1
|
Allouche D, De Bisschop G, Saaidi A, Hardouin P, du Moutier FXL, Ponty Y, Bruno S. RNA Secondary Structure Modeling Following the IPANEMAP Workflow. Methods Mol Biol 2024; 2726:85-104. [PMID: 38780728 DOI: 10.1007/978-1-0716-3519-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The structure of RNA molecules and their complexes are crucial for understanding biology at the molecular level. Resolving these structures holds the key to understanding their manifold structure-mediated functions ranging from regulating gene expression to catalyzing biochemical processes. Predicting RNA secondary structure is a prerequisite and a key step to accurately model their three dimensional structure. Although dedicated modelling software are making fast and significant progresses, predicting an accurate secondary structure from the sequence remains a challenge. Their performance can be significantly improved by the incorporation of experimental RNA structure probing data. Many different chemical and enzymatic probes have been developed; however, only one set of quantitative data can be incorporated as constraints for computer-assisted modelling. IPANEMAP is a recent workflow based on RNAfold that can take into account several quantitative or qualitative data sets to model RNA secondary structure. This chapter details the methods for popular chemical probing (DMS, CMCT, SHAPE-CE, and SHAPE-Map) and the subsequent analysis and structure prediction using IPANEMAP.
Collapse
Affiliation(s)
- Delphine Allouche
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
- Sanofi mRNA center of excellence 1541, Marcy-l'Etoile, France
| | - Grégoire De Bisschop
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Afaf Saaidi
- Georgia Institute of Technology, School of Mathematics, Atlanta, GA, USA
| | - Pierre Hardouin
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France
| | | | - Yann Ponty
- CNRS UMR 7161, LIX, Ecole Polytechnique, Palaiseau, France.
| | - Sargueil Bruno
- CiTCOM, Cibles Thérapeutiques et conception de médicaments, UMR8038 CNRS, Université de PARIS, Paris, France.
| |
Collapse
|
2
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Long M, Toesca J, Guillon C. Review and Perspectives on the Structure-Function Relationships of the Gag Subunits of Feline Immunodeficiency Virus. Pathogens 2021; 10:pathogens10111502. [PMID: 34832657 PMCID: PMC8621984 DOI: 10.3390/pathogens10111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.
Collapse
Affiliation(s)
- Mathieu Long
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, 221 00 Scania, Sweden
| | - Johan Toesca
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Enveloped Viruses, Vectors and Immunotherapy, CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Correspondence:
| |
Collapse
|
4
|
Saaidi A, Allouche D, Regnier M, Sargueil B, Ponty Y. IPANEMAP: integrative probing analysis of nucleic acids empowered by multiple accessibility profiles. Nucleic Acids Res 2020; 48:8276-8289. [PMID: 32735675 PMCID: PMC7470984 DOI: 10.1093/nar/gkaa607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
The manual production of reliable RNA structure models from chemical probing experiments benefits from the integration of information derived from multiple protocols and reagents. However, the interpretation of multiple probing profiles remains a complex task, hindering the quality and reproducibility of modeling efforts. We introduce IPANEMAP, the first automated method for the modeling of RNA structure from multiple probing reactivity profiles. Input profiles can result from experiments based on diverse protocols, reagents, or collection of variants, and are jointly analyzed to predict the dominant conformations of an RNA. IPANEMAP combines sampling, clustering and multi-optimization, to produce secondary structure models that are both stable and well-supported by experimental evidences. The analysis of multiple reactivity profiles, both publicly available and produced in our study, demonstrates the good performances of IPANEMAP, even in a mono probing setting. It confirms the potential of integrating multiple sources of probing data, informing the design of informative probing assays.
Collapse
Affiliation(s)
- Afaf Saaidi
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Delphine Allouche
- CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France
| | - Mireille Regnier
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université de Paris, 4 avenue de l'observatoire, 75006 Paris, France
| | - Yann Ponty
- CNRS UMR 7161, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| |
Collapse
|
5
|
Lin Y, Li Y, Zhu X, Huang Y, Li Y, Li M. Genetic Contexts Characterize Dynamic Histone Modification Patterns Among Cell Types. Interdiscip Sci 2019; 11:698-710. [PMID: 31165438 DOI: 10.1007/s12539-019-00338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/18/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
Abstract
Histone modifications play critical roles in mammalian development, regulating chromatin structure and gene expression. Dynamic histone modifications among cell types have been shown to associate with changes in mammalian development. However, how to quantitatively measure the histone modification alterations and how histone modifications vary across cell types under different genetic contexts remain largely unexplored and whether these changes are related to the primary DNA sequence remains limited. Here, we employed an entropy-based method to measure histone modification alterations in six definite genomic regions across five cell types and identified lineage-specific histone modification genes. We observed that histone modification alterations prefer to enrich in 5'-UTR exons, and also in 3'-UTR exons and its downstream. Then we built a model to predict the histone modification patterns from the primary DNA sequence. We found that the frequencies of k-mer sequence compositions are predictive of histone modification patterns, suggesting that the primary DNA sequence correlated with the histone modification alterations among cell types. Additionally, the lineage-specific histone modification genes display a higher conservation and lower GC-content. Together, we performed a systematic analysis for histone modification alterations and demonstrated how to identify genomic region-specific elements of epigenetic and genetic regulation and histone modification patterns across different cell types.
Collapse
Affiliation(s)
- Yanmei Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xingyong Zhu
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuyao Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,College of Cybersecurity, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
6
|
Frezza E, Courban A, Allouche D, Sargueil B, Pasquali S. The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study. Methods 2019; 162-163:108-127. [PMID: 31145972 DOI: 10.1016/j.ymeth.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Determination of the tridimensional structure of ribonucleic acid molecules is fundamental for understanding their function in the cell. A common method to investigate RNA structures of large molecules is the use of chemical probes such as SHAPE (2'-hydroxyl acylation analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is dependent on the local structural properties of each nucleotide. In order to understand the interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity of the probes, we performed all-atom molecular dynamics simulations on a set of RNA molecules for which both tridimensional structure and chemical probing data are available and we analyzed the correlations between geometrical parameters and the chemical reactivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the different chemical moieties but suggests that a combination of multiple parameters is needed to better understand the implications of the reactivity at the molecular level. This is also the case for DMS and CMCT for which the reactivity appears to be more complex than commonly accepted.
Collapse
Affiliation(s)
- Elisa Frezza
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Antoine Courban
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Delphine Allouche
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France
| | - Bruno Sargueil
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| | - Samuela Pasquali
- Faculté de Pharmacie de Paris, Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 - CNRS, Université Paris Descartes, 4 Avenue de l'Observatoire 75270 PARIS CEDEX 06, France.
| |
Collapse
|
7
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
9
|
Deforges J, de Breyne S, Ameur M, Ulryck N, Chamond N, Saaidi A, Ponty Y, Ohlmann T, Sargueil B. Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Res 2017; 45:7382-7400. [PMID: 28449096 PMCID: PMC5499600 DOI: 10.1093/nar/gkx303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
In the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S. Aiming at elucidating the specificity and the relevance of this interaction, we probed HIV-1 Gag-IRES structure and developed an innovative integrative modelling strategy to take into account all the gathered information. We propose a novel Gag-IRES secondary structure strongly supported by all experimental data. We further demonstrate the presence of two regions within Gag-IRES that independently and directly interact with the ribosome. Importantly, these binding sites are functionally relevant to Gag translation both in vitro and ex vivo. This work provides insight into the Gag-IRES molecular mechanism and gives compelling evidence for its physiological importance. It allows us to propose original hypotheses about the IRES physiological role and conservation among primate lentiviruses.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Sylvain de Breyne
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Melissa Ameur
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Afaf Saaidi
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Yann Ponty
- CNRS UMR 7161, Laboratoire de Recherche en Informatique de l'Ecole Polytechnique (LIX), Ecole Polytechnique, 1 rue Estienne d'Orves, 91120 Palaiseau, France.,AMIB, Inria Saclay, bat Alan Turing, 1 rue Estienne d'Orves, 91120 Palaiseau, France
| | - Theophile Ohlmann
- CIRI (International Center for Infectiology Research), INSERM U1111, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5308, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
10
|
Angulo J, Ulryck N, Deforges J, Chamond N, Lopez-Lastra M, Masquida B, Sargueil B. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Res 2015; 44:1309-25. [PMID: 26626152 PMCID: PMC4756818 DOI: 10.1093/nar/gkv1325] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a ‘kissing complex’ between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation.
Collapse
Affiliation(s)
- Jenniffer Angulo
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Benoît Masquida
- UMR 7156 Génétique Moléculaire Génomique Microbiologie, CNRS - Université de Strasbourg, Strasbourg, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
11
|
Deforges J, Locker N, Sargueil B. mRNAs that specifically interact with eukaryotic ribosomal subunits. Biochimie 2014; 114:48-57. [PMID: 25530261 DOI: 10.1016/j.biochi.2014.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 12/25/2022]
Abstract
The accuracy of start codon selection is determined by the translation initiation process. In prokaryotes the initiation step on most mRNAs relies on recruitment of the small ribosomal subunit onto the initiation codon by base pairing between the mRNA and the 16S rRNA. Eukaryotes have evolved a complex molecular machinery involving at least 11 initiation factors, and mRNAs do not directly recruit the small ribosomal subunit. Instead the initiation complex is recruited to the 5' end of the mRNA through a complex protein network including eIF4E that interacts with the 5' cap structure and poly-A binding protein that interacts with the 3'end. However, some viral and cellular mRNAs are able to escape this pathway by internal recruitment of one or several components of the translation machinery. Here we review those eukaryotic mRNAs that have been reported to directly recruit the 40S ribosomal subunit internally. In the well characterized cases of viral IRESes, a specific RNA structure is involved in this process, and in addition to recruitment of the ribosome, the mRNA also manipulates the ribosome structure to stimulate the first translocation step. We also review recently described IRES/ribosome interactions in cases where the molecular mechanism leading to translation initiation has yet to be described. Finally we evaluate the possibility that mRNA may recruit the 40S ribosomal subunit through base pairing with the 18S rRNA.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR8015, laboratoire de cristallographie et RMN biologiques, France; Université Paris Descartes, 4 avenue de l'observatoire, Paris Cedex 06, 75270, France
| | - Nicolas Locker
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Bruno Sargueil
- CNRS UMR8015, laboratoire de cristallographie et RMN biologiques, France; Université Paris Descartes, 4 avenue de l'observatoire, Paris Cedex 06, 75270, France.
| |
Collapse
|
12
|
Othman Z, Sulaiman MK, Willcocks MM, Ulryck N, Blackbourn DJ, Sargueil B, Roberts LO, Locker N. Functional analysis of Kaposi's sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation. RNA (NEW YORK, N.Y.) 2014; 20:1803-1814. [PMID: 25246653 PMCID: PMC4201831 DOI: 10.1261/rna.045328.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus, the etiological agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). One of the key viral proteins that contributes to tumorigenesis is vFLIP, a viral homolog of the FLICE inhibitory protein. This KSHV protein interacts with the NFκB pathway to trigger the expression of antiapoptotic and proinflammatory genes and ultimately leads to tumor formation. The expression of vFLIP is regulated at the translational level by an internal ribosomal entry site (IRES) element. However, the precise mechanism by which ribosomes are recruited internally and the exact location of the IRES has remained elusive. Here we show that a 252-nt fragment directly upstream of vFLIP, within a coding region, directs translation. We have established its RNA structure and demonstrate that IRES activity requires the presence of eIF4A and an intact eIF4G. Furthermore, and unusually for an IRES, eIF4E is part of the complex assembled onto the vFLIP IRES to direct translation. These molecular interactions define a new paradigm for IRES-mediated translation.
Collapse
Affiliation(s)
- Zulkefley Othman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Mariam K Sulaiman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - David J Blackbourn
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| |
Collapse
|
13
|
Functional and structural analysis of the internal ribosome entry site present in the mRNA of natural variants of the HIV-1. PLoS One 2012; 7:e35031. [PMID: 22496887 PMCID: PMC3319624 DOI: 10.1371/journal.pone.0035031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/11/2012] [Indexed: 01/04/2023] Open
Abstract
The 5′untranslated regions (UTR) of the full length mRNA of the HIV-1 proviral clones pNL4.3 and pLAI, harbor an internal ribosomal entry site (IRES). In this study we extend this finding by demonstrating that the mRNA 5′UTRs of natural variants of HIV-1 also exhibit IRES-activity. Cap-independent translational activity was demonstrated using bicistronic mRNAs in HeLa cells and in Xenopus laevis oocytes. The possibility that expression of the downstream cistron in these constructs was due to alternative splicing or to cryptic promoter activity was ruled out. The HIV-1 variants exhibited significant 5′UTR nucleotide diversity with respect to the control sequence recovered from pNL4.3. Interestingly, translational activity from the 5′UTR of some of the HIV-1 variants was enhanced relative to that observed for the 5′UTR of pNL4.3. In an attempt to explain these findings we probed the secondary structure of the variant HIV-1 5′UTRs using enzymatic and chemical approaches. Yet subsequent structural analyses did not reveal significant variations when compared to the pNL4.3-5′UTR. Thus, the increased IRES-activity observed for some of the HIV-1 variants cannot be ascribed to a specific structural modification. A model to explain these findings is proposed.
Collapse
|
14
|
Deforges J, Chamond N, Sargueil B. Structural investigation of HIV-1 genomic RNA dimerization process reveals a role for the Major Splice-site Donor stem loop. Biochimie 2012; 94:1481-9. [PMID: 22365986 DOI: 10.1016/j.biochi.2012.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
The 5'UnTranslated Region (5'UTR) of HIV-1 genomic RNA, which precedes the Gag coding sequence, fulfills several roles during the lentivirus life cycle. This 335 nucleotides leader contains many stable structures that are crucial for the regulation of genetic expression at the level of transcription, splicing, and translation. In the late steps of the virus cycle, i.e. virions formation, the genomic RNA serves as propagated genome and its encapsidation in new particles relies on its ability to form non-covalent dimers. Dimerization is proposed to be initiated by the intermolecular pairing of a self-complementary sequence located in the apical loop of the DIS hairpin (Dimer Initiation Sequence). The regulation of this phenomenon and the extraordinary stability of the dimers imply that structural elements other than this kissing complex remain to be identified. Here, we show that swapping the Gag open reading frame (ORF) by reporter genes interferes with dimers formation efficiency. Importantly, the nature of the ORF alters specific structures of the 5'UTR. By using a systematic "SHAPE" approach, we pointed out that sequences within the Major Splice Site are involved in the dimerization process. Furthermore, by the use of an antisense oligonucleotide specific for the MSD associated to a SHAPE analysis of the 5'UTR structure, we demonstrated that interfering with the MSD results both in an impaired dimerization and in modifications of the 5'UTR structure. All together these data support a recently proposed model in which intramolecular base pairings are important determinants for the dimerization process. We further conclude that much care should be taken when comparing translation activity of reporter constructs with the viral situation.
Collapse
Affiliation(s)
- Jules Deforges
- CNRS UMR 8015 Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 Avenue de l'Observatoire, 75270 Paris cedex 06, France
| | | | | |
Collapse
|
15
|
Kenyon JC, Tanner SJ, Legiewicz M, Phillip PS, Rizvi TA, Le Grice SFJ, Lever AML. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization. Nucleic Acids Res 2011; 39:6692-704. [PMID: 21546549 PMCID: PMC3159445 DOI: 10.1093/nar/gkr252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem–loops, extensive long-range interactions (LRIs) and a small, palindromic stem–loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem–loops are static structures, the 5′ and 3′ regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem–loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.
Collapse
Affiliation(s)
- Julia C Kenyon
- University of Cambridge Department of Medicine, Box 157, Level 5 Addenbrooke's Hospital, Hills Rd, Cambridge, CB20QQ, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Vallejos M, Deforges J, Plank TDM, Letelier A, Ramdohr P, Abraham CG, Valiente-Echeverría F, Kieft JS, Sargueil B, López-Lastra M. Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res 2011; 39:6186-200. [PMID: 21482538 PMCID: PMC3152342 DOI: 10.1093/nar/gkr189] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 5′ leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA harbors an internal ribosome entry site (IRES) that is functional during the G2/M phase of the cell cycle. Here we show that translation initiation mediated by the HIV-1 IRES requires the participation of trans-acting cellular factors other than the canonical translational machinery. We used ‘standard’ chemical and enzymatic probes and an ‘RNA SHAPE’ analysis to model the structure of the HIV-1 5′ leader and we show, by means of a footprinting assay, that G2/M extracts provide protections to regions previously identified as crucial for HIV-1 IRES activity. We also assessed the impact of mutations on IRES function. Strikingly, mutations did not significantly affect IRES activity suggesting that the requirement for pre-formed stable secondary or tertiary structure within the HIV-1 IRES may not be as strict as has been described for other viral IRESes. Finally, we used a proteomic approach to identify cellular proteins within the G2/M extracts that interact with the HIV-1 5′ leader. Together, data show that HIV-1 IRES-mediated translation initiation is modulated by cellular proteins.
Collapse
Affiliation(s)
- Maricarmen Vallejos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Lentiviruses, the prototype of which is HIV-1, can initiate translation either by the classical cap-dependent mechanism or by internal recruitment of the ribosome through RNA domains called IRESs (internal ribosome entry sites). Depending on the virus considered, the mechanism of IRES-dependent translation differs widely. It can occur by direct binding of the 40S subunit to the mRNA, necessitating a subset or most of the canonical initiation factors and/or ITAF (IRES trans-acting factors). Nonetheless, a common feature of IRESs is that ribosomal recruitment relies, at least in part, on IRES structural determinants. Lentiviral genomic RNAs present an additional level of complexity, as, in addition to the 5'-UTR (untranslated region) IRES, the presence of a new type of IRES, embedded within Gag coding region was described recently. This IRES, conserved in all three lentiviruses examined, presents conserved structural motifs that are crucial for its activity, thus reinforcing the link between RNA structure and function. However, there are still important gaps in our understanding of the molecular mechanism underlying IRES-dependent translation initiation of HIV, including the determination of the initiation factors required, the dynamics of initiation complex assembly and the dynamics of the RNA structure during initiation complex formation. Finally, the ability of HIV genomic RNA to initiate translation through different pathways questions the possible mechanisms of regulation and their correlation to the viral paradigm, i.e. translation versus encapsidation of its genomic RNA.
Collapse
|
18
|
Locker N, Chamond N, Sargueil B. A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res 2010; 39:2367-77. [PMID: 21071421 PMCID: PMC3064776 DOI: 10.1093/nar/gkq1118] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.
Collapse
Affiliation(s)
- Nicolas Locker
- Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey - Guildford, Surrey GU2 7HX, UK
| | | | | |
Collapse
|
19
|
Rizvi TA, Kenyon JC, Ali J, Aktar SJ, Phillip PS, Ghazawi A, Mustafa F, Lever AML. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag. J Mol Biol 2010; 403:103-119. [PMID: 20732330 PMCID: PMC2987497 DOI: 10.1016/j.jmb.2010.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.
Collapse
Affiliation(s)
- Tahir A Rizvi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | - Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Jahabar Ali
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Suriya J Aktar
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Pretty S Phillip
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Akela Ghazawi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah Mustafa
- Department of Biochemistry, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
20
|
Kharytonchyk S, Pedersen FS. A unique, thermostable dimer linkage structure of RD114 retroviral RNA. RNA (NEW YORK, N.Y.) 2010; 16:572-584. [PMID: 20075164 PMCID: PMC2822922 DOI: 10.1261/rna.1495110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 11/13/2009] [Indexed: 05/28/2023]
Abstract
Retroviruses package their genome as RNA dimers linked together primarily by base-pairing between palindromic stem-loop (psl) sequences at the 5' end of genomic RNA. Retroviral RNA dimers usually melt in the range of 55 degrees C-70 degrees C. However, RNA dimers from virions of the feline endogenous gammaretrovirus RD114 were reported to melt only at 87 degrees C. We here report that the high thermal stability of RD114 RNA dimers generated from in vitro synthesized RNA is an effect of multiple dimerization sites located in the 5' region from the R region to sequences downstream from the splice donor (SD) site. By antisense oligonucleotide probing we were able to map at least five dimerization sites. Computational prediction revealed a possibility to form stems with autocomplementary loops for all of the mapped dimerization sites. Three of them were located upstream of the SD site. Mutant analysis supported a role of all five loop sequences in the formation and thermal stability of RNA dimers. Four of the five psls were also predicted in the RNA of two baboon endogenous retroviruses proposed to be ancestors of RD114. RNA fragments of the 5' R region or prolonged further downstream could be efficiently dimerized in vitro. However, this was not the case for the 3' R region linked to upstream U3 sequences, suggesting a specific mechanism of negative regulation of dimerization at the 3' end of the genome, possibly explained by a long double-stranded RNA region at the U3-R border. Altogether, these data point to determinants of the high thermostability of the dimer linkage structure of the RD114 genome and reveal differences from other retroviruses.
Collapse
|
21
|
Weill L, James L, Ulryck N, Chamond N, Herbreteau CH, Ohlmann T, Sargueil B. A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA. Nucleic Acids Res 2009; 38:1367-81. [PMID: 19969542 PMCID: PMC2831325 DOI: 10.1093/nar/gkp1109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genomic RNA of primate lentiviruses serves both as an mRNA that encodes Gag and Gag-Pol polyproteins and as a propagated genome. Translation of this RNA is initiated by standard cap dependant mechanism or by internal entry of the ribosome. Two regions of the genomic RNA are able to attract initiation complexes, the 5′ untranslated region and the gag coding region itself. Relying on probing data and a phylogenetic study, we have modelled the secondary structure of HIV-1, HIV-2 and SIVMac coding region. This approach brings to light conserved secondary-structure elements that were shown by mutations to be required for internal entry of the ribosome. No structural homologies with other described viral or cellular IRES can be identified and lentiviral IRESes show many peculiar properties. Most notably, the IRES present in HIV-2 gag coding region is endowed with the unique ability to recruit up to three initiation complexes on a single RNA molecule. The structural and functional properties of gag coding sequence define a new type of IRES. Although its precise role is unknown, the conservation of the IRES among fast evolving lentiviruses suggests an important physiological role.
Collapse
Affiliation(s)
- Laure Weill
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologique, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Kenyon JC, Ghazawi A, Cheung WKS, Phillip PS, Rizvi TA, Lever AML. The secondary structure of the 5' end of the FIV genome reveals a long-range interaction between R/U5 and gag sequences, and a large, stable stem-loop. RNA (NEW YORK, N.Y.) 2008; 14:2597-608. [PMID: 18974279 PMCID: PMC2590967 DOI: 10.1261/rna.1284908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that infects cats and is related to human immunodeficiency virus (HIV). Although it is a common worldwide infection, and has potential uses as a human gene therapy vector and as a nonprimate model for HIV infection, little detail is known of the viral life cycle. Previous experiments have shown that its packaging signal includes two or more regions within the first 511 nucleotides of the genomic RNA. We have undertaken a secondary structural analysis of this RNA by minimal free-energy structural prediction, biochemical mapping, and phylogenetic analysis, and show that it contains five conserved stem-loops and a conserved long-range interaction between heptanucleotide sequences 5'-CCCUGUC-3' in R/U5 and 5'-GACAGGG-3' in gag. This long-range interaction is similar to that seen in primate lentiviruses where it is thought to be functionally important. Along with strains that infect domestic cats, this heptanucleotide interaction can also occur in species-specific FIV strains that infect pumas, lions, and Pallas' cats where the heptanucleotide sequences involved vary. We have analyzed spliced and genomic FIV RNAs and see little structural change or sequence conservation within single-stranded regions of the 5' UTR that are important for viral packaging, suggesting that FIV may employ a cotranslational packaging mechanism.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|