1
|
Saha S, Kanaujia SP. Decoding Substrate Selectivity of an Archaeal RlmCD-like Methyltransferase Through Its Salient Traits. Biochemistry 2024; 63:2477-2492. [PMID: 39350642 DOI: 10.1021/acs.biochem.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Minami S, Niwa T, Uemura E, Koike R, Taguchi H, Ota M. Prediction of chaperonin GroE substrates using small structural patterns of proteins. FEBS Open Bio 2023; 13:779-794. [PMID: 36869604 PMCID: PMC10068320 DOI: 10.1002/2211-5463.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023] Open
Abstract
Molecular chaperones are indispensable proteins that assist the folding of aggregation-prone proteins into their functional native states, thereby maintaining organized cellular systems. Two of the best-characterized chaperones are the Escherichia coli chaperonins GroEL and GroES (GroE), for which in vivo obligate substrates have been identified by proteome-wide experiments. These substrates comprise various proteins but exhibit remarkable structural features. They include a number of α/β proteins, particularly those adopting the TIM β/α barrel fold. This observation led us to speculate that GroE obligate substrates share a structural motif. Based on this hypothesis, we exhaustively compared substrate structures with the MICAN alignment tool, which detects common structural patterns while ignoring the connectivity or orientation of secondary structural elements. We selected four (or five) substructures with hydrophobic indices that were mostly included in substrates and excluded in others, and developed a GroE obligate substrate discriminator. The substructures are structurally similar and superimposable on the 2-layer 2α4β sandwich, the most popular protein substructure, implying that targeting this structural pattern is a useful strategy for GroE to assist numerous proteins. Seventeen false positives predicted by our methods were experimentally examined using GroE-depleted cells, and 9 proteins were confirmed to be novel GroE obligate substrates. Together, these results demonstrate the utility of our common substructure hypothesis and prediction method.
Collapse
Affiliation(s)
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Eri Uemura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Japan.,Institute for Glyco-core Research, Nagoya University, Japan
| |
Collapse
|
3
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
4
|
Rose S, Auxilien S, Havelund JF, Kirpekar F, Huber H, Grosjean H, Douthwaite S. The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications. Nucleic Acids Res 2020; 48:6906-6918. [PMID: 32459340 PMCID: PMC7337903 DOI: 10.1093/nar/gkaa411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3′-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.
Collapse
Affiliation(s)
- Simon Rose
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sylvie Auxilien
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jesper F Havelund
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Harald Huber
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Henri Grosjean
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
5
|
Mohanta TK, Mishra AK, Hashem A, Qari SH, Abd Allah EF, Khan AL, Al-Harrasi A. Genome-wide analysis revealed novel molecular features and evolution of Anti-codons in cyanobacterial tRNAs. Saudi J Biol Sci 2019; 27:1195-1200. [PMID: 32346324 PMCID: PMC7182786 DOI: 10.1016/j.sjbs.2019.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Transfer RNAs (tRNAs) play important roles to decode the genetic information contained in mRNA in the process of translation. The tRNA molecules possess conserved nucleotides at specific position to regulate the unique function. However, several nucleotides at different position of the tRNA undergo modification to maintain proper stability and function. The major modifications include the presence of pseudouridine (Ψ) residue instead of uridine and the presence of m5-methylation sites. We found that, Ψ13 is conserved in D-stem, whereas Ψ38 & Ψ39 were conserved in the anti-codon loop (AL) and anti-codon arm (ACA), respectively. Furthermore, Ψ55 found to be conserved in the Ψ loop. Although, fourteen possible methylation sites can be found in the tRNA, cyanobacterial tRNAs were found to possess conserved G9, m3C32, C36, A37, m5C38 and U54 methylation sites. The presence of multiple conserved methylation sites might be responsible for providing necessary stability to the tRNA. The evolutionary study revealed, tRNAMet and tRNAIle were evolved earlier than other tRNA isotypes and their evolution is date back to at least 4000 million years ago. The presence of novel pseudouridination and m5-methylation sites in the cyanobacterial tRNAs are of particular interest for basic biology. Further experimental study can delineate their functional significance in protein translation.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.,Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
6
|
Hori H. Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Front Genet 2019; 10:204. [PMID: 30906314 PMCID: PMC6418473 DOI: 10.3389/fgene.2019.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
7
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
8
|
Yamagami R, Miyake R, Fukumoto A, Nakashima M, Hori H. Consumption of N5, N10-methylenetetrahydrofolate in Thermus thermophilus under nutrient-poor condition. J Biochem 2018. [PMID: 29538705 DOI: 10.1093/jb/mvy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Miyake
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Fukumoto
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Misa Nakashima
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
9
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
10
|
Abstract
tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed.
Collapse
Affiliation(s)
- William E Swinehart
- a Center for RNA Biology and Department of Chemistry and Biochemistry ; Ohio State University ; Columbus , OH USA
| | | |
Collapse
|
11
|
Byrne RT, Jenkins HT, Peters DT, Whelan F, Stowell J, Aziz N, Kasatsky P, Rodnina MV, Koonin EV, Konevega AL, Antson AA. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A 2015; 112:6033-7. [PMID: 25902496 PMCID: PMC4434734 DOI: 10.1073/pnas.1500161112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show that the Escherichia coli DusC is specific toward U16 of tRNA. Unexpectedly, crystal structures of DusC complexes with tRNA(Phe) and tRNA(Trp) show that Dus subfamilies that selectively modify U16 or U20 in tRNA adopt identical folds but bind their respective tRNA substrates in an almost reverse orientation that differs by a 160° rotation. The tRNA docking orientation appears to be guided by subfamily-specific clusters of amino acids ("binding signatures") together with differences in the shape of the positively charged tRNA-binding surfaces. tRNA orientations are further constrained by positional differences between the C-terminal "recognition" domains. The exquisite substrate specificity of Dus enzymes is therefore controlled by a relatively simple mechanism involving major reorientation of the whole tRNA molecule. Such reprogramming of the enzymatic specificity appears to be a unique evolutionary solution for altering tRNA recognition by the same protein fold.
Collapse
Affiliation(s)
- Robert T Byrne
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Daniel T Peters
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Fiona Whelan
- York Structural Biology Laboratory, Department of Chemistry, and
| | - James Stowell
- York Structural Biology Laboratory, Department of Chemistry, and Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Naveed Aziz
- Department of Biology, University of York, York, YO10 5DD, United Kingdom; Genome Canada, Ottawa, ON K2P 1P1, Canada
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia; Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, and
| |
Collapse
|
12
|
Chatterjee K, Blaby IK, Thiaville PC, Majumder M, Grosjean H, Yuan YA, Gupta R, de Crécy-Lagard V. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. RNA (NEW YORK, N.Y.) 2012; 18:421-33. [PMID: 22274953 PMCID: PMC3285931 DOI: 10.1261/rna.030841.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The methylation of pseudouridine (Ψ) at position 54 of tRNA, producing m(1)Ψ, is a hallmark of many archaeal species, but the specific methylase involved in the formation of this modification had yet to be characterized. A comparative genomics analysis had previously identified COG1901 (DUF358), part of the SPOUT superfamily, as a candidate for this missing methylase family. To test this prediction, the COG1901 encoding gene, HVO_1989, was deleted from the Haloferax volcanii genome. Analyses of modified base contents indicated that while m(1)Ψ was present in tRNA extracted from the wild-type strain, it was absent from tRNA extracted from the mutant strain. Expression of the gene encoding COG1901 from Halobacterium sp. NRC-1, VNG1980C, complemented the m(1)Ψ minus phenotype of the ΔHVO_1989 strain. This in vivo validation was extended with in vitro tests. Using the COG1901 recombinant enzyme from Methanocaldococcus jannaschii (Mj1640), purified enzyme Pus10 from M. jannaschii and full-size tRNA transcripts or TΨ-arm (17-mer) fragments as substrates, the sequential pathway of m(1)Ψ54 formation in Archaea was reconstituted. The methylation reaction is AdoMet dependent. The efficiency of the methylase reaction depended on the identity of the residue at position 55 of the TΨ-loop. The presence of Ψ55 allowed the efficient conversion of Ψ54 to m(1)Ψ54, whereas in the presence of C55, the reaction was rather inefficient and no methylation reaction occurred if a purine was present at this position. These results led to renaming the Archaeal COG1901 members as TrmY proteins.
Collapse
Affiliation(s)
- Kunal Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ian K. Blaby
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | - Patrick C. Thiaville
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Henri Grosjean
- Université Paris11, IGM, CNRS, UMR 8621, Orsay, F 91405, France
| | - Y. Adam Yuan
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
- Corresponding authors.E-mail .E-mail .
| | - Valérie de Crécy-Lagard
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
- Corresponding authors.E-mail .E-mail .
| |
Collapse
|
13
|
Kempenaers M, Roovers M, Oudjama Y, Tkaczuk KL, Bujnicki JM, Droogmans L. New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA. Nucleic Acids Res 2010; 38:6533-43. [PMID: 20525789 PMCID: PMC2965216 DOI: 10.1093/nar/gkq451] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.
Collapse
Affiliation(s)
- Morgane Kempenaers
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Institut de Recherches Microbiologiques Jean-Marie Wiame, Avenue E Gryson 1, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Hamdane D, Skouloubris S, Myllykallio H, Golinelli-Pimpaneau B. Expression and purification of untagged and histidine-tagged folate-dependent tRNA:m5U54 methyltransferase from Bacillus subtilis. Protein Expr Purif 2010; 73:83-9. [PMID: 20412857 DOI: 10.1016/j.pep.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/30/2022]
Abstract
Folate-dependent tRNA m(5)U methyltransferase TrmFO is a flavoprotein that catalyzes the C(5)-methylation of uridine at position 54 in the TPsiC loop of tRNA in several bacteria. Here we report the cloning and optimization of expression in Escherichia coli BL21 (DE3) of untagged, N-terminus, C-terminus (His)(6)-tagged TrmFO from Bacillus subtilis. Tagged and untagged TrmFO were purified to homogeneity by metal affinity or ion exchange and heparin affinity, respectively, followed by size-exclusion chromatography. The tag did not significantly alter the expression level, flavin content, activity and secondary structure of the protein.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
15
|
Hou YM, Perona JJ. Stereochemical mechanisms of tRNA methyltransferases. FEBS Lett 2009; 584:278-86. [PMID: 19944101 DOI: 10.1016/j.febslet.2009.11.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 12/31/2022]
Abstract
Methylation of tRNA on the four canonical bases adds structural complexity to the molecule, and improves decoding specificity and efficiency. While many tRNA methylases are known, detailed insight into the catalytic mechanism is only available in a few cases. Of interest among all tRNA methylases is the structural basis for nucleotide selection, by which the specificity is limited to a single site, or broadened to multiple sites. General themes in catalysis include the basis for rate acceleration at highly diverse nucleophilic centers for methyl transfer, using S-adenosylmethionine as a cofactor. Studies of tRNA methylases have also yielded insights into molecular evolution, particularly in the case of enzymes that recognize distinct structures to perform identical reactions at the same target nucleotide.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA.
| | | |
Collapse
|