1
|
Yang F, Zhang G, An N, Dai Q, Cho W, Shang H, Xing Y. Interplay of ferroptosis, cuproptosis, and PANoptosis in cancer treatment-induced cardiotoxicity: Mechanisms and therapeutic implications. Semin Cancer Biol 2024; 106-107:106-122. [PMID: 39299410 DOI: 10.1016/j.semcancer.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
With the prolonged survival of individuals with cancer, the emergence of cardiovascular diseases (CVD) induced by cancer treatment has become a significant concern, ranking as the second leading cause of death among cancer survivors. This review explores three distinct types of programmed cell death (PCD): ferroptosis, cuproptosis, and PANoptosis, focusing on their roles in chemotherapy-induced cardiotoxicity. While ferroptosis and cuproptosis are triggered by excess iron and copper (Cu), PANoptosis is an inflammatory PCD with features of pyroptosis, apoptosis, and necroptosis. Recent studies reveal intricate connections among these PCD types, emphasizing the interplay between cuproptosis and ferroptosis. Notably, the role of intracellular Cu in promoting ferroptosis through GPX4 is highlighted. Additionally, ROS-induced PANoptosis is influenced by ferroptosis and cuproptosis, suggesting a complex interrelationship. This review provides insights into the molecular mechanisms of these PCD modalities and their distinct contributions to chemotherapy-induced cardiotoxicity. Furthermore, we discuss the potential application of cardioprotective drugs in managing these PCD types. This comprehensive analysis aims to advance the understanding, diagnosis, and therapeutic strategies for cardiotoxicity associated with cancer treatment.
Collapse
Affiliation(s)
- Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China; Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Dai
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - William Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
4
|
Zhao P, Li Y, Xu X, Yang H, Li X, Fu S, Guo Z, Zhang J, Li H, Tian J. Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol Life Sci 2024; 81:122. [PMID: 38456997 PMCID: PMC10923748 DOI: 10.1007/s00018-024-05169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC), which is a cardiovascular complication, has become the foremost determinant of decreased quality of life and mortality among survivors of malignant tumors, in addition to recurrence and metastasis. The limited ability to accurately predict the occurrence and severity of doxorubicin-induced injury has greatly hindered the prevention of DIC, but reducing the dose to mitigate side effects may compromise the effective treatment of primary malignancies. This has posed a longstanding clinical challenge for oncologists and cardiologists. Ferroptosis in cardiomyocytes has been shown to be a pivotal mechanism underlying cardiac dysfunction in DIC. Ferroptosis is influenced by multiple factors. The innate immune response, as exemplified by neutrophil extracellular traps (NETs), may play a significant role in the regulation of ferroptosis. Therefore, the objective of this study was to investigate the involvement of NETs in doxorubicin-induced cardiomyocyte ferroptosis and elucidate their regulatory role. This study confirmed the presence of NETs in DIC in vivo. Furthermore, we demonstrated that depleting neutrophils effectively reduced the occurrence of doxorubicin-induced ferroptosis and myocardial injury in DIC. Additionally, our findings showed the pivotal role of high mobility group box 1 (HMGB1) as a critical molecule implicated in DIC and emphasized its involvement in the modulation of ferroptosis subsequent to NETs inhibition. Mechanistically, we obtained preliminary evidence suggesting that doxorubicin-induced NETs could modulate yes-associated protein (YAP) activity by releasing HMGB1, which subsequently bound to toll like receptor 4 (TLR4) on the cardiomyocyte membrane, thereby influencing cardiomyocyte ferroptosis in vitro. Our findings suggest that doxorubicin-induced NETs modulate cardiomyocyte ferroptosis via the HMGB1/TLR4/YAP axis, thereby contributing to myocardial injury. This study offers a novel approach for preventing and alleviating DIC by targeting alterations in the immune microenvironment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, Harbin, 150001, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Xintong Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jianing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
5
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07514-4. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
He Y, Xi J, Fang J, Zhang B, Cai W. Aloe-emodin alleviates doxorubicin-induced cardiotoxicity via inhibition of ferroptosis. Free Radic Biol Med 2023; 206:13-21. [PMID: 37364691 DOI: 10.1016/j.freeradbiomed.2023.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aloe-emodin (AE), a novel ferroptosis inhibitor, alleviates the doxorubicin (DOX)-induced cardiotoxicity in H9c2 rat cardiomyocytes. The inhibition of ferroptosis and the protective effect against cardiotoxicity were evaluated via MTT assay in H9c2 cells. The molecular mechanism of action (MOA) of nuclear factor erythroid 2-related factor 2 (Nrf2) activation, including transactivation of multiple downstream cytoprotective genes, were further assessed by Western blot, luciferase reporter assay and qRT-PCR analyses. Fluorescent imaging was performed to detect the change of intracellular reactive oxygen species, mitochondrial membrane potential and lipid peroxidation. In addition, an infrared spectroscopy was employed to detect the AE-Fe (II) complex. AE, alleviates oxidative stress in DOX-induced H9c2 cells by activating Nrf2 and increasing the expression of Nrf2 downstream antioxidant genes, SLC7A11 and GPX4. Furthermore, AE complexes bivalent iron and regulates the intracellular iron-related genes. In conclusion, the discovery of AE as a novel ferroptosis inhibitor and its MOA provides a new perspective for further exploration of cardio-protective agents in cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Wenqing Cai
- Regor Therapeutics Inc,1206 Zhangjiang Road, Building C, Pu Dong New District, Shanghai, 201210, China.
| |
Collapse
|
7
|
Wang B, Jin Y, Liu J, Liu Q, Shen Y, Zuo S, Yu Y. EP1 activation inhibits doxorubicin-cardiomyocyte ferroptosis via Nrf2. Redox Biol 2023; 65:102825. [PMID: 37531930 PMCID: PMC10400469 DOI: 10.1016/j.redox.2023.102825] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Chemotherapeutic agents, such as doxorubicin (DOX), may cause cardiomyopathy, even life-threatening arrhythmias in cancer patients. Ferroptosis-an iron-dependent oxidative form of programmed necrosis, plays a pivotal role in DOX-induced cardiomyopathy (DIC). Prostaglandins (PGs) are bioactive signaling molecules that profoundly modulate cardiac performance in both physiologic and pathologic conditions. Here, we found that PGE2 production and its E-prostanoid 1 receptor (EP1) expression were upregulated in erastin (a ferroptosis inducer) or DOX-treated cardiomyocytes. EP1 inhibition markedly aggravated erastin or DOX-induced cardiomyocyte ferroptosis, whereas EP1 activation exerted opposite effect. Genetic depletion of EP1 in cardiomyocytes worsens DOX-induced cardiac injury in mice, which was efficiently rescued by the ferroptosis inhibitor Ferrostatin-1 (Fer-1). Mechanistically, EP1 activation protected cardiomyocytes from DOX-induced ferroptosis by promoting nuclear factor erythroid 2-related factor 2 (Nrf2)-driven anti-oxidative gene expression, such as glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). EP1 was coupled with Gαq to elicit intracellular Ca2+ flux and activate the PKC/Nrf2 cascade in ferroptotic cardiomyocytes. EP1 activation also prevents DOX-induced ferroptosis in human cardiomyocytes. Thus, PGE2/EP1 axis protects cardiomyocytes from DOX-induced ferroptosis by activating PKC/Nrf2 signaling and activation of EP1 may represent an attractive strategy for DIC prevention and treatment.
Collapse
Affiliation(s)
- Bei Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxuan Jin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Biopharmaceutics, School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
9
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
10
|
Nisa FY, Rahman MA, Rafi MKJ, Khan MAN, Sultana F, Majid M, Hossain MA, Deen JI, Mannan M, Saha S, Tangpong J, Choudhury TR. Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. BIOMATERIALS ADVANCES 2023; 146:213291. [PMID: 36709628 DOI: 10.1016/j.bioadv.2023.213291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/09/2023]
Abstract
The phytochemicals of Tamarindus indica seed hydroalcoholic extract were exploited as a biocatalyst for the sustainable synthesis of magnesium oxide nanoparticles (MgO-NPs). This research investigated the cardioprotective effects of biosynthesized magnesium oxide nanoparticle (MgO-NPs). The biosynthesized seed MgO-NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray diffraction (EDX), and Fourier-transform infrared spectroscopy (FT-IR). These methodological approaches demonstrated their capacity to synthesize crystalline and aggregated MgO-NPs with a size average of 13.38 ± 0.16 nm. The biogenic MgO-NPs were found to have a significant quantity of total phenolic contents (TPC) and total flavonoid contents (TFC), indicating the existence of phenol and flavonoid-like components. The biogenic MgO-NPs demonstrated a significant free radical scavenging effects compared to different standards as measured by the inhibition of free radicals produced in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+), and Nitric oxide (NO) scavenging methods; they also exhibited higher ferric ion reducing capacity in FRAP assay. Moreover, they were found to be non-toxic in cytotoxic assessment. Pretreatment of Wistar Albino rats with seed MgO-NPs resulted in a significant reduction of cardiac biomarkers, i.e., cardiac Troponin-I (cTnI), creatine kinase (CK-MB), and aspartate aminotransferase (AST). The seed MgO-NPs were more successful in reducing lipid levels. The results of the mRNA expression analysis showed that seed MgO-NPs efficiently reduced the expression of the apoptotic genes p53 and Caspase-3 while restoring the expected levels of SOD gene expression. The histopathological observations were primarily focused on the disruption of cardiac fibers and myofibrillar disintegration, which are consistent with the biochemical findings. Therefore, our research suggests that MgO-NPs derived from the seeds of Tamarindus indica as a powerful antioxidant; the administration may be effective in protecting the heart from DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Md Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Altaf Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Mannan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Bangladesh
| |
Collapse
|
11
|
Yu X, Yang Y, Chen T, Wang Y, Guo T, Liu Y, Li H, Yang L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front Cell Dev Biol 2023; 11:1075917. [PMID: 36824370 PMCID: PMC9941345 DOI: 10.3389/fcell.2023.1075917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a critical role in maintaining normal physiological activity of cardiac tissue. Severe cardiotoxicity can lead to heart disease, including but not limited to arrhythmias, myocardial infarction and cardiac hypertrophy. In recent years, significant progress has been made in developing new therapies for cancer that have dramatically changed the treatment of several malignancies and continue to improve patient survival, but can also lead to serious cardiac adverse effects. Mitochondria are key organelles that maintain homeostasis in myocardial tissue and have been extensively involved in various cardiovascular disease episodes, including ischemic cardiomyopathy, heart failure and stroke. Several studies support that mitochondrial targeting is a major determinant of the cardiotoxic effects triggered by chemotherapeutic agents increasingly used in solid and hematologic tumors. This antineoplastic therapy-induced mitochondrial toxicity is due to different mechanisms, usually altering the mitochondrial respiratory chain, energy production and mitochondrial kinetics, or inducing mitochondrial oxidative/nitrosative stress, ultimately leading to cell death. This review focuses on recent advances in forms of cardiac cell death and related mechanisms of antineoplastic drug-induced cardiotoxicity, including autophagy, ferroptosis, apoptosis, pyroptosis, and necroptosis, explores and evaluates key proteins involved in cardiac cell death signaling, and presents recent advances in cardioprotective strategies for this disease. It aims to provide theoretical basis and targets for the prevention and treatment of pharmacological cardiotoxicity in clinical settings.
Collapse
Affiliation(s)
- Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianzuo Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianwei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yujun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Liming Yang, ; Hong Li,
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China,*Correspondence: Liming Yang, ; Hong Li,
| |
Collapse
|
12
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
13
|
Understanding the Protective Role of Exosomes in Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2852251. [PMID: 36132225 PMCID: PMC9484956 DOI: 10.1155/2022/2852251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022]
Abstract
Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+ overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs), play an important role in the material exchange and signal transmission between cells by carrying components such as proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.
Collapse
|
14
|
Jones IC, Dass CR. Doxorubicin-induced cardiotoxicity: causative factors and possible interventions. J Pharm Pharmacol 2022; 74:1677-1688. [PMID: 35994421 DOI: 10.1093/jpp/rgac063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Doxorubicin (Dox) belongs to the anthracycline drug classification and is a widely administered chemotherapeutic. However, Dox use in therapy is limited by its cardiotoxicity, representing a significant drawback of Dox treatment applicability. A large amount of current research is on reducing Dox-induced cardiotoxicity by developing targeted delivery systems and investigating cardiotoxicity mechanisms. Recently, discrepancies have challenged the traditional understanding of Dox metabolism, mechanisms of action and cardiotoxicity drivers. This review summarises the current knowledge around Dox's metabolism, mechanisms of anticancer activity, and delivery systems and offers a unique perspective on the relationships between several proposed mechanisms of Dox-induced cardiotoxicity. KEY FINDINGS While there is a strong understanding of Dox's pharmacokinetic properties, it is unclear which enzymes contribute to Dox metabolism and how Dox induces its cytotoxic effect in neoplastic and non-neoplastic cells. Evidence suggests that there are several potentially synergistic mechanisms involved in Dox-induced cardiotoxicity. SUMMARY It has become clear that Dox operates in a multifactorial fashion dependent on cellular context. Accumulation of oxidative stress appears to be a common factor in cardiotoxicity mechanisms, highlighting the importance of novel delivery systems and antioxidant therapies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Bentley 6102, Australia.,Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Bentley 6102, Australia.,Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
15
|
Jong J, Pinney JR, Packard RRS. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med 2022; 9:919719. [PMID: 35990941 PMCID: PMC9381993 DOI: 10.3389/fcvm.2022.919719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Anthracyclines are a widely used class of chemotherapy in pediatric and adult cancers, however, their use is hampered by the development of cardiotoxic side-effects and ensuing complications, primarily heart failure. Clinically used imaging modalities to screen for cardiotoxicity are mostly echocardiography and occasionally cardiac magnetic resonance imaging. However, the assessment of diastolic and global or segmental systolic function may not be sensitive to detect subclinical or early stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear imaging strategies to improve the detection of anthracycline-induced cardiotoxicity. Anthracyclines can activate all forms of cell death in cardiomyocytes. Injury mechanisms associated with anthracycline usage include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and perturbation in sympathetic drive and myocardial blood flow; some of which have been targeted using nuclear probes. This review retraces the pathobiology of anthracycline-induced cardiac injury, details the evidence to date supporting a molecular nuclear imaging strategy, explores disease mechanisms which have not yet been targeted, and proposes a clinical strategy incorporating molecular imaging to improve patient management.
Collapse
Affiliation(s)
- Jeremy Jong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James R. Pinney
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Zhang G, Yuan C, Su X, Zhang J, Gokulnath P, Vulugundam G, Li G, Yang X, An N, Liu C, Sun W, Chen H, Wu M, Sun S, Xing Y. Relevance of Ferroptosis to Cardiotoxicity Caused by Anthracyclines: Mechanisms to Target Treatments. Front Cardiovasc Med 2022; 9:896792. [PMID: 35770215 PMCID: PMC9234116 DOI: 10.3389/fcvm.2022.896792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 12/06/2022] Open
Abstract
Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However, the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative stress, inflammation, topoisomerase 2β inhibition, pyroptosis, immunometabolism, autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death (RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. An increasing number of studies have found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then, we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the perspective of iron metabolism of cardiomyocytes. We also present our research on the prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views on the development of drugs targeting ferroptosis in this emerging field.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Yuan
- Dezhou Second People’s Hospital, Dezhou, China
| | - Xin Su
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Gururaja Vulugundam
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Naples, Italy
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xinyu Yang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanli Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shipeng Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Shipeng Sun,
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yanwei Xing,
| |
Collapse
|
17
|
Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharmacol 2022; 13:811406. [PMID: 35211017 PMCID: PMC8861498 DOI: 10.3389/fphar.2022.811406] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
Collapse
Affiliation(s)
- Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rundong Wu
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linyi Chen
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqiang Yang
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Daoguang Yan
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingchuan Li
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka‐Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail 2021; 8:2397-2418. [PMID: 33955207 PMCID: PMC8318493 DOI: 10.1002/ehf2.13365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
The most common cancer diagnosis in female population is breast cancer, which affects every year about 2.0 million women worldwide. In recent years, significant progress has been made in oncological therapy, in systemic treatment, and in radiotherapy of breast cancer. Unfortunately, the improvement in the effectiveness of oncological treatment and prolonging patients' life span is associated with more frequent occurrence of organ complications, which are side effects of this treatment. Current recommendations suggest a periodic monitoring of the cardiovascular system in course of oncological treatment. The monitoring includes the assessment of occurrence of risk factors for cardiovascular diseases in combination with the evaluation of the left ventricular systolic function using echocardiography and electrocardiography as well as with the analysis of the concentration of cardiac biomarkers. The aim of this review was critical assessment of the breast cancer therapy cardiotoxicity and the analysis of methods its detections. The new cardio-specific biomarkers in serum, the development of modern imaging techniques (Global Longitudinal Strain and Three-Dimensional Left Ventricular Ejection Fraction) and genotyping, and especially their combined use, may become a useful tool for identifying patients at risk of developing cardiotoxicity, who require further cardiovascular monitoring or cardioprotective therapy.
Collapse
Affiliation(s)
- Agata Bikiewicz
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Maciej Banach
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology and German Center for Cardiovascular Research (DZHK), partner site GöttingenUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Marek Maciejewski
- Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)LodzPoland
| | - Agata Bielecka‐Dabrowa
- Heart Failure Unit, Department of Cardiology and Congenital Diseases of AdultsPolish Mother's Memorial Hospital Research Institute (PMMHRI)Rzgowska 281/289Lodz93‐338Poland
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzLodzPoland
| |
Collapse
|
19
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
20
|
Avagimyan A, Kakturskiy L, Heshmat-Ghahdarijani K, Pogosova N, Sarrafzadegan N. Anthracycline Associated Disturbances of Cardiovascular Homeostasis. Curr Probl Cardiol 2021; 47:100909. [PMID: 34167841 DOI: 10.1016/j.cpcardiol.2021.100909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Despite the dynamic progress of modern medicine, oncological and cardiovascular diseases (CVD) remain a severe economic burden worldwide. Therefore, the study of chemotherapeutic cardiotoxicity appears to be comprehensively demanded. Nowadays, pharmacological therapy in oncology has undoubtedly unprecedented development, but at the same time, the rates of cardiovascular complications of chemotherapy still remain unchanged. The well-established and highly effective, but at the same time, cardiotoxic anthracyclines have not lost their relevance. Furthermore, they remain indispensable components of an immense amount of chemotherapy regimens, such as AC, FAC, etc. Moreover, the anthracycline-containing chemotherapy regimens have become a standard of care in several cancer types. In the context of the above mentioned, the study of the pathophysiological mechanisms, biochemical aspects, and dynamics of the morphological remodeling of doxorubicin-induced cardiovascular homeostasis disturbances will enable finding new targets of pharmacological therapy, which either in the short or long perspectives, will have a beneficial effect, improving both the quality of life and prognosis of oncological patients. This article covers a versatile overview of the molecular mechanisms of doxorubicin-induced cardiotoxicity. The pathogenesis of cardiotoxicity assessment could help to explore specific molecular mechanisms that initiate cardiovascular alteration that may favorably affect the future development of targeted drugs that could prevent cardiovascular events in cancer patients.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Republic of Armenia.
| | - Lev Kakturskiy
- Corresponding Member of Russian Academy of Science, Scientific Director of Research Institute of Human Morphology, President of Russian Society of Pathology, Moscow, Russian Federation
| | - Kiyan Heshmat-Ghahdarijani
- School of Medicine, Isfahan University of Medical Sciences. Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nana Pogosova
- "National Medical Research Center of Cardiology" of the Ministry of Health of Russia, Moscow, Russian Federation
| | - Nizal Sarrafzadegan
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021; 139:111708. [PMID: 34243633 DOI: 10.1016/j.biopha.2021.111708] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (Dox) is a secondary metabolite of the mutated strain of Streptomyces peucetius var. Caesius and belongs to the anthracyclines family. The anti-cancer activity of Dox is mainly exerted through the DNA intercalation and inhibiting topoisomerase II enzyme in fast-proliferating tumors. However, Dox causes cumulative and dose-dependent cardiotoxicity, which results in increased risks of mortality among cancer patients and thus limiting its wide clinical applications. There are several mechanisms has been proposed for doxorubicin-induced cardiotoxicity and oxidative stress, free radical generation and apoptosis are most widely reported. Apart from this, other mechanisms are also involved in Dox-induced cardiotoxicity such as impaired mitochondrial function, a perturbation in iron regulatory protein, disruption of Ca2+ homeostasis, autophagy, the release of nitric oxide and inflammatory mediators and altered gene and protein expression that involved apoptosis. Dox also causes downregulation of DNA methyltransferase 1 (DNMT1) enzyme activity which leads to a reduction in the DNA methylation process. This hypomethylation causes dysregulation in the mitochondrial genes like peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) unit in the heart. Apart from DNA methylation, Dox treatment also alters the micro RNAs levels and histone deacetylase (HDAC) activity. Therefore, in the current review, we have provided a detailed update on the current understanding of the pathological mechanisms behind the well-known Dox-induced cardiotoxicity. Further, we have provided some of the most plausible pharmacological strategies which have been tested against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Delhi 110016, India.
| | - Jasvinder Singh Bhatti
- Department of human genetics and molecular medicine, School of health sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
22
|
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021; 12:339. [PMID: 33795647 PMCID: PMC8017015 DOI: 10.1038/s41419-021-03614-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Doxorubicin is a chemotherapeutic drug used for the treatment of various malignancies; however, patients can experience cardiotoxic effects and this has limited the use of this potent drug. The mechanisms by which doxorubicin kills cardiomyocytes has been elusive and despite extensive research the exact mechanisms remain unknown. This review focuses on recent advances in our understanding of doxorubicin induced regulated cardiomyocyte death pathways including autophagy, ferroptosis, necroptosis, pyroptosis and apoptosis. Understanding the mechanisms by which doxorubicin leads to cardiomyocyte death may help identify novel therapeutic agents and lead to more targeted approaches to cardiotoxicity testing.
Collapse
Affiliation(s)
- Effimia Christidi
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Liam R. Brunham
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
23
|
Ibrahim DA, Almutawakel MA, Al-Badani R. Cardioprotective effect of Malva verticillata against doxorubicin -induced toxicity in rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
M. verticillata (Malvaceae) is a medicinal plant used in the treatment of wounds, boils, and liver injuries. The plant leaf extracts possess anti-inflammatory and antioxidant activities. Doxorubicin (DOX) is a potent chemotherapeutic agent used in the treatment of various cancers, but its clinical use is limited by acute and chronic cardiotoxicity. This study aims to evaluate the possible cardioprotective role of Malva verticillata against doxorubicin-induced cardiotoxicity.
Method
Thirty-six male albino rats were divided into six groups, (n = 6): G1: normal control (was given 1 ml/kg of NaCl, 0.9%, twice a week IP), G2: cardiotoxic group (was given 1 mg/kg of DOX twice a week IP). G3 and G4 were given 250 mg/kg and 500 mg/kg of M. verticillata, respectively, while G5 and G6: were given 250, 500 mg/kg of M. verticillata PO and 1 mg/kg IP of DOX. for 6 weeks. Total body weight was taken weekly and Heart: body weight ratio was calculated. Blood samples were collected for determination of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and Troponin, the hearts were removed and processed for histopathological examination.
Results
M. verticillata showed a significant dose-dependent reduction in the cardiac enzyme levels, LDH, CPK activities, and Troponin levels. The histopathological studies in rat hearts also supported those findings.
Conclusion
The present study suggests that M. verticillata may have a novel and worthwhile cardioprotective effect against DOX-induced cardiotoxicity.
Collapse
|
24
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
25
|
Liu Y, Zeng L, Yang Y, Chen C, Wang D, Wang H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis 2020; 11:756. [PMID: 32934217 PMCID: PMC7492260 DOI: 10.1038/s41419-020-02948-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
In this study, we first established the doxorubicin-induced cardiotoxicity (DIC) model with C57BL/6 mice and confirmed cardiac dysfunction with transthoracic echocardiography examination. RNA-sequencing was then performed to explore the potential mechanisms and transcriptional changes in the process. The metabolic pathway, biosynthesis of polyunsaturated fatty acid was significantly altered in DOX-treated murine heart, and Acot1 was one of the leading-edge core genes. We then investigated the role of Acot1 to ferroptosis that was reported recently to be related to DIC. The induction of ferroptosis in the DOX-treated heart was confirmed by transmission electron microscopy, and the inhibition of ferroptosis using Fer-1 effectively prevented the cardiac injury as well as the ultrastructure changes of cardiomyocyte mitochondrial. Both in vitro and in vivo experiments proved the downregulation of Acot1 in DIC, which can be partially prevented with Fer-1 treatment. Overexpression of Acot1 in cell lines showed noteworthy protection to ferroptosis, while the knock-down of Acot1 sensitized cardiomyocytes to ferroptosis by DIC. Finally, the heart tissue of αMHC-Acot1 transgenic mice presented altered free fatty acid composition, indicating that the benefit of Acot1 in the inhibition of ferroptosis lies biochemically and relates to its enzymatic function in lipid metabolism in DIC. The current study highlights the importance of ferroptosis in DIC and points out the potential protective role of Acot1 in the process. The beneficial role of Acot1 may be related to its biochemical function by shaping the lipid composition. In all, Acot1 may become a potential treating target in preventing DIC by anti-ferroptosis.
Collapse
Affiliation(s)
- Yunchang Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, 430030, Wuhan, China
| | - Liping Zeng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, 430030, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, 430030, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, 430030, Wuhan, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, 430030, Wuhan, China.
| |
Collapse
|
26
|
Wang J, Xu L, Liu X, Yang R, Wang D. A facile adenosine triphosphate-responsive nanoplatform for efficacious therapy of esophageal cancer. Oncol Lett 2020; 20:108. [PMID: 32831927 PMCID: PMC7439100 DOI: 10.3892/ol.2020.11969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Current chemotherapeutic agents against esophageal cancer (EC) are suboptimal. To improve treatment efficacy, a nanoplatform based on ATP-responsive drug release was developed for EC therapy. First, the chemotherapeutic agent epirubicin (EPI) was inserted into an ATP aptamer (Ap) to form double-stranded DNA ('DNA duplex'). Subsequently, polyethyleneimine (PEI) was employed to condense the EPI-loaded duplex to construct the final nanoplatform (PEI-Ap-EPI). Following internalization by cancer cells, the EPI-loaded DNA duplex could open and release EPI in an intracellular ATP-rich environment. An in vitro drug-release assay demonstrated that ~50% of EPI was released from PEI-Ap-EPI in an ATP-rich condition. However, only 15% of EPI was released in the presence of a low concentration of ATP. In vitro cytotoxicity and apoptosis assays demonstrated that PEI-Ap-EPI could enhance EPI efficiency against EC cells markedly compared with those in the control group. Therefore, this facile PEI-Ap-EPI nanoplatform may be a promising strategy to improve the efficacy of EPI treatment in EC.
Collapse
Affiliation(s)
- Jinglong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Linhao Xu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaotong Liu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ronghua Yang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
27
|
Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J Cell Mol Med 2020; 24:6534-6557. [PMID: 32336039 PMCID: PMC7299722 DOI: 10.1111/jcmm.15305] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines is an effective chemotherapeutic treatment used for many types of cancer. However, high cumulative dosage of anthracyclines leads to cardiac toxicity and heart failure. Dysregulation of mitochondrial dynamics and function are major pathways driving this toxicity. Several pharmacological and non‐pharmacological interventions aiming to attenuate cardiac toxicity by targeting mitochondrial dynamics and function have shown beneficial effects in cell and animal models. However, in clinical practice, there is currently no standard therapy for the prevention of anthracycline‐induced cardiotoxicity. This review summarizes current reports on the impact of anthracyclines on cardiac mitochondrial dynamics and mitochondrial function and potential interventions targeting these pathways. The roles of mitochondrial dynamics and mitochondrial function in the development of anthracycline‐induced cardiotoxicity should provide insights in devising novel strategies to attenuate the cardiac toxicity induced by anthracyclines.
Collapse
Affiliation(s)
- Nichanan Osataphan
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307:41-48. [DOI: 10.1016/j.toxlet.2019.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022]
|
29
|
Bajbouj K, Shafarin J, Hamad M. Estrogen-dependent disruption of intracellular iron metabolism augments the cytotoxic effects of doxorubicin in select breast and ovarian cancer cells. Cancer Manag Res 2019; 11:4655-4668. [PMID: 31213891 PMCID: PMC6536718 DOI: 10.2147/cmar.s204852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Increased iron content in cancer cells is associated with resistance to chemotherapy. Recent studies have demonstrated that estrogen (E2) suppresses hepcidin synthesis and enhances intracellular iron efflux. Herein, we investigated whether E2-driven intracellular iron efflux renders cancer cells more susceptible to doxorubicin (Dox)-induced cytotoxicity. Methods: Breast, ovarian, and liver cancer cell lines treated with E2, Dox, or a combination of both were assessed for intracellular iron status, mitochondrial function, cell cycle, and apoptosis. Results: E2+Dox treatment in MCF7, SKOV3 and MDA-MB231 cells resulted in enhanced apoptosis compared with Dox-treated cells. Expression of γH2AX was significantly higher and that of survivin significantly lower in E2+Dox-treated cells than Dox-treated cells. At 48 hours, E2+Dox had induced a significant increase in the percentage of sub-G1 apoptotic cells, increased CHK1 expression, and decreased cyclin D1, CDK4, and CDK6 expression. Ferroportin and ferritin expression was significantly higher and that of TfR1 significantly lower in E2+Dox-treated cells than Dox-treated cells. Intracellular iron content was significantly reduced in E2+Dox-treated cells at 48 hours posttreatment. Lastly, E2+Dox-treated cells showed higher levels of mitochondrial membrane hyperpolarization than Dox-treated cells. Conclusion: These findings suggest that E2 disrupts intracellular iron metabolism in such a way that increases cell susceptibility to Dox-induced cytotoxicity.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The anthracycline (AC) group of drugs is widely used for cancer chemotherapy and has improved outcomes in many childhood malignancies. However, cardiovascular complications are major causes of morbidity and mortality in AC recipients, with the greatest risk factor being a higher cumulative dosage. The purpose of this review is to describe the etio-pathogenesis and risk factors of AC induced cardiotoxicity, with emphasis on currently available and emerging modalities of non-invasive imaging in its surveillance, and to review guidelines on its prevention and treatment. RECENT FINDINGS Presently, ejection fraction and shortening fraction derived from two-dimensional echocardiography are the most widely used parameter for monitoring of cardiac function in childhood cancer survivors. The newer speckle tracking echocardiography has shown potential to detect abnormalities in ventricular function prior to the conventional measures such as ejection fraction and shortening fraction. When available, three-dimensional echocardiography should be used as it allows for more accurate estimation of ejection fraction. Newer magnetic resonance imaging (MRI) techniques, such as delayed enhancement and T1 mapping, are useful adjuncts for cardiac evaluation in cancer survivors, especially in patients with poor echocardiographic windows. Early detection and management of cardiovascular diseases is one of the major goals in the long-term follow-up of childhood cancer survivors. In addition to conventional two-dimensional echocardiography, newer techniques such as speckle tracking echocardiography and three-dimensional echocardiography should be incorporated due to its ability to detect early changes in anthracycline-induced cardiotoxicity. However further research are needed to guide changes in management due to abnormalities in speckle tracking echocardiography.
Collapse
|
31
|
Bertoli S, Paubelle E, Bérard E, Saland E, Thomas X, Tavitian S, Larcher M, Vergez F, Delabesse E, Sarry A, Huguet F, Larrue C, Bosc C, Farge T, Sarry JE, Michallet M, Récher C. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 2018; 102:131-142. [DOI: 10.1111/ejh.13183] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Emilie Bérard
- Service d'Epidémiologie Centre Hospitalier Universitaire de Toulouse Toulouse France
- UMR 1027 INSERM‐Université de Toulouse III Toulouse France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | | | - François Vergez
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Jean Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| |
Collapse
|
32
|
Nebigil CG, Désaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front Pharmacol 2018; 9:1262. [PMID: 30483123 PMCID: PMC6240592 DOI: 10.3389/fphar.2018.01262] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiotoxicity is one of the main adverse effects of chemotheraphy, affecting the completion of cancer therapies and the short- and long-term quality of life. Anthracyclines are currently used to treat many cancers, including the various forms of leukemia, lymphoma, melanoma, uterine, breast, and gastric cancers. World Health Organization registered anthracyclines in the list of essential medicines. However, anthracyclines display a major cardiotoxicity that can ultimately culminate in congestive heart failure. Taking into account the growing rate of cancer survivorship, the clinical significance of anthracycline cardiotoxicity is an emerging medical issue. In this review, we focus on the key progenitor cells and cardiac cells (cardiomyocytes, fibroblasts, and vascular cells), focusing on the signaling pathways involved in cellular damage, and the clinical biomarkers in anthracycline-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Canan G Nebigil
- CNRS, Laboratory of Biomolecules, UMR 7203, Sorbonne University, Paris, France
| | - Laurent Désaubry
- CNRS, Laboratory of Biomolecules, UMR 7203, Sorbonne University, Paris, France
| |
Collapse
|
33
|
LeBlanc RM, Longhini AP, Tugarinov V, Dayie TK. NMR probing of invisible excited states using selectively labeled RNAs. JOURNAL OF BIOMOLECULAR NMR 2018; 71:165-172. [PMID: 29858959 DOI: 10.1007/s10858-018-0184-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are invaluable for probing sparsely and transiently populated biomolecular states that cannot be directly detected by traditional NMR experiments and that are invisible by other biophysical approaches. A notable gap for RNA is the absence of CPMG experiments for measurement of methine base 1H and methylene C5' chemical shifts of ribose moieties in the excited state, partly because of complications from homonuclear 13C-13C scalar couplings. Here we present site-specific 13C labeling that makes possible the design of pulse sequences for recording accurate 1H-13C MQ and SQ CPMG experiments for ribose methine H1'-C1' and H2'-C2', base and ribose 1H CPMG, as well as a new 1H-13C TROSY-detected methylene (CH2) C5' CPMG relaxation pulse schemes. We demonstrate the utility of these experiments for two RNAs, the A-Site RNA known to undergo exchange and the IRE RNA suspected of undergoing exchange on microseconds to millisecond time-scale. We anticipate the new labeling approaches will facilitate obtaining structures of invisible states and provide insights into the relevance of such states for RNA-drug interactions.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Andrew P Longhini
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA
- University of California, Santa Barbara, CA, 93106, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-052, USA
| | - T Kwaku Dayie
- Department of Chemistry & Biochemistry, University of Maryland, College Park, 8314 Paint Branch Dr, College Park, MD, 20782, USA.
| |
Collapse
|
34
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
35
|
Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals 2017; 30:629-641. [DOI: 10.1007/s10534-017-0037-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023]
|
36
|
Chen H, Tian J, Liu D, He W, Guo Z. Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B 2017; 5:972-979. [DOI: 10.1039/c6tb02714h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dox/Mito-DGL could selectively unload the encapsulated Dox/duplex and induce dissociation of the DNA duplex upon the high levels of ATP in mitochondria, which thereby causes a rapid release of Dox. The strategy could significantly enhance the anticancer efficacy of the drug.
Collapse
Affiliation(s)
- Huachao Chen
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Danyang Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
37
|
Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:274-9. [PMID: 26971631 DOI: 10.1016/j.jphotobiol.2016.02.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/13/2016] [Indexed: 01/08/2023]
Abstract
In this review, we have compared the results of multiple spectroscopic studies and molecular modeling of anticancer drug doxorubicin (DOX) bindings to DNA and tRNA. DOX was intercalated into DNA duplex, while tRNA binding is via major and minor grooves. DOX-DNA intercalation is close to A-7, C-5, *C-19 (H-bonding with DOX NH2 group), G-6, T-8 and T-18 with the free binding energy of -4.99kcal/mol. DOX-tRNA groove bindings are near A-29, A-31, A-38, C-25, C-27, C-28, *G-30 (H-bonding) and U-41 with the free binding energy of -4.44kcal/mol. Drug intercalation induced a partial B to A-DNA transition, while tRNA remained in A-family structure. The structural differences observed between DOX bindings to DNA and tRNA can be the main reasons for drug antitumor activity. The results of in vitro MTT assay on SKC01 colon carcinoma are consistent with the observed DNA structural changes. Future research should be focused on finding suitable nanocarriers for delivery of DOX in vivo in order to exploit the full capacity of this very important anticancer drug.
Collapse
|
38
|
New signal transduction paradigms in anthracycline-induced cardiotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1916-25. [PMID: 26828775 DOI: 10.1016/j.bbamcr.2016.01.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Anthracyclines, such as doxorubicin, are the most potent and widely used chemotherapeutic agents for the treatment of a variety of human cancers, including solid tumors and hematological malignancies. However, their clinical use is hampered by severe cardiotoxic side effects and cancer therapy-related heart disease has become a leading cause of morbidity and mortality among cancer survivors. The identification of therapeutic strategies limiting anthracycline cardiotoxicity with preserved antitumor efficacy thus represents the current challenge of cardio-oncologists. Anthracycline cardiotoxicity has been originally ascribed to the ability of this class of drugs to disrupt iron metabolism and generate excess of reactive oxygen species (ROS). However, small clinical trials with iron chelators and anti-oxidants failed to provide any benefit and suggested that doxorubicin cardiotoxicity is not solely due to redox cycling. New emerging explanations include anthracycline-dependent regulation of major signaling pathways controlling DNA damage response, cardiomyocyte survival, cardiac inflammation, energetic stress and gene expression modulation. This review will summarize recent studies unraveling the complex web of mechanisms of doxorubicin-mediated cardiotoxicity, and identifying new druggable players for the prevention of heart disease in cancer patients. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
39
|
Interaction of the tetracyclines with double-stranded RNAs of random base sequence: new perspectives on the target and mechanism of action. J Antibiot (Tokyo) 2016; 69:622-30. [PMID: 26786504 DOI: 10.1038/ja.2015.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
The 16S rRNA binding mechanism proposed for the antibacterial action of the tetracyclines does not explain their mechanism of action against non-bacterial pathogens. In addition, several contradictory base pairs have been proposed as their binding sites on the 16S rRNA. This study investigated the binding of minocycline and doxycycline to short double-stranded RNAs (dsRNAs) of random base sequences. These tetracyclines caused a dose-dependent decrease in the fluorescence intensities of 6-carboxyfluorescein (FAM)-labelled dsRNA and ethidium bromide (EtBr)-stained dsRNA, indicating that both drugs bind to dsRNA of random base sequence in a manner that is competitive with the binding of EtBr and other nucleic acid ligands often used as stains. This effect was observable in the presence of Mg(2+). The binding of the tetracyclines to dsRNA changed features of the fluorescence emission spectra of the drugs and the CD spectra of the RNA, and inhibited RNase III cleavage of the dsRNA. These results indicate that the double-stranded structures of RNAs may have a more important role in their interaction with the tetracyclines than the specific base pairs, which had hitherto been the subject of much investigation. Given the diverse functions of cellular RNAs, the binding of the tetracyclines to their double-stranded helixes may alter the normal processing and functioning of the various biological processes they regulate. This could help to explain the wide range of action of the tetracyclines against various pathogens and disease conditions.
Collapse
|
40
|
Chekhun VF, Lozovska YV, Burlaka AP, Ganusevich LI, Shvets YV, Lukyanova NY, Todor IM, Tregubova NA, Naleskina LA. Remodulating effect of doxorubicin on the state of iron-containing proteins, and redox characteristics of tumor with allowance for its sensitivity to cytostatic agents. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:99-108. [PMID: 29227592 DOI: 10.15407/ubj88.01.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study was aimed at determining the changes of metal-containing proteins in blood serum and
tumor tissue of animals with parental and doxorubicin-resistant strains of Walker-256 carcinosarcoma before
and after the cytostatic administration. It has been shown that upon doxorubicin action the levels of total iron
and transferrin in the tissues from the both groups of animals decreased while that of ferritine simultaneously
increased with more pronounced pattern in the group of animals with resistant tumor strain. It has been
shown that upon the action of doxorubicin in tumor tissue of animals with different sensitivity to the cytostatic
there could be observed oppositely directed changes in the redox state of these cells that in turn determined
the content of “ free iron” complexes, RO S generation and concentration of active forms of matrix metaloproteinase-
2 and matrix metaloproteinase-9, namely, the increase of these indexes in animals with parental strain
and their decrease in animals with the resistant one. So, our study has demonstrated the remodulating effect
of doxorubicin on the state of metal-containing proteins and redox characteristics of tumor dependent on its
sensitivity to cytostatic, at the levels of the tumor and an organism. These data may serve as a criterion for
the development of programs for the correction of malfunction of iron metabolism aimed at elevating tumor
sensitivity to cytostatic agents.
Collapse
|
41
|
Rubio AR, Busto N, Leal JM, García B. Doxorubicin binds to duplex RNA with higher affinity than ctDNA and favours the isothermal denaturation of triplex RNA. RSC Adv 2016. [DOI: 10.1039/c6ra21387a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The higher affinity of DOX with AU to give the intercalated complex AU/DOX is responsible for the disproportionation of the groove binding complex, UAU/DOX, to give rise to the AU/DOX and the U/DOX complexes at 25 °C
Collapse
Affiliation(s)
- Ana R. Rubio
- Chemistry Department
- University of Burgos
- 09001 Burgos
- Spain
| | - Natalia Busto
- Chemistry Department
- University of Burgos
- 09001 Burgos
- Spain
| | - José M. Leal
- Chemistry Department
- University of Burgos
- 09001 Burgos
- Spain
| | - Begoña García
- Chemistry Department
- University of Burgos
- 09001 Burgos
- Spain
| |
Collapse
|
42
|
Rochette L, Guenancia C, Gudjoncik A, Hachet O, Zeller M, Cottin Y, Vergely C. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci 2015; 36:326-48. [PMID: 25895646 DOI: 10.1016/j.tips.2015.03.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 01/26/2023]
Abstract
Anticancer drugs continue to cause significant reductions in left ventricular ejection fraction resulting in congestive heart failure. The best-known cardiotoxic agents are anthracyclines (ANTHs) such as doxorubicin (DOX). For several decades cardiotoxicity was almost exclusively associated with ANTHs, for which cumulative dose-related cardiac damage was the use-limiting step. Human epidermal growth factor (EGF) receptor 2 (HER2; ErbB2) has been identified as an important target for breast cancer. Trastuzumab (TRZ), a humanized anti-HER2 monoclonal antibody, is currently recommended as first-line treatment for patients with metastatic HER2(+) tumors. The use of TRZ may be limited by the development of drug intolerance, such as cardiac dysfunction. Cardiotoxicity has been attributed to free-iron-based, radical-induced oxidative stress. Many approaches have been promoted to minimize these serious side effects, but they are still clinically problematic. A new approach to personalized medicine for cancer that involves molecular screening for clinically relevant genomic alterations and genotype-targeted treatments is emerging.
Collapse
Affiliation(s)
- Luc Rochette
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France.
| | - Charles Guenancia
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Aurélie Gudjoncik
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Olivier Hachet
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Marianne Zeller
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Yves Cottin
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Catherine Vergely
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| |
Collapse
|
43
|
Gupta AK, Dhir A, Pradeep CP. Ratiometric Detection of Adenosine-5′-triphosphate (ATP) and Cytidine-5′-triphosphate (CTP) with a Fluorescent Spider-Like Receptor in Water. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front Pharmacol 2014; 5:25. [PMID: 24616701 PMCID: PMC3935484 DOI: 10.3389/fphar.2014.00025] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 01/24/2023] Open
Abstract
The clinical use of the antitumor anthracycline Doxorubicin is limited by the risk of severe cardiotoxicity. The mechanisms underlying anthracycline-dependent cardiotoxicity are multiple and remain uncompletely understood, but many observations indicate that interactions with cellular iron metabolism are important. Convincing evidence showing that iron plays a role in Doxorubicin cardiotoxicity is provided by the protecting efficacy of iron chelation in patients and experimental models, and studies showing that iron overload exacerbates the cardiotoxic effects of the drug, but the underlying molecular mechanisms remain to be completely characterized. Since anthracyclines generate reactive oxygen species, increased iron-catalyzed formation of free radicals appears an obvious explanation for the aggravating role of iron in Doxorubicin cardiotoxicity, but antioxidants did not offer protection in clinical settings. Moreover, how the interaction between reactive oxygen species and iron damages heart cells exposed to Doxorubicin is still unclear. This review discusses the pathogenic role of the disruption of iron homeostasis in Doxorubicin-mediated cardiotoxicity in the context of current and future pharmacologic approaches to cardioprotection.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| |
Collapse
|
45
|
Microparticle drug sequestration provides a parallel pathway in the acquisition of cancer drug resistance. Eur J Pharmacol 2013; 721:116-25. [PMID: 24095666 DOI: 10.1016/j.ejphar.2013.09.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 01/27/2023]
Abstract
Expanding on our previous findings demonstrating that microparticles (MPs) spread cancer multidrug resistance, we now show that MPs sequester drugs, reducing the free drug concentration available to cells. MPs were isolated from drug-sensitive and drug-resistant sub-clones of a human breast adenocarcinoma cell line and from human acute lymphoblastic leukemia cells. MPs were assessed for size, mitochondria, RNA and phospholipid content, P-glycoprotein (P-gp) expression and orientation and ATPase activity relative to drug sequestration capacity. Of the drug classes examined, MPs sequestered the anthracycline class to a significant degree. The degree of sequestration was likely due to the size of MPs and thus the amount of cargo they contain, to which the anthracyclines bind. Moreover, a proportion of the P-gp present on MPs was inside-out in orientation, enabling it to influx drugs rather than its typical efflux function. This was confirmed by surface immunofluorescence and by assessment of drug-stimulated ATPase activity following MP permeabilization. Thus we determined that breast cancer MPs carried a proportion of their P-gp oriented inside-out, providing active sequestration within the microvesicular compartment. These results demonstrate a capacity for MPs to sequester chemotherapeutic drugs, which has a predominantly active sequestration component for MPs derived from drug-resistant cells and a predominantly passive component for MPs derived from drug-sensitive cells. This reduction in available drug concentration has potential to contribute to a parallel pathway and complements that of the intercellular transfer of P-gp. These findings lend further support to the role of MPs in limiting the successful management of cancer.
Collapse
|
46
|
Chekhun VF, Lukyanova NY, Burlaka CACP, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, Beland FA, Pogribny IP. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol 2013; 43:1481-6. [PMID: 23969999 DOI: 10.3892/ijo.2013.2063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/24/2013] [Indexed: 01/11/2023] Open
Abstract
The development of resistance of cancer cells to therapeutic agents is the major obstacle in the successful treatment of breast cancer and the main cause of breast cancer recurrence. The results of several studies have demonstrated an important role of altered cellular iron metabolism in the progression of breast cancer and suggested that iron metabolism may be involved in the acquisition of a cancer cell drug-resistant phenotype. In the present study, we show that human MCF-7 breast cancer cells with an acquired resistance to the chemotherapeutic drugs doxorubicin (MCF-7/DOX) and cisplatin (MCF-7/CDDP) exhibited substantial alterations in the intracellular iron content and levels of iron-regulatory proteins involved in the cellular uptake, storage and export of iron, especially in profoundly increased levels of ferritin light chain (FTL) protein. The increased levels of FTL in breast cancer indicate that FTL may be used as a diagnostic and prognostic marker for breast cancer. Additionally, we demonstrate that targeted downregulation of FTL protein by the microRNA miR-133a increases sensitivity of MCF-7/DOX and MCF-7/CDDP cells to doxorubicin and cisplatin. These results suggest that correction of iron metabolism abnormalities may substantially improve the efficiency of breast cancer treatment.
Collapse
Affiliation(s)
- Vasyl F Chekhun
- Department of Mechanisms of Anticancer Therapy, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Agudelo D, Bourassa P, Beauregard M, Bérubé G, Tajmir-Riahi HA. tRNA binding to antitumor drug doxorubicin and its analogue. PLoS One 2013; 8:e69248. [PMID: 23922696 PMCID: PMC3726733 DOI: 10.1371/journal.pone.0069248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022] Open
Abstract
The binding sites of antitumor drug doxorubicin (DOX) and its analogue N-(trifluoroacetyl) doxorubicin (FDOX) with tRNA were located, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Different binding sites are involved in drug-tRNA adducts with DOX located in the vicinity of A-29, A-31, A-38, C-25, C-27, C-28, G-30 and U-41, while FDOX bindings involved A-23, A-44, C-25, C-27, G-24, G-42, G-53, G-45 and U-41 with similar free binding energy (-4.44 for DOX and -4.41 kcal/mol for FDOX adducts). Spectroscopic results showed that both hydrophilic and hydrophobic contacts are involved in drug-tRNA complexation and FDOX forms more stable complexes than DOX with K DOX-tRNA=4.7 (± 0.5)× 10(4) M(-1) and K FDOX-tRNA=6.3 (± 0.7)× 10(4) M(-1). The number of drug molecules bound per tRNA (n) was 0.6 for DOX and 0.4 for FDOX. No major alterations of tRNA structure were observed and tRNA remained in A-family conformation, while biopolymer aggregation and particle formation occurred at high drug concentrations.
Collapse
Affiliation(s)
- Daniel Agudelo
- Department of Chemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Philippe Bourassa
- Department of Chemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Marc Beauregard
- Department of Chemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Gervais Bérubé
- Department of Chemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Heidar-Ali Tajmir-Riahi
- Department of Chemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
48
|
Pai J, Yoon T, Kim ND, Lee IS, Yu J, Shin I. High-throughput profiling of peptide-RNA interactions using peptide microarrays. J Am Chem Soc 2012; 134:19287-96. [PMID: 23110629 DOI: 10.1021/ja309760g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rapid and quantitative method to evaluate binding properties of hairpin RNAs to peptides using peptide microarrays has been developed. The microarray technology was shown to be a powerful tool for high-throughput analysis of RNA-peptide interactions by its application to profiling interactions between 111 peptides and six hairpin RNAs. The peptide microarrays were also employed to measure hundreds of dissociation constants (K(d)) of RNA-peptide complexes. Our results reveal that both hydrophobic and hydrophilic faces of amphiphilic peptides are likely involved in interactions with RNAs. Furthermore, these results also show that most of the tested peptides bind hairpin RNAs with submicromolar K(d) values. One of the peptides identified by using this method was found to have good inhibitory activity against TAR-Tat interactions in cells. Because of their great applicability to evaluation of nearly all types of RNA-peptide interactions, peptide microarrays are expected to serve as robust tools for rapid assessment of peptide-RNA interactions and development of peptide ligands against RNA targets.
Collapse
Affiliation(s)
- Jaeyoung Pai
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Modification of hepatic iron metabolism induced by pravastatin during obstructive cholestasis in rats. Life Sci 2011; 89:717-24. [DOI: 10.1016/j.lfs.2011.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/16/2011] [Accepted: 08/12/2011] [Indexed: 12/13/2022]
|
50
|
Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal 2010; 13:1593-616. [PMID: 20214491 DOI: 10.1089/ars.2009.2983] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eukaryotic cells require iron for survival but, as an excess of poorly liganded iron can lead to the catalytic production of toxic radicals that can damage cell structures, regulatory mechanisms have been developed to maintain appropriate cell and body iron levels. The interactions of iron responsive elements (IREs) with iron regulatory proteins (IRPs) coordinately regulate the expression of the genes involved in iron uptake, use, storage, and export at the post-transcriptional level, and represent the main regulatory network controlling cell iron homeostasis. IRP1 and IRP2 are similar (but not identical) proteins with partially overlapping and complementary functions, and control cell iron metabolism by binding to IREs (i.e., conserved RNA stem-loops located in the untranslated regions of a dozen mRNAs directly or indirectly related to iron metabolism). The discovery of the presence of IREs in a number of other mRNAs has extended our knowledge of the influence of the IRE/IRP regulatory network to new metabolic pathways, and it has been recently learned that an increasing number of agents and physiopathological conditions impinge on the IRE/IRP system. This review focuses on recent findings concerning the IRP-mediated regulation of iron homeostasis, its alterations in disease, and new research directions to be explored in the near future.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milano, Italy
| | | | | |
Collapse
|