1
|
Sande R, Godad A, Doshi G. Zebrafish Experimental Animal Models for AD: A Comprehensive Review. Curr Rev Clin Exp Pharmacol 2024; 19:295-311. [PMID: 38284707 DOI: 10.2174/0127724328279684240104094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
AD disease (AD) is a multifaceted and intricate neurodegenerative disorder characterized by intracellular neurofibrillary tangle (NFT) formation and the excessive production and deposition of Aβ senile plaques. While transgenic AD models have been found instrumental in unravelling AD pathogenesis, they involve cost and time constraints during the preclinical phase. Zebrafish, owing to their simplicity, well-defined behavioural patterns, and relevance to neurodegenerative research, have emerged as a promising complementary model. Zebrafish possess glutaminergic and cholinergic pathways implicated in learning and memory, actively contributing to our understanding of neural transmission processes. This review sheds light on the molecular mechanisms by which various neurotoxic agents, including okadaic acid (OKA), cigarette smoke extract, metals, and transgenic zebrafish models with genetic similarities to AD patients, induce cognitive impairments and neuronal degeneration in mammalian systems. These insights may facilitate the identification of effective neurotoxic agents for replicating AD pathogenesis in the zebrafish brain. In this comprehensive review, the pivotal role of zebrafish models in advancing our comprehension of AD is emphasized. These models hold immense potential for shaping future research directions and clinical interventions, ultimately contributing to the development of novel AD therapies.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
2
|
J. Grant D, A. Shakes L, M. Wolf H, C. Norford D, K. Chatterjee P. Exploring function of conserved non-coding DNA in its chromosomal context. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Shakes LA, Wolf HM, Norford DC, Grant DJ, Chatterjee PK. Harnessing mobile genetic elements to explore gene regulation. Mob Genet Elements 2014; 4:e29759. [PMID: 25054085 PMCID: PMC4092005 DOI: 10.4161/mge.29759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Sequences that regulate expression of a gene in cis but are located at large distances along the DNA from the gene, as found with most developmentally regulated genes in higher vertebrates, are difficult to identify if those sequences are not conserved across species. Mutating suspected gene-regulatory sequences to alter expression then becomes a hit-or-miss affair. The relaxed specificity of transposon insertions offers an opportunity to develop alternate strategies, to scan in an unbiased manner, pieces of chromosomal DNA cloned in BACs for transcription enhancing elements. This article illustrates how insertions of Tn10 with enhancer-traps into BAC DNA containing the gene, and its germ-line expression in zebrafish, have identified distal regulatory elements functionally. Transposition of Tn10 first introduces the enhancer-trap with a loxP site randomly into BAC DNA. Cre-recombination between the inserted loxP and the loxP endogenous to a BAC-end positions the enhancer-trap to the newly created truncated end of BAC DNA. The procedure generates a library of integration-ready enhancer-trap BACs with progressive truncations from an end in a single experiment. Individual enhancer-trap BACs from the library can be evaluated functionally in zebrafish or mice. Furthermore, the ability to readily alter sequences in a small transposon plasmid containing a regulatory domain of the gene allows re-introduction of altered parts of a BAC back into itself. It serves as a useful strategy to functionally dissect multiple discontinuous regulatory domains of a gene quickly. These methodologies have been successfully used in identifying novel regulatory domains of the Amyloid Precursor Protein (appb) gene in zebrafish, and provided important clues for regulation of the gene in humans.
Collapse
Affiliation(s)
- Leighcraft A Shakes
- Julius L. Chambers Biomedical/ Biotechnology Research Institute and Department of Chemistry; North Carolina Central University; Durham, NC USA
| | - Hope M Wolf
- Julius L. Chambers Biomedical/ Biotechnology Research Institute and Department of Chemistry; North Carolina Central University; Durham, NC USA
| | - Derek C Norford
- Julius L. Chambers Biomedical/ Biotechnology Research Institute and Department of Chemistry; North Carolina Central University; Durham, NC USA
| | - Delores J Grant
- Julius L. Chambers Biomedical/ Biotechnology Research Institute and Department of Chemistry; North Carolina Central University; Durham, NC USA
| | - Pradeep K Chatterjee
- Julius L. Chambers Biomedical/ Biotechnology Research Institute and Department of Chemistry; North Carolina Central University; Durham, NC USA
| |
Collapse
|
4
|
Chatterjee PK, Shakes LA, Wolf HM, Mujalled MA, Zhou C, Hatcher C, Norford DC. Identifying Distal cis-acting Gene-Regulatory Sequences by Expressing BACs Functionalized with loxP-Tn10 Transposons in Zebrafish. RSC Adv 2013; 3:8604-8617. [PMID: 24772295 DOI: 10.1039/c3ra40332g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial Artificial Chromosomes (BACs) are large pieces of DNA from the chromosomes of organisms propagated faithfully in bacteria as large extra-chromosomal plasmids. Expression of genes contained in BACs can be monitored after functionalizing the BAC DNA with reporter genes and other sequences that allow stable maintenance and propagation of the DNA in the new host organism. The DNA in BACs can be altered within its bacterial host in several ways. Here we discuss one such approach, using Tn10 mini-transposons, to introduce exogenous sequences into BACs for a variety of purposes. The largely random insertions of Tn10 transposons carrying lox sites have been used to position mammalian cell-selectable antibiotic resistance genes, enhancer-traps and inverted repeat ends of the vertebrate transposon Tol2 precisely at the ends of the genomic DNA insert in BACs. These modified BACs are suitable for expression in zebrafish or mouse, and have been used to functionally identify important long-range gene regulatory sequences in both species. Enhancer-trapping using BACs should prove uniquely useful in analyzing multiple discontinuous DNA domains that act in concert to regulate expression of a gene, and is not limited by genome accessibility issues of traditional enhancer-trapping methods.
Collapse
Affiliation(s)
- Pradeep K Chatterjee
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Leighcraft A Shakes
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Hope M Wolf
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Mohammad A Mujalled
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Constance Zhou
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Charles Hatcher
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Derek C Norford
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| |
Collapse
|
5
|
Shakes LA, Du H, Wolf HM, Hatcher C, Norford DC, Precht P, Sen R, Chatterjee PK. Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans. BMC Genomics 2012; 13:451. [PMID: 22947103 PMCID: PMC3546842 DOI: 10.1186/1471-2164-13-451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022] Open
Abstract
Background Non-coding DNA in and around the human Amyloid Precursor Protein (APP) gene that is central to Alzheimer’s disease (AD) shares little sequence similarity with that of appb in zebrafish. Identifying DNA domains regulating expression of the gene in such situations becomes a challenge. Taking advantage of the zebrafish system that allows rapid functional analyses of gene regulatory sequences, we previously showed that two discontinuous DNA domains in zebrafish appb are important for expression of the gene in neurons: an enhancer in intron 1 and sequences 28–31 kb upstream of the gene. Here we identify the putative transcription factor binding sites responsible for this distal cis-acting regulation, and use that information to identify a regulatory region of the human APP gene. Results Functional analyses of intron 1 enhancer mutations in enhancer-trap BACs expressed as transgenes in zebrafish identified putative binding sites of two known transcription factor proteins, E4BP4/ NFIL3 and Forkhead, to be required for expression of appb. A cluster of three E4BP4 sites at −31 kb is also shown to be essential for neuron-specific expression, suggesting that the dependence of expression on upstream sequences is mediated by these E4BP4 sites. E4BP4/ NFIL3 and XFD1 sites in the intron enhancer and E4BP4/ NFIL3 sites at −31 kb specifically and efficiently bind the corresponding zebrafish proteins in vitro. These sites are statistically over-represented in both the zebrafish appb and the human APP genes, although their locations are different. Remarkably, a cluster of four E4BP4 sites in intron 4 of human APP exists in actively transcribing chromatin in a human neuroblastoma cell-line, SHSY5Y, expressing APP as shown using chromatin immunoprecipitation (ChIP) experiments. Thus although the two genes share little sequence conservation, they appear to share the same regulatory logic and are regulated by a similar set of transcription factors. Conclusion The results suggest that the clock-regulated and immune system modulator transcription factor E4BP4/ NFIL3 likely regulates the expression of both appb in zebrafish and APP in humans. It suggests potential human APP gene regulatory pathways, not on the basis of comparing DNA primary sequences with zebrafish appb but on the model of conservation of transcription factors.
Collapse
Affiliation(s)
- Leighcraft A Shakes
- Julius L. Chambers Biomedical/ Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chatterjee S, Lufkin T. Regulatory genomics: Insights from the zebrafish. CURRENT TOPICS IN GENETICS 2012; 5:1-10. [PMID: 23440612 PMCID: PMC3577074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The sequencing of many vertebrate species over the last decade has opened up the possibility of using comparative genomics as a powerful tool to elucidate regulatory elements in the vertebrate genome. The zebrafish has played a pivotal role in this process. Its genome has been used in large-scale genome comparisons to locate vertebrate specific regulatory elements and also it has been an excellent model system to test out the predicted DNA sequences for their ability to drive reporter gene expression in vivo. In spite of all the successes there have still been some issues in using the zebrafish as a model system for these kinds of assays. This review will shed some light on the successes and failures of the zebrafish in pushing forward regulatory genomics.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | | |
Collapse
|
7
|
Shakes LA, Abe G, Eltayeb MA, Wolf HM, Kawakami K, Chatterjee PK. Generating libraries of iTol2-end insertions at BAC ends using loxP and lox511 Tn10 transposons. BMC Genomics 2011; 12:351. [PMID: 21736732 PMCID: PMC3146455 DOI: 10.1186/1471-2164-12-351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial Artificial Chromosomes (BACs) have been widely used as transgenes in vertebrate model systems such as mice and zebrafish, for a variety of studies. BAC transgenesis has been a powerful tool to study the function of the genome, and gene regulation by distal cis-regulatory elements. Recently, BAC transgenesis in both mice and zebrafish was further facilitated by development of the transposon-mediated method using the Tol2 element. Tol2 ends, in the inverted orientation and flanking a 1 kb spacer DNA (iTol2), were introduced into the BAC DNA within the bacterial host using recombination of homologous sequences. Here we describe experiments designed to determine if a simpler and more flexible system could modify BACs so that they would be suitable for transgenesis into zebrafish or mouse embryos using the Tol2 transposase. RESULTS A new technique was developed to introduce recognition sequences for the Tol2 transposase into BACs in E. coli using the Tn10 transposon vector system. We constructed pTnloxP-iTol2kan and pTnlox511-iTol2kan to introduce the loxP or lox511 site and iTol2 cassette, containing the Tol2 cis-sequences in the inverted orientation, into BACs that have loxP and lox511 sites flanking genomic DNA inserts by Tn10-mediated transposition. The procedure enables rapid generation of a large collection of BACs ready for transgenesis with the iTol2 cassette at the new end of a progressively truncated genomic insert via lox-Cre recombination. The iTol2 ends are efficiently recognized by the Tol2 transposase, and the BACs readily integrate into zebrafish chromosomes. CONCLUSION The new technology described here can rapidly introduce iTol2 ends at a BAC end of choice, and simultaneously generate a large collection of BACs with progressive deletions of the genomic DNA from that end in a single experiment. This procedure should be applicable to a wider variety of BACs containing lox sites flanking the genomic DNA insert, including those with sequence repeats. The libraries of iTol2 inserted BACs with truncations from an end should facilitate studies on the impact of distal cis-regulatory sequences on gene function, as well as standard BAC transgenesis with precisely trimmed genes in zebrafish or mouse embryos using Tol2 transposition.
Collapse
Affiliation(s)
- Leighcraft A Shakes
- Julius L, Chambers Biomedical/Biotechnology Research Institute & Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Chatterjee S, Lufkin T. Fishing for function: zebrafish BAC transgenics for functional genomics. MOLECULAR BIOSYSTEMS 2011; 7:2345-51. [PMID: 21647532 DOI: 10.1039/c1mb05116d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transgenics using bacterial artificial chromosomes (BACs) offers a great opportunity to look at gene regulation in a developing embryo. The modified BAC containing a reporter inserted just before the translational start site of the gene of interest allows for the visualization of spatio-temporal gene expression. Though this method has been used in the mouse model extensively, its utility in zebrafish studies is relatively new. This review aims to look at the utility of making BAC transgenics in zebrafish and its applications in functional genomics. We look at the various methods to modify the BAC, some limitations and what the future holds.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | |
Collapse
|
9
|
Newman M, Verdile G, Martins RN, Lardelli M. Zebrafish as a tool in Alzheimer's disease research. Biochim Biophys Acta Mol Basis Dis 2010; 1812:346-52. [PMID: 20920580 DOI: 10.1016/j.bbadis.2010.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease is the most prevalent form of neurodegenerative disease. Despite many years of intensive research our understanding of the molecular events leading to this pathology is far from complete. No effective treatments have been defined and questions surround the validity and utility of existing animal models. The zebrafish (and, in particular, its embryos) is a malleable and accessible model possessing a vertebrate neural structure and genome. Zebrafish genes orthologous to those mutated in human familial Alzheimer's disease have been defined. Work in zebrafish has permitted discovery of unique characteristics of these genes that would have been difficult to observe with other models. In this brief review we give an overview of Alzheimer's disease and transgenic animal models before examining the current contribution of zebrafish to this research area. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Morgan Newman
- Discipline of Genetics, The University of Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
10
|
Kabashi E, Brustein E, Champagne N, Drapeau P. Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta Mol Basis Dis 2010; 1812:335-45. [PMID: 20887784 DOI: 10.1016/j.bbadis.2010.09.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 09/22/2010] [Indexed: 02/06/2023]
Abstract
In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Edor Kabashi
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | | | | | | |
Collapse
|
11
|
Chatterjee PK, Shakes LA, Stennett N, Richardson VL, Malcolm TL, Harewood KR. Replacing the wild type loxP site in BACs from the public domain with lox66 using a lox66 transposon. BMC Res Notes 2010; 3:38. [PMID: 20170521 PMCID: PMC2841073 DOI: 10.1186/1756-0500-3-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/19/2010] [Indexed: 11/27/2022] Open
Abstract
Background Chromatin adjoining the site of integration of a transgene affects expression and renders comparisons of closely related transgenes, such as those derived from a BAC deletion series retrofitted with enhancer-traps, unreliable. Gene targeting to a pre-determined site on the chromosome is likely to alleviate the problem. Findings A general procedure to replace the loxP site located at one end of genomic DNA inserts in BACs with lox66 is described. Truncating insert DNA from the loxP end with a Tn10 transposon carrying a lox66 site simultaneously substitutes the loxP with a lox66 sequence. The replacement occurs with high stringency, and the procedure should be applicable to all BACs in the public domain. Cre recombination of loxP with lox66 or lox71 was found to be as efficient as another loxP site during phage P1 transduction of small plasmids containing those sites. However the end-deletion of insert DNA in BACs using a lox66 transposon occurred at no more than 20% the efficiency observed with a loxP transposon. Differences in the ability of Cre protein available at different stages of the P1 life cycle to recombine identical versus non-identical lox-sites is likely responsible for this discrepancy. A possible mechanism to explain these findings is discussed. Conclusions The loxP/lox66 replacement procedure should allow targeting BACs to a pre-positioned lox71 site in zebrafish chromosomes; a system where homologous recombination-mediated "knock-in" technology is unavailable.
Collapse
Affiliation(s)
- Pradeep K Chatterjee
- Department of Chemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| | | | | | | | | | | |
Collapse
|