafish share many gene functions with other vertebrates including humans, making zebrafish a useful system for studying cancer etiology. However, systematic studies of DNA damage and repair pathways using adult or embryonic zebrafish have not been extensively reported. The zebrafish genome contains nearly all the genes involved in different DNA repair pathways in eukaryotes, including direct reversal (DR), mismatch repair (MMR) nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR), non-homologous end joining (NHEJ) and translesion synthesis (TLS). It also includes the genes of the p53-mediated damage recognition pathway. Therefore, zebrafish provide an ideal model for gaining fundamental insights into mechanisms of DNA damage and repair, especially during embryological development. This review introduces recent work on different DNA damage and repair studies in zebrafish, with special emphasis on the role of BER in zebrafish early embryological development. AP endonuclease 1 (Apex1), a critical protein in the BER pathway, not only regulates BER but also controls cyclic AMP response binding protein (Creb1), which itself regulates ∼25% of eukaryotic coding sequences. In addition, Apex1 indirectly regulates levels of p53. As these findings also occur in murine B cells, they illustrate the usefulness of the zebrafish system in elucidating fundamental mechanisms.
Collapse
Affiliation(s)
- De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Phyllis R Strauss
- Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Kurowska M, Labocha-Pawłowska A, Gnizda D, Maluszynski M, Szarejko I. Molecular analysis of point mutations in a barley genome exposed to MNU and gamma rays. Mutat Res 2012; 738-739:52-70. [PMID: 23085094 DOI: 10.1016/j.mrfmmm.2012.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/27/2012] [Accepted: 08/24/2012] [Indexed: 12/24/2022]
Abstract
We present studies aimed at determining the types and frequencies of mutations induced in the barley genome after treatment with chemical (N-methyl-N-nitrosourea, MNU) and physical (gamma rays) mutagens. We created M(2) populations of a doubled haploid line and used them for the analysis of mutations in targeted DNA sequences and over an entire barley genome using TILLING (Targeting Induced Local Lesions in Genomes) and AFLP (Amplified Fragment Length Polymorphism) technique, respectively. Based on the TILLING analysis of the total DNA sequence of 4,537,117bp in the MNU population, the average mutation density was estimated as 1/504kb. Only one nucleotide change was found after an analysis of 3,207,444bp derived from the highest dose of gamma rays applied. MNU was clearly a more efficient mutagen than gamma rays in inducing point mutations in barley. The majority (63.6%) of the MNU-induced nucleotide changes were transitions, with a similar number of G>A and C>T substitutions. The similar share of G>A and C>T transitions indicates a lack of bias in the repair of O(6)-methylguanine lesions between DNA strands. There was, however, a strong specificity of the nucleotide surrounding the O(6)-meG at the -1 position. Purines formed 81% of nucleotides observed at the -1 site. Scanning the barley genome with AFLP markers revealed ca. a three times higher level of AFLP polymorphism in MNU-treated as compared to the gamma-irradiated population. In order to check whether AFLP markers can really scan the whole barley genome for mutagen-induced polymorphism, 114 different AFLP products, were cloned and sequenced. 94% of bands were heterogenic, with some bands containing up to 8 different amplicons. The polymorphic AFLP products were characterised in terms of their similarity to the records deposited in a GenBank database. The types of sequences present in the polymorphic bands reflected the organisation of the barley genome.
Collapse
Affiliation(s)
- Marzena Kurowska
- Department of Genetics, University of Silesia, Katowice, Poland.
| | | | | | | | | |
Collapse
|
11
|
Ramos AA, Pedro D, Collins AR, Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:765-75. [PMID: 22788364 DOI: 10.1080/15287394.2012.689804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA damage induced by oxidative and alkylating agents contributes to carcinogenesis, leading to possible mutations if replication proceeds without proper repair. However, some alkylating agents are used in cancer therapy due to their ability to induce DNA damage and subsequently apoptosis of tumor cells. In this study, the genotoxic effects of oxidative hydrogen peroxide (H₂O₂) and alkylating agents N-methyl-N-nitrosourea (MNU) and 1,3-bis-(2-chloroethyl)-1-nitosourea (BCNU) agents were examined in two colon cell lines (HCT15 and CO115). DNA damage was assessed by the comet assay with and without lesion-specific repair enzymes. Genotoxic agents were used for induction of DNA damage in both cell lines. Protective effects of extracts of three Salvia species, Salvia officinalis (SO), Salvia fruticosa (SF), and Salvia lavandulifolia (SL), against DNA damage induced by oxidative and alkylating agents were also determined. SO and SF protected against oxidative DNA damage in HCT15 cells. SO and SL decreased DNA damage induced by MNU in CO115 cells. In addition to chemopreventive effects of sage plant extracts, it was also important to know whether these plant extracts may interfere with alkylating agents such as BCNU used in cancer therapy, decreasing their efficacy. Our results showed that sage extracts tested and rosmarinic acid (RA), the main constituent, protected CO115 cells from DNA damage induced by BCNU. In HCT15 cells, only SF induced a reduction in BCNU-induced DNA damage. Sage water extracts and RA did not markedly change DNA repair protein expression in either cell line. Data showed that sage tea protected colon cells against oxidative and alkylating DNA damage and may also interfere with efficacy of alkylating agents used in cancer therapy.
Collapse
Affiliation(s)
- Alice A Ramos
- CBMA-Centre of Molecular and Environmental Biology/Department of Biology, School of Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
12
|
Aberrant methylation of different DNA repair genes demonstrates distinct prognostic value for esophageal cancer. Dig Dis Sci 2011; 56:2992-3004. [PMID: 21674174 DOI: 10.1007/s10620-011-1774-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/30/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND DNA mismatch repair (MMR) deficiency results in a strong mutator phenotype and high-frequency microsatellite instability (MSI-H), which are the hallmarks of many tumors. AIM The objective of this study is to investigate the promoter CpG island methylation status of mismatch repair genes human mutL homolog 1 (hMLH1), human mutS homolog 2 (hMSH2), and O(6)-methylguanine-DNA methyltransferase (MGMT) in esophageal squamous cell carcinoma (ESCC) and its roles in alkylating agents chemotherapy. METHODS Real-time methylation-specific polymerase chain reaction (PCR) (real-time MSP) was employed to detect promoter CpG island methylation of the hMLH1, hMSH2, as well as MGMT genes in 235 surgical tumor tissue samples from ESCC patients and their corresponding normal tissue samples. RESULTS Promoter CpG island methylation of hMLH1, hMSH2, and MGMT were detectable in 43.4, 28.9, and 40.4% of ESCC tumor DNA, respectively, and the loss rates of hMLH1, hMSH2, and MGMT protein expression were 48.6, 34.5, and 40.9% in tumor tissues, respectively. For the entire population of 235 ESCC patients who were enrolled in operating treatment combined with radiotherapy and chemotherapy with alkylating agents, there was a significant difference in the overall survival between patients with methylated MGMT promoter and those with an unmethylated MGMT promoter (P < 0.05). CONCLUSION Promoter CpG island methylation may be a frequent event in ESCC carcinogenesis. Detection of the methylated sequences of hMLH1, hMSH2, and MGMT appears to be promising as a predictive factor in primary ESCC.
Collapse
|
13
|
Liao HK, Essner JJ. Use of RecA fusion proteins to induce genomic modifications in zebrafish. Nucleic Acids Res 2011; 39:4166-79. [PMID: 21266475 PMCID: PMC3105420 DOI: 10.1093/nar/gkq1363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA–DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB.
Collapse
Affiliation(s)
- Hsin-Kai Liao
- Department of Genetics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
14
|
Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:454-9. [PMID: 19028802 DOI: 10.1093/bfgp/eln046] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TILLING, for Targeting Induced Local Lesions in Genomes, is a reverse genetics strategy that identifies mutations in specific genes of interest in chemically mutagenized populations. First described in 2000 for mutation detection in Arabidopsis, TILLING is now used in a wide range of plants including soybean, rice, barley and maize as well as for animal model systems, including Arabidopsis, Drosophila, Caenorhabditis elegans, rat, medaka and zebrafish and for the discovery of naturally occurring polymorphisms in humans. This review summarizes current TILLING methodologies as they have been applied to the zebrafish, ongoing TILLING projects and resources in the zebrafish community, and the future of zebrafish TILLING.
Collapse
Affiliation(s)
- Cecilia B Moens
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Ave. N., Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
15
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|