1
|
Jureckova K, Nykrynova M, Slaninova E, Fleuriot-Blitman H, Amstutz V, Hermankova K, Bezdicek M, Mrazova K, Hrubanova K, Zinn M, Obruca S, Sedlar K. Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum. Comput Struct Biotechnol J 2024; 23:2681-2694. [PMID: 39035834 PMCID: PMC11259993 DOI: 10.1016/j.csbj.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Hugo Fleuriot-Blitman
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Véronique Amstutz
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Kristyna Hermankova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine – Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine – Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Mrazova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
2
|
Xie C, Bai Y, Li Y, Cui B, Cheng G, Liu J, liu Y, Qin X. Revealing sRNA expression profiles of NDM-5-producing CRKP and explore the role of sRNA207 in NDM-5-producing CRKP resistance. Microbiol Spectr 2024; 12:e0153724. [PMID: 39508637 PMCID: PMC11619380 DOI: 10.1128/spectrum.01537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
New Delhi metallo-beta-lactamase-5 (NDM-5)-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) is characterized by high virulence, high morbidity, and mortality, and the detection rate in children has increased in recent years. Therefore, it is urgent to develop new therapeutic targets and strategies. Non-coding small RNA (sRNA)-mediated RNA-based therapies offer a new direction for the treatment of bacterial infections, especially resistant bacteria. This study first analyzed the transcriptional expression profiles of NDM-5-producing CRKP and Carbapenem-susceptible Klebsiella pneumoniae (CSKP) isolates from the clinic by RNA-seq. A total of 4,623 genes were obtained, of which 307 genes were differentially expressed in NDM-5-producing CRKP, and these differentially expressed genes are mainly related to metabolism. Then, by analyzing the length and secondary structure of genes that could not match the reference gene and non-redundant protein database, we obtained 268 sRNAs, of which 13 sRNAs were differentially expressed in NDM-5-producing CRKP. After the expression level of differentially expressed sRNA was verified by RT-PCR to be consistent with that of RNA-seq, we chose sRNA207 as our research target. By knockdown of sRNA207 and smf-1 (the predicted target mRNA of sRNA207) in the strain, we found that increased expression of sRNA207 promoted biofilm formation by stabilizing expression of smf-1, which in turn affected the resistance of NDM-5-producing CRKP to carbapenems. This provides a new approach to treat CRKP infection. IMPORTANCE sRNAs form a regulatory network that regulates bacterial virulence, drug resistance, and other functions by targeting mRNAs. However, sRNA expression profile and function of NDM-5-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) are still unknown. In this study, we analyzed the sRNA expression profiles of NDM-5-producing CRKP obtained from clinical by referring to the methods of previous articles. A total of 268 candidates sRNAs were obtained, of which 248 were newly discovered. More importantly, 13 sRNAs were differentially expressed in NDM-5-producing CRKP compared with CSKP. We knocked down sRNA207 in NDM-5-producing CRKP to validate its effect on smf-1, biofilm, and resistance of strains. We also confirmed the role of smf-1 in biofilm formation and drug resistance of NDM-5-producing CRKP by constructing smf-1-knockdown strain. The results suggest that smf-1 is the target gene of sRNA207. Increased expression of sRNA207 in NDM-5-producing CRKP stabilizes smf-1 expression, which in turn affects the resistance of the strains through biofilm formation.
Collapse
Affiliation(s)
- Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
- Ziyang College of Dental Technology, Ziyang, Sichuan, China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Yan Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Bing Cui
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Yong liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Ren J, Nong NT, Lam Vo PN, Lee HM, Na D. Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression. ACS Synth Biol 2024; 13:3256-3267. [PMID: 39294875 DOI: 10.1021/acssynbio.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Synthetic sRNAs show promise as tools for targeted and programmable gene expression manipulation. However, the design of high-efficiency synthetic sRNAs is a challenging task that necessitates careful consideration of multiple factors. Therefore, this study aims to investigate rational design strategies that significantly and robustly enhance the efficiency of synthetic sRNAs. This is achieved by optimizing the following parameters: the sRNA scaffold, mRNA binding affinity, Hfq protein expression level, and mRNA secondary structure. By utilizing optimized synthetic sRNAs within a positive feedback circuit, we effectively addressed the issue of gene expression leakage─an enduring challenge in synthetic biology that undermines the reliability of genetic circuits in bacteria. Our designed synthetic sRNAs successfully prevented gene expression leakage, thus averting unintended circuit activation caused by initial expression noise, even in the absence of signal molecules. This result shows that high-efficiency synthetic sRNAs not only enable precise gene knockdown for metabolic engineering but also ensure the robust performance of synthetic circuits. The strategies developed here hold significant promise for broad applications across diverse biotechnological fields, establishing synthetic sRNAs as pivotal tools in advancing synthetic biology and gene regulation.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nuong Thi Nong
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Phuong N Lam Vo
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Zhu Z, Xu X, Huang J, Xu G, Liu S, Hong F, Chen Y, Yi X, Li H, Li J. Transcriptomic analysis of Vibrio alginolyticus challenged by Rhizoma coptidis reveals mechanisms of virulence genes. Gene 2024; 905:148188. [PMID: 38278336 DOI: 10.1016/j.gene.2024.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Rhizoma coptidis, a Chinese herbal medicine widely used to treat various bacterial infections, has the potential to develop antibiotic substitutes to overcome the drug resistance of Vibrio alginolyticus. To study the inhibitory effect of R. coptidis on V. alginolyticus, we sequenced the transcriptomes of three groups of samples of wild-type V. alginolyticus (CK) and V. alginolyticus, which were stressed by 5 mg/mL R. coptidis for 2 h (RC_2 h) and 4 h (RC_4 h). CK was compared with RC_2 h and RC_4 h, respectively, and a total of 1565 differentially expressed genes (DEGs) (988 up-regulated and 577 down-regulated) and 1737 DEGs (1152 up-regulated and 585 down-regulated) were identified. Comparing RC_2 h with RC_4 h, 156 DEGs (114 up-regulated and 42 down-regulated) were identified. The ability of biofilm formation and motility of V. alginolyticus altered upon with different concentrations of R. coptidis. Interestingly, relative expression patterns of virulence genes appeared statistically significantly varied, upon different concentrations of R. coptidis extract. DEGs were annotated to the Gene Ontology (GO) database for function enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the results showed that the main enriched pathways, was those related to the virulence of V. alginolyticus. This study provides a new perspective for understanding the complex pathogenic mechanism of V. alginolyticus. R. coptidis could potnetially be used as alternative or complimnetary to antibiotics to treat infections after further research.
Collapse
Affiliation(s)
- Zhiqin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd, China.
| | - Jiangyuan Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - ShiChao Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Fei Hong
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Yunong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Jun Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
5
|
Bai Y, Xie C, Zhang Y, Zhang Z, Liu J, Cheng G, Li Y, Wang D, Cui B, Liu Y, Qin X. sRNA expression profile of KPC-2-producing carbapenem-resistant Klebsiella pneumoniae: Functional role of sRNA51. PLoS Pathog 2024; 20:e1012187. [PMID: 38718038 PMCID: PMC11078416 DOI: 10.1371/journal.ppat.1012187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.
Collapse
Affiliation(s)
- Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yan Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Di Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Bing Cui
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Kotsira V, Skoufos G, Alexiou A, Zioga M, Tastsoglou S, Kardaras FS, Perdikopanis N, Elissavet Z, Gouzouasis V, Charitou T, Hatzigeorgiou AG. Agnodice: indexing experimentally supported bacterial sRNA-RNA interactions. mBio 2024; 15:e0301023. [PMID: 38319109 PMCID: PMC10936433 DOI: 10.1128/mbio.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
In the last decade, the immense growth in the field of bacterial small RNAs (sRNAs), along with the biotechnological breakthroughs in Deep Sequencing permitted the deeper understanding of sRNA-RNA interactions. However, microbiology is currently lacking a thoroughly curated collection of this rapidly expanding universe. We present Agnodice (https://dianalab.e-ce.uth.gr/agnodice), our effort to systematically catalog and annotate experimentally supported bacterial sRNA-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Deep Sequencing interactome identification techniques. It comprises 39,600 entries which are annotated at strain-level resolution and pertain to 399 sRNAs and 12,137 target RNAs identified in 71 bacterial strains. The database content is exclusively experimentally supported, incorporating interactions derived via low yield as well as state-of-the-art high-throughput methods. The entire content of the database is freely accessible and can be directly downloaded for further analysis. Agnodice will serve as a valuable source, enabling microbiologists to form novel hypotheses, design/identify novel sRNA-based drug targets, and explore the therapeutic potential of microbiomes from the perspective of small regulatory RNAs.IMPORTANCEAgnodice (https://dianalab.e-ce.uth.gr/agnodice) is an effort to systematically catalog and annotate experimentally supported bacterial small RNA (sRNA)-RNA interactions. Agnodice, for the first time, incorporates thousands of bacterial sRNA-RNA interactions derived from a diverse set of experimental methodologies including state-of-the-art Next Generation Sequencing interactome identification techniques.
Collapse
Affiliation(s)
- Vasiliki Kotsira
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Alexiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Maria Zioga
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Nikos Perdikopanis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Zacharopoulou Elissavet
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Vasileios Gouzouasis
- Hellenic Pasteur Institute, Athens, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodosia Charitou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
7
|
Xie Z, Wang X, Huang Y, Chen S, Liu M, Zhang F, Li M, Wang X, Gu Y, Yang Y, Shen X, Wang Y, Xu Y, Xu L. Pseudomonas aeruginosa outer membrane vesicle-packed sRNAs can enter host cells and regulate innate immune responses. Microb Pathog 2024; 188:106562. [PMID: 38307370 DOI: 10.1016/j.micpath.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) can package and deliver virulence factors into host cells, which is an important mechanism mediating host-pathogen interactions. It has been reported that small RNAs (sRNAs) can be packed into OMVs with varying relative abundance, which might affect the function and/or stability of host mRNAs. In this study, we used OptiPrep density gradient ultra-high-speed centrifugation to purify OMVs from Pseudomonas aeruginosa. Next, the sequences and abundance of sRNAs were detected by using Small RNA-Seq. In particular, sRNA4518698, sRNA2316613 and sRNA809738 were the three most abundant sRNAs in OMVs, which are all fragments of P. aeruginosa non-coding RNAs. sRNAs were shielded within the interior of OMVs and remained resistant to external RNase cleavage. The miRanda and RNAhybrid analysis demonstrated that those sRNAs could target a large number of host mRNAs, which were enriched in host immune responses by the functions of GO and KEGG enrichment. Experimentally, we demonstrated that the transfection of synthetic sRNA4518698, sRNA2316613, or sRNA809738 could reduce the expression of innate immune response genes in RAW264.7 cells. Together, we demonstrated that P. aeruginosa OMVs sRNAs can regulate innate immune responses. This study uncovered a mechanism in which the OMVs regulate host responses by transferring bacterial sRNAs.
Collapse
Affiliation(s)
- Zhen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangyang Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yadong Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yang Xu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Deng Y, Zang S, Lin Z, Xu L, Cheng C, Feng J. The Pleiotropic Phenotypes Caused by an hfq Null Mutation in Vibrio harveyi. Microorganisms 2023; 11:2741. [PMID: 38004752 PMCID: PMC10672845 DOI: 10.3390/microorganisms11112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hfq is a global regulator and can be involved in multiple cellular processes by assisting small regulatory RNAs (sRNAs) to target mRNAs. To gain insight into the virulence regulation of Hfq in Vibrio harveyi, the hfq null mutant, ∆hfq, was constructed in V. harveyi strain 345. Compared with the wild-type strain, the mortality of pearl gentian sharply declined from 80% to 0% in ∆hfq when infected with a dose that was 7.5-fold the median lethal dose (LD50). Additionally, ∆hfq led to impairments of bacterial growth, motility, and biofilm formation and resistance to reactive oxygen species, chloramphenicol, and florfenicol. A transcriptome analysis indicated that the expression of 16.39% genes on V. harveyi 345 were significantly changed after the deletion of hfq. Without Hfq, the virulence-related pathways, including flagellar assembly and bacterial chemotaxis, were repressed. Moreover, eleven sRNAs, including sRNA0405, sRNA0078, sRNA0419, sRNA0145, and sRNA0097, which, respectively, are involved in chloramphenicol/florfenicol resistance, outer membrane protein synthesis, electron transport, amino acid metabolism, and biofilm formation, were significantly down-regulated. In general, Hfq contributes to the virulence of V. harveyi 345 probably via positively regulating bacterial motility and biofilm formation. It is involved in flagellar assembly and bacterial chemotaxis by binding sRNAs and regulating the target mRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.D.); (S.Z.); (Z.L.); (L.X.); (C.C.)
| |
Collapse
|
9
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
10
|
Subhadra B, Cao D, Jensen R, Caswell C, Inzana TJ. Identification and initial characterization of Hfq-associated sRNAs in Histophilus somni strain 2336. PLoS One 2023; 18:e0286158. [PMID: 37220152 DOI: 10.1371/journal.pone.0286158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Small RNAs (sRNA), in association with the global chaperone regulator Hfq, positively or negatively regulate gene expression in bacteria. For this study, Histophilus somni sRNAs that bind to Hfq were identified and then partially characterized. The Hfq-associated sRNAs in H. somni were isolated and identified by co-immunoprecipitation using anti-Hfq antibody, followed by sRNA sequencing. Sequence analysis of the sRNA samples identified 100 putative sRNAs, out of which 16 were present in pathogenic strain 2336, but not in non-pathogenic strain 129Pt. Bioinformatic analyses suggested that the sRNAs HS9, HS79, and HS97 could bind to many genes putatively involved in virulence/biofilm formation. Furthermore, multi-sequence alignment of the sRNA regions in the genome revealed that HS9 and HS97 could interact with sigma 54, which is a transcription factor linked to important bacterial traits, including motility, virulence, and biofilm formation. Northern blotting was used to determine the approximate size, abundance and any processing events attributed to the sRNAs. Selected sRNA candidates were confirmed to bind Hfq, as determined by electrophoretic mobility shift assays using sRNAs synthesized by in vitro transcription and recombinant Hfq. The exact transcriptional start site of the sRNA candidates was determined by RNA ligase-mediated rapid amplification of cDNA ends, followed by cloning and sequencing. This is the first investigation of H. somni sRNAs that show they may have important regulatory roles in virulence and biofilm formation.
Collapse
Affiliation(s)
- Bindu Subhadra
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Dianjun Cao
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Roderick Jensen
- College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton Caswell
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
11
|
Boutet E, Djerroud S, Perreault J. Small RNAs beyond Model Organisms: Have We Only Scratched the Surface? Int J Mol Sci 2022; 23:ijms23084448. [PMID: 35457265 PMCID: PMC9029176 DOI: 10.3390/ijms23084448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Small RNAs (sRNAs) are essential regulators in the adaptation of bacteria to environmental changes and act by binding targeted mRNAs through base complementarity. Approximately 550 distinct families of sRNAs have been identified since their initial characterization in the 1980s, accelerated by the emergence of RNA-sequencing. Small RNAs are found in a wide range of bacterial phyla, but they are more prominent in highly researched model organisms compared to the rest of the sequenced bacteria. Indeed, Escherichia coli and Salmonella enterica contain the highest number of sRNAs, with 98 and 118, respectively, with Enterobacteriaceae encoding 145 distinct sRNAs, while other bacteria families have only seven sRNAs on average. Although the past years brought major advances in research on sRNAs, we have perhaps only scratched the surface, even more so considering RNA annotations trail behind gene annotations. A distinctive trend can be observed for genes, whereby their number increases with genome size, but this is not observable for RNAs, although they would be expected to follow the same trend. In this perspective, we aimed at establishing a more accurate representation of the occurrence of sRNAs in bacteria, emphasizing the potential for novel sRNA discoveries.
Collapse
|
12
|
Cadmium stress triggers significant metabolic reprogramming in Enterococcus faecium CX 2-6. Comput Struct Biotechnol J 2021; 19:5678-5687. [PMID: 34765088 PMCID: PMC8554106 DOI: 10.1016/j.csbj.2021.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
A cadmium resistant strain of Enterococcus faecium CX 2–6 is sequenced. Differential expression analysis found 47% of CX 2–6 genes are significantly affected by Cd treatment. Differentially expressed genes (DEGs) form physically linked gene clusters in the CX 2–6 genome. A prophage is unique to CX 2–6 and is strongly activated by high Cd concentration. A majority of DEGs responding to Cd treatment are present in the core genome.
Heavy metal pollutions in the soils are increasingly threatening the global crop and food production. Using plant associated bacteria to remediate heavy metal contamination is a promising approach. We have isolated a cadmium (Cd) resistant Enterococcus faecium strain CX 2–6 from a heavy metal contaminated farmland. We have shown that: (i) CX 2–6 can tolerate cadmium (Cd) with a slower growth rate; (ii) The CX 2–6 complete genome is fully assembled using PacBio long reads; (iii) Differential expression analysis found 47% of CX 2–6 genes are significantly affected by Cd treatment and form three gene groups with distinct expression profiles; (iv) Differentially expressed genes (DEGs) form physically linked gene clusters in the CX 2–6 genome, and one of the gene clusters corresponds to a prophage that is unique to CX 2–6 and is strongly activated when Cd concentration is higher; (v) A majority of DEGs responding to Cd treatment are present in the core genome; and (vi) 55 noncoding RNA genes are identified and 49 of them are DEGs responding to cadmium stress. Our pan-genome analysis and comparative RNA-seq data analysis has significantly improved our understanding of the metabolic reprogramming of E. faecium CX 2–6 under Cd stress.
Collapse
|
13
|
Sudo N, Lee K, Sekine Y, Ohnishi M, Iyoda S. RNA-binding protein Hfq downregulates locus of enterocyte effacement-encoded regulators independent of small regulatory RNA in enterohemorrhagic Escherichia coli. Mol Microbiol 2021; 117:86-101. [PMID: 34411346 DOI: 10.1111/mmi.14799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes severe human diseases worldwide. The type 3 secretion system and effector proteins are essential for EHEC infection, and are encoded by the locus of enterocyte effacement (LEE). RNA-binding protein Hfq is essential for small regulatory RNA (sRNA)-mediated regulation at a posttranscriptional level and full virulence of many pathogenic bacteria. Although two early studies indicated that Hfq represses LEE expression by posttranscriptionally controlling the expression of genes grlRA and/or ler, both of which encode LEE regulators mediating a positive regulatory loop, the detailed molecular mechanism and biological significance remain unclear. Herein, we show that LEE overexpression was caused by defective RNA-binding activity of the Hfq distal face, which posttranscriptionally represses grlA and ler expression. In vitro analyses revealed that the Hfq distal face directly binds near the translational initiation site of grlA and ler mRNAs, and inhibits their translation. Taken together, we conclude that Hfq inhibits grlA and ler translation by binding their mRNAs through the distal face in an sRNA-independent manner. Additionally, we show that Hfq-mediated repression of LEE is critical for normal EHEC growth because all suppressor mutations that restored the growth defect in the hfq mutant abolished hfq deletion-induced overexpression of LEE.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
14
|
Parise MTD, Parise D, Aburjaile FF, Pinto Gomide AC, Kato RB, Raden M, Backofen R, Azevedo VADC, Baumbach J. An Integrated Database of Small RNAs and Their Interplay With Transcriptional Gene Regulatory Networks in Corynebacteria. Front Microbiol 2021; 12:656435. [PMID: 34220744 PMCID: PMC8247434 DOI: 10.3389/fmicb.2021.656435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Small RNAs (sRNAs) are one of the key players in the post-transcriptional regulation of bacterial gene expression. These molecules, together with transcription factors, form regulatory networks and greatly influence the bacterial regulatory landscape. Little is known concerning sRNAs and their influence on the regulatory machinery in the genus Corynebacterium, despite its medical, veterinary and biotechnological importance. Here, we expand corynebacterial regulatory knowledge by integrating sRNAs and their regulatory interactions into the transcriptional regulatory networks of six corynebacterial species, covering four human and animal pathogens, and integrate this data into the CoryneRegNet database. To this end, we predicted sRNAs to regulate 754 genes, including 206 transcription factors, in corynebacterial gene regulatory networks. Amongst them, the sRNA Cd-NCTC13129-sRNA-2 is predicted to directly regulate ydfH, which indirectly regulates 66 genes, including the global regulator glxR in C. diphtheriae. All of the sRNA-enriched regulatory networks of the genus Corynebacterium have been made publicly available in the newest release of CoryneRegNet(www.exbio.wzw.tum.de/coryneregnet/) to aid in providing valuable insights and to guide future experiments.
Collapse
Affiliation(s)
- Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Martin Raden
- Bioinformatics, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | | | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.,Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Chi J, Song S, Zhang H, Liu Y, Zhao H, Dong L. Research on the Mechanism of Soybean Resistance to Phytophthora Infection Using Machine Learning Methods. Front Genet 2021; 12:634635. [PMID: 33679898 PMCID: PMC7928311 DOI: 10.3389/fgene.2021.634635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Since the emergence of the Phytophthora sojae infection, economic losses of 10-20 billion U.S. dollars have been annually reported. Studies have revealed that P. sojae works by releasing effect factors such as small RNA in the process of infecting soybeans, but research on the interaction mechanism between plants and fungi at the small RNA level remains vague and unclear. For this reason, studying the resistance mechanism of the hosts after P. sojae invades soybeans has critical theoretical and practical significance for increasing soybean yield. The present article is premised on the high-throughput data published by the National Center of Biotechnology Information (NCBI). We selected 732 sRNA sequences through big data analysis whose expression level increased sharply after soybean was infected by P. sojae and 36 sRNA sequences with massive expression levels newly generated after infection. This article analyzes the resistance mechanism of soybean to P. sojae from two aspects of plant's own passive stress and active resistance. This article analyzes the resistance mechanism of soybean to P. sojae from two aspects of plant's own passive stress and active resistance. These 768 sRNA sequences are targeted to soybean mRNA and P. sojae mRNA, and 2,979 and 1,683 targets are obtained, respectively. The PageRank algorithm was used to screen the core functional clusters, and 50 core nodes targeted to soybeans were obtained, which were analyzed for functional enrichment, and 12 KEGG_Pathway and 18 Go(BP) were obtained. The node targeted to P. sojae was subjected to functional enrichment analysis to obtain 11 KEGG_Pathway. The results show that there are multiple Go(BP) and KEGG_Pathway related to soybean growth and defense and reverse resistance of P. sojae. In addition, by comparing the small RNA prediction model of soybean resistance with Phytophthora pathogenicity constructed by the three machine learning methods of random forest, support vector machine, and XGBoost, about the accuracy, precision, recall rate, and F-measure, the results show that the three models have satisfied classification effect. Among the three models, XGBoost had an accuracy rate of 86.98% in the verification set.
Collapse
Affiliation(s)
- Junxia Chi
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Shizeng Song
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Hengyi Zhao
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Liyan Dong
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
16
|
Yang G, Li B, Jia L, Qiu H, Yang M, Zhu B, Xie J, Qiu S, Li P, Ma H, Song H, Wang L. A Novel sRNA in Shigella flexneri That Regulates Tolerance and Virulence Under Hyperosmotic Pressure. Front Cell Infect Microbiol 2020; 10:483. [PMID: 33042862 PMCID: PMC7526569 DOI: 10.3389/fcimb.2020.00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Regulation of the environmental stress response and virulence of Shigella flexneri may involve multiple signaling pathways; however, these mechanisms are not well-defined. In bacteria, small regulatory RNAs (sRNAs) regulate bacterial growth, metabolism, virulence, and environmental stress response. Therefore, identifying novel functional sRNAs in S. flexneri could help elucidate pathogenic adaptations to host micro-environmental stresses and associated virulence. The aim of this study was to confirm the presence of an sRNA, Ssr54, in S. flexneri and to determine its functions and possible mechanism of action. Ssr54 was found to regulate tolerance and virulence under hyperosmotic pressure. Its expression was verified by qRT-PCR and Northern blotting, and its genomic position was confirmed by 5'-rapid amplification of cDNA ends. Ssr54 expression was significantly decreased (~ 80%) under hyperosmotic conditions (680 mM NaCl), and the survival rate of the Ssr54 deletion strain increased by 20% under these conditions. This suggested that Ssr54 has been selected to promote host survival under hyperosmotic conditions. Additionally, virulence assessment, including guinea pig Sereny test and competitive invasion assays in mouse lungs, revealed that Ssr54 deletion significantly decreased S. flexneri virulence. Two-dimensional gel analyses suggest that Ssr54 may modulate the expression of tolC, ompA, and treF genes, which may affect the virulence and survival of S. flexneri under osmotic pressures. Furthermore, treF expression has been shown to improve the survival of S. flexneri under osmotic pressures. These results suggest that Ssr54 has a broad range of action in S. flexneri response to hyperosmotic environmental stresses and in controlling its virulence to adapt to environmental stresses encountered during host infection.
Collapse
Affiliation(s)
- Guang Yang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
- The 5th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Boan Li
- The 5th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Leili Jia
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Huaiyu Qiu
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | | | - Jing Xie
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Hui Ma
- The 6th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
17
|
Diallo I, Provost P. RNA-Sequencing Analyses of Small Bacterial RNAs and their Emergence as Virulence Factors in Host-Pathogen Interactions. Int J Mol Sci 2020; 21:E1627. [PMID: 32120885 PMCID: PMC7084465 DOI: 10.3390/ijms21051627] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Proteins have long been considered to be the most prominent factors regulating so-called invasive genes involved in host-pathogen interactions. The possible role of small non-coding RNAs (sRNAs), either intracellular, secreted or packaged in outer membrane vesicles (OMVs), remained unclear until recently. The advent of high-throughput RNA-sequencing (RNA-seq) techniques has accelerated sRNA discovery. RNA-seq radically changed the paradigm on bacterial virulence and pathogenicity to the point that sRNAs are emerging as an important, distinct class of virulence factors in both gram-positive and gram-negative bacteria. The potential of OMVs, as protectors and carriers of these functional, gene regulatory sRNAs between cells, has also provided an additional layer of complexity to the dynamic host-pathogen relationship. Using a non-exhaustive approach and through examples, this review aims to discuss the involvement of sRNAs, either free or loaded in OMVs, in the mechanisms of virulence and pathogenicity during bacterial infection. We provide a brief overview of sRNA origin and importance, and describe the classical and more recent methods of identification that have enabled their discovery, with an emphasis on the theoretical lower limit of RNA sizes considered for RNA sequencing and bioinformatics analyses.
Collapse
Affiliation(s)
| | - Patrick Provost
- CHUQ Research Center/CHUL, Department of Microbiology-Infectious Disease and Immunity, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada;
| |
Collapse
|
18
|
Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol 2020; 58:1-10. [PMID: 31898252 DOI: 10.1007/s12275-020-9334-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.
Collapse
Affiliation(s)
- Jun Ren
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
19
|
Tang Q, Feng M, Xia H, Zhao Y, Hou B, Ye J, Wu H, Zhang H. Differential quantitative proteomics reveals the functional difference of two yigP locus products, UbiJ and EsrE. J Basic Microbiol 2019; 59:1125-1133. [PMID: 31553492 DOI: 10.1002/jobm.201900350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/06/2022]
Abstract
The yigP (ubiJ) locus has been shown to be associated with many phenotypic changes in Escherichia coli, while the individual function of its two products, EsrE small RNA and UbiJ protein, is still elusive. In this study, we constructed two single-element mutants, EsrE mutant strain Mut and UbiJ mutant strain Ter, on the basis of the base substitution programs. The variable antibiotics resistance and ubiquinone (UQ, coenzyme Q) yield and the similar cell growth between mutants revealed the division of labor and collaboration of EsrE and UbiJ in JM83. Furthermore, we detected the concentration of intracellular proteins of Mut and Ter by stable isotope-labeled quantitative proteomics. The results demonstrate that both EsrE and UbiJ are involved in the aerobic growth of E. coli, while EsrE preferentially contributes to the amino acid-related pathway, and UbiJ is an indispensable factor in the biosynthesis of UQ. Moreover, we uncovered a potential regulatory circuit of d-cycloserine (DCS) that composed of EsrE, GcvA, and GcvB by proteomic analysis.
Collapse
Affiliation(s)
- Qiongwei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meilin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Sridhar J, Gayathri M. Transcriptome based Identification of silver stress responsive sRNAs from Bacillus cereus ATCC14579. Bioinformation 2019; 15:474-479. [PMID: 31485133 PMCID: PMC6704327 DOI: 10.6026/97320630015474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
Microbes modulate their metabolic and physiological mechanisms in response to changing environmental conditions. It is our interest to identify small regulatory RNAs using microarray expression data (GSE26043) obtained from B. cereus ATCC 14579 in AgNO3 stress. By definition, expression of transcripts from the Intergenic Regions (IGR) with >=2 fold under silver stress is predicted as novel small RNAs. Computational analysis of the IGR expression levels extracted from the available microarray data help in the identification of stress responsive sRNAs with rare promoters (Sigma 24, 28, 32, 54 and 70) followed by terminator signals predicted using the sRNAscanner tool. We predicted 1512 sRNA specific regions on both positive and negative strands collectively. Thus, a non-redundant high scoring unique 860 sRNAs with distinct promoter (S24: 83, S28: 86, S32: 31, S54: 57, S70: 223, sRNA_specific_S70: 380) and terminator signals are reported. These unique computationally predicted sRNA regions were verified with the highly expressing IGRs from the microarray data. It should be noted that 14 sRNAs reported in earlier studies were also found in this dataset. This study has reported 71 additional sRNAs from the transcriptome under metal stress response. Hence, we use global transcriptomics data for the identification of novel sRNAs in B. cereus. We described a general model using a procedure for the identification of small regulatory RNAs using microarray expression data with appropriate cross validation modules. It is found that some sRNAs reported in this study were found to have multiple rare promoters. This opens the possibility of sRNA activation under multiple stress condition. These sRNA data reported in this study should be characterized for their mRNA targets and molecular functional networks in future investigations.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| | - Manickam Gayathri
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| |
Collapse
|
21
|
Abstract
One of the most important resources for researchers of noncoding RNAs is the information available in public databases spread over the internet. However, the effective exploration of this data can represent a daunting task, given the large amount of databases available and the variety of stored data. This chapter describes a classification of databases based on information source, type of RNA, source organisms, data formats, and the mechanisms for information retrieval, detailing the relevance of each of these classifications and its usability by researchers. This classification is used to update a 2012 review, indexing now more than 229 public databases. This review will include an assessment of the new trends for ncRNA research based on the information that is being offered by the databases. Additionally, we will expand the previous analysis focusing on the usability and application of these databases in pathogen and disease research. Finally, this chapter will analyze how currently available database schemas can help the development of new and improved web resources.
Collapse
|
22
|
Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 2018; 53:335-355. [PMID: 29793351 DOI: 10.1080/10409238.2018.1473330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Carsten A Raabe
- b Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany.,c Brandenburg Medical School (MHB) , Neuruppin , Germany.,d Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany
| | - Li-Pin Lee
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Timofey S Rozhdestvensky
- e Medical Faculty, Transgenic Mouse and Genome Engineering Model Core Facility (TRAM) , University of Münster , Münster , Germany
| | - Marimuthu Citartan
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Siti Aminah Ahmed
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Thean-Hock Tang
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| |
Collapse
|
23
|
Sudo N, Soma A, Iyoda S, Oshima T, Ohto Y, Saito K, Sekine Y. Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2018; 164:821-834. [PMID: 29580371 DOI: 10.1099/mic.0.000652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a life-threatening human pathogen worldwide. The locus of enterocyte effacement (LEE) in EHEC encodes a type three secretion system and effector proteins, all of which are essential for bacterial adherence to host cells. When LEE expression is activated, flagellar gene expression is down-regulated because bacterial flagella induce the immune responses of host cells at the infection stage. Therefore, this inverse regulation is also important for EHEC infection. We report here that a small regulatory RNA (sRNA), Esr41, mediates LEE repression and flagellar gene activation. Multiple copies of esr41 abolished LEE expression by down-regulating the expression of ler and pch, which encode positive regulators of LEE. This regulation led to reduced EHEC adhesion to host cells. Translational gene-reporter fusion experiments revealed that Esr41 regulates ler expression at a post-transcriptional level, and pch transcription, probably via an unknown target of Esr41. Esr41-mediated ler and pch repression was not observed in cells lacking hfq, which encodes an RNA-binding protein essential for most sRNA functions, indicating that Esr41 acts in an Hfq-dependent manner. We previously reported an increase in cell motility induced by Esr41. This motility enhancement was also observed in EHEC lacking ler, showing that Esr41-mediated enhancement of cell motility is in a ler-independent manner. In addition, Esr41 activated the expression of flagellar Class 3 genes by indirectly inducing the transcription of fliA, which encodes the sigma factor for flagellar synthesis. These results suggest that Esr41 plays important roles in the inverse regulation of LEE and flagellar gene expression.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan.,Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yui Ohto
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Kenta Saito
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| |
Collapse
|
24
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
|
26
|
Jia K, Wang G, Liang L, Wang M, Wang H, Xu X. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress. Front Microbiol 2017; 8:1861. [PMID: 29018430 PMCID: PMC5622974 DOI: 10.3389/fmicb.2017.01861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB) and acidic TSB (aTSB). The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs) identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs) were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.
Collapse
Affiliation(s)
- Kun Jia
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lijiao Liang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Meng Wang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Huhu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Wu Y, Xing X, You T, Liang R, Liu J. RT-qPCR with chimeric dU stem-loop primer is efficient for the detection of bacterial small RNAs. Appl Microbiol Biotechnol 2017; 101:4561-4568. [PMID: 28314872 DOI: 10.1007/s00253-017-8181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 01/18/2023]
Abstract
Small non-coding RNAs are considered be involved in the regulation of multiple cellular processes. Quantitative reverse transcription PCR (RT-qPCR) is widely used in the detection of eukaryotic microRNA, and the stem-loop primers can improve the specificity and efficiency of reverse transcription. However, the loop structure of primers probably influence the next quantitative amplification due to the base stacking and steric hindrance. Here, we designed a chimeric stem-loop primer with a deoxyuracil (dU) base located near the RNA matching part. After the reverse transcription, uracil-DNA glycosylase (UDG) treatment was used to remove the dU base and destroy the stem-loop structure of RT product. Enzymatic assay confirmed that the recombinant UDG could efficiently eliminate the dU base in the oligonucleotide. Transcriptions of two small RNAs (TFF and ryeA) in Escherichia coli were detected by RT-qPCR with different primers. Results showed that the use of the chimeric dU stem-loop primer and UDG treatment could enhance the detection specificity and sensitivity about 1.1- to 3.4-fold, compared to those with traditional stem-loop primer and linear primer. Total RNA of 1-10 pg was enough for efficient detection with the chimeric stem-loop primers. In a word, this strategy could promote the RT-qPCR detection efficiency on the transcription of bacterial small RNAs even in trace samples and can facilitate the detection of exiguous change in cellular metabolism.
Collapse
Affiliation(s)
- Yangfan Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuejiao Xing
- School of Pharmacy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ting You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jianhua Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
28
|
Cho H, Chou HH. Thermodynamically optimal whole-genome tiling microarray design and validation. BMC Res Notes 2016; 9:305. [PMID: 27295952 PMCID: PMC4906886 DOI: 10.1186/s13104-016-2113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Findings Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. Conclusions This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2113-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
29
|
Amin SV, Roberts JT, Patterson DG, Coley AB, Allred JA, Denner JM, Johnson JP, Mullen GE, O'Neal TK, Smith JT, Cardin SE, Carr HT, Carr SL, Cowart HE, DaCosta DH, Herring BR, King VM, Polska CJ, Ward EE, Wise AA, McAllister KN, Chevalier D, Spector MP, Borchert GM. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol 2016; 13:331-42. [PMID: 26853797 DOI: 10.1080/15476286.2016.1144010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.
Collapse
Affiliation(s)
- Shivam V Amin
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Justin T Roberts
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | | | | | - Jason M Denner
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Justin P Johnson
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Trenton K O'Neal
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Jason T Smith
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Sara E Cardin
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Hank T Carr
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Stacie L Carr
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Holly E Cowart
- a Department of Biology , University of South Alabama , Mobile , AL
| | - David H DaCosta
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Valeria M King
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Erin E Ward
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Alice A Wise
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - David Chevalier
- c Department of Biology , East Georgia State College , Swainsboro , GA
| | - Michael P Spector
- b Department of Biomedical Sciences , University of South Alabama , Mobile , AL
| | - Glen M Borchert
- a Department of Biology , University of South Alabama , Mobile , AL.,d Department of Pharmacology , USA College of Medicine , Mobile , AL
| |
Collapse
|
30
|
Wang J, Liu T, Zhao B, Lu Q, Wang Z, Cao Y, Li W. sRNATarBase 3.0: an updated database for sRNA-target interactions in bacteria. Nucleic Acids Res 2015; 44:D248-53. [PMID: 26503244 PMCID: PMC4702819 DOI: 10.1093/nar/gkv1127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial sRNAs are a class of small regulatory RNAs of about 40–500 nt in length; they play multiple biological roles through binding to their target mRNAs or proteins. Therefore, elucidating sRNA targets is very important. However, only targets of a few sRNAs have been described. To facilitate sRNA functional studies such as developing sRNA target prediction models, we updated the sRNATarBase database, which was initially developed in 2010. The new version (recently moved to http://ccb1.bmi.ac.cn/srnatarbase/) contains 771 sRNA-target entries manually collected from 213 papers, and 23 290 and 11 750 predicted targets from sRNATarget and sTarPicker, respectively. Among the 771 entries, 475 and 17 were involved in validated sRNA–mRNA and sRNA–protein interactions, respectively, while 279 had no reported interactions. We also presented detailed information for 316 binding regions of sRNA-target mRNA interactions and related mutation experiments, as well as new features, including NCBI sequence viewer, sRNA regulatory network, target prediction-based GO and pathway annotations, and error report system. The new version provides a comprehensive annotation of validated sRNA-target interactions, and will be a useful resource for bacterial sRNA studies.
Collapse
Affiliation(s)
- Jiang Wang
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| | - Tao Liu
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| | - Bo Zhao
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| | - Qixuan Lu
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| | - Zheng Wang
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| | - Yuan Cao
- Department of Laboratory Medicine, Jinan Military General Hospital, Jinan, Shandong 250031, China
| | - Wuju Li
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Haidian district, Beijing 100850, China
| |
Collapse
|
31
|
Sudo N, Soma A, Muto A, Iyoda S, Suh M, Kurihara N, Abe H, Tobe T, Ogura Y, Hayashi T, Kurokawa K, Ohnishi M, Sekine Y. A novel small regulatory RNA enhances cell motility in enterohemorrhagic Escherichia coli. J GEN APPL MICROBIOL 2015; 60:44-50. [PMID: 24646762 DOI: 10.2323/jgam.60.44] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Small regulatory RNAs (sRNAs) are conserved among a wide range of bacteria. They modulate the translational efficiency of target mRNAs through base-pairing with the help of RNA chaperone Hfq. The present study identified a novel sRNA, Esr41 (enterohemorrhagic Escherichia coli O157 small RNA #41), from an intergenic region of an enterohemorrhagic E. coli (EHEC) O157:H7 Sakai-specific sequence that is not present in the nonpathogenic E. coli K-12. Esr41 was detected as an RNA molecule approximately 70 nucleotides long with a 3' GC-rich palindrome sequence followed by a long poly(U), which is a characteristic of rho-independent terminators and is also a structural feature required for the action of Hfq. EHEC O157 harboring a multicopy plasmid carrying the esr41 gene increased cell motility and the expression of fliC, a gene encoding a major flagellar component. These results indicate that Esr41 stimulates fliC expression in EHEC O157. Furthermore, the increase in cell motility induced by Esr41 was also observed in the E. coli K-12, suggesting that target genes controlled by Esr41 are present in both EHEC O157 and K-12.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Life Science, College of Science, Rikkyo University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sassi M, Augagneur Y, Mauro T, Ivain L, Chabelskaya S, Hallier M, Sallou O, Felden B. SRD: a Staphylococcus regulatory RNA database. RNA (NEW YORK, N.Y.) 2015; 21:1005-17. [PMID: 25805861 PMCID: PMC4408781 DOI: 10.1261/rna.049346.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
An overflow of regulatory RNAs (sRNAs) was identified in a wide range of bacteria. We designed and implemented a new resource for the hundreds of sRNAs identified in Staphylococci, with primary focus on the human pathogen Staphylococcus aureus. The "Staphylococcal Regulatory RNA Database" (SRD, http://srd.genouest.org/) compiled all published data in a single interface including genetic locations, sequences and other features. SRD proposes novel and simplified identifiers for Staphylococcal regulatory RNAs (srn) based on the sRNA's genetic location in S. aureus strain N315 which served as a reference. From a set of 894 sequences and after an in-depth cleaning, SRD provides a list of 575 srn exempt of redundant sequences. For each sRNA, their experimental support(s) is provided, allowing the user to individually assess their validity and significance. RNA-seq analysis performed on strains N315, NCTC8325, and Newman allowed us to provide further details, upgrade the initial annotation, and identified 159 RNA-seq independent transcribed sRNAs. The lists of 575 and 159 sRNAs sequences were used to predict the number and location of srns in 18 S. aureus strains and 10 other Staphylococci. A comparison of the srn contents within 32 Staphylococcal genomes revealed a poor conservation between species. In addition, sRNA structure predictions obtained with MFold are accessible. A BLAST server and the intaRNA program, which is dedicated to target prediction, were implemented. SRD is the first sRNA database centered on a genus; it is a user-friendly and scalable device with the possibility to submit new sequences that should spread in the literature.
Collapse
Affiliation(s)
- Mohamed Sassi
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| | - Yoann Augagneur
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| | - Tony Mauro
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| | - Lorraine Ivain
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| | | | - Marc Hallier
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| | - Olivier Sallou
- Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes University, 35043 Rennes, France
| | - Brice Felden
- Inserm U835 Biochimie Pharmaceutique, Rennes University, 35043 Rennes, France
| |
Collapse
|
33
|
Zhang D, Du N, Ma S, Hu Q, Lu G, Chen W, Zeng C. In vitro transcriptome analysis of two Chinese isolates of Streptococcus suis serotype 2. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:266-75. [PMID: 25526982 PMCID: PMC4411499 DOI: 10.1016/j.gpb.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/09/2014] [Accepted: 11/13/2014] [Indexed: 12/05/2022]
Abstract
The Streptococcus suis serotype 2 (S. suis 2) isolates 05ZYH33 and 98HAH33 have caused severe human infections in China. Using a strand-specific RNA-seq analysis, we compared the in vitro transcriptomes of these two Chinese isolates with that of a reference strain (P1/7). In the 89K genomic island that is specific to these Chinese isolates, a toxin–antitoxin system showed relatively high levels of transcription among the S. suis. The known virulence factors with high transcriptional activity in these two highly-pathogenic strains are mainly involved in adhesion, biofilm formation, hemolysis and the synthesis and transport of the outer membrane protein. Furthermore, our analysis of novel transcripts identified over 50 protein-coding genes with one of them encoding a toxin protein. We also predicted over 30 small RNAs (sRNAs) in each strain, and most of them are involved in riboswitches. We found that six sRNA candidates that are related to bacterial virulence, including cspA and rli38, are specific to Chinese isolates. These results provide insight into the factors responsible for the difference in virulence among the different S. suis 2 isolates.
Collapse
Affiliation(s)
- Dake Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Du
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingtao Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S, Durham AM. Non-coding transcription characterization and annotation. RNA Biol 2014; 9:274-82. [DOI: 10.4161/rna.19352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Gelderman G, Sivakumar A, Lipp S, Contreras L. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria. Biotechnol Bioeng 2014; 112:365-75. [PMID: 25080893 DOI: 10.1002/bit.25351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo.
Collapse
Affiliation(s)
- Grant Gelderman
- The University of Texas at Austin, McKetta Department of Chemical Engineering 200 E. Dean Keeton St. Stop C0400 Austin, Texas, USA 78712
| | | | | | | |
Collapse
|
36
|
Arnedo J, Romero-Zaliz R, Zwir I, Del Val C. A multiobjective method for robust identification of bacterial small non-coding RNAs. ACTA ACUST UNITED AC 2014; 30:2875-82. [PMID: 24958812 DOI: 10.1093/bioinformatics/btu398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
MOTIVATION Small non-coding RNAs (sRNAs) have major roles in the post-transcriptional regulation in prokaryotes. The experimental validation of a relatively small number of sRNAs in few species requires developing computational algorithms capable of robustly encoding the available knowledge and using this knowledge to predict sRNAs within and across species. RESULTS We present a novel methodology designed to identify bacterial sRNAs by incorporating the knowledge encoded by different sRNA prediction methods and optimally aggregating them as potential predictors. Because some of these methods emphasize specificity, whereas others emphasize sensitivity while detecting sRNAs, their optimal aggregation constitutes trade-off solutions between these two contradictory objectives that enhance their individual merits. Many non-redundant optimal aggregations uncovered by using multiobjective optimization techniques are then combined into a multiclassifier, which ensures robustness during detection and prediction even in genomes with distinct nucleotide composition. By training with sRNAs in Salmonella enterica Typhimurium, we were able to successfully predict sRNAs in Sinorhizobium meliloti, as well as in multiple and poorly annotated species. The proposed methodology, like a meta-analysis approach, may begin to lay a possible foundation for developing robust predictive methods across a wide spectrum of genomic variability. AVAILABILITY AND IMPLEMENTATION Scripts created for the experimentation are available at http://m4m.ugr.es/SupInfo/sRNAOS/sRNAOSscripts.zip. CONTACT delval@decsai.ugr.es SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Javier Arnedo
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA
| | - Rocío Romero-Zaliz
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA
| | - Igor Zwir
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA
| | - Coral Del Val
- Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA Department of Computer Science and Artificial Intelligence, Universidad de Granada, Granada 18071, Spain, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain and Department of Psychiatry at Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
37
|
Xu W, Chen H, He CL, Wang Q. Deep sequencing-based identification of small regulatory RNAs in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e92711. [PMID: 24647397 PMCID: PMC3960264 DOI: 10.1371/journal.pone.0092711] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
Synechocystis sp. PCC 6803 is a genetically tractable model organism for photosynthesis research. The genome of Synechocystis sp. PCC 6803 consists of a circular chromosome and seven plasmids. The importance of small regulatory RNAs (sRNAs) as mediators of a number of cellular processes in bacteria has begun to be recognized. However, little is known regarding sRNAs in Synechocystis sp. PCC 6803. To provide a comprehensive overview of sRNAs in this model organism, the sRNAs of Synechocystis sp. PCC 6803 were analyzed using deep sequencing, and 7,951,189 reads were obtained. High quality mapping reads (6,127,890) were mapped onto the genome and assembled into 16,192 transcribed regions (clusters) based on read overlap. A total number of 5211 putative sRNAs were revealed from the genome and the 4 megaplasmids, and 27 of these molecules, including four from plasmids, were confirmed by RT-PCR. In addition, possible target genes regulated by all of the putative sRNAs identified in this study were predicted by IntaRNA and analyzed for functional categorization and biological pathways, which provided evidence that sRNAs are indeed involved in many different metabolic pathways, including basic metabolic pathways, such as glycolysis/gluconeogenesis, the citrate cycle, fatty acid metabolism and adaptations to environmentally stress-induced changes. The information from this study provides a valuable reservoir for understanding the sRNA-mediated regulation of the complex physiology and metabolic processes of cyanobacteria.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Chen-Liu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
38
|
Pandey SP, Winkler JA, Li H, Camacho DM, Collins JJ, Walker GC. Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria. BMC Genomics 2014; 15:121. [PMID: 24511998 PMCID: PMC3933206 DOI: 10.1186/1471-2164-15-121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation. RESULTS We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a 'context likelihood of relatedness' algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network. CONCLUSION YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.
Collapse
Affiliation(s)
- Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741252, India.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
We present an introduction to RNA databases. The history and technology behind RNA databases are briefly discussed. We examine differing methods of data collection and curation and discuss their impact on both the scope and accuracy of the resulting databases. Finally, we demonstrate these principles through detailed examination of four leading RNA databases: Noncode, miRBase, Rfam, and SILVA.
Collapse
Affiliation(s)
- Marc P Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
40
|
Abstract
Noncoding RNAs (ncRNAs) constitute an evolutionary conserved system involved in the regulation of biological functions at posttranscriptional level. The capability to rapidly adapt their metabolism is essential for the survival of organisms. NcRNAs are a valuable means used by cells to rapidly transfer and internalize an external signal. NcRNAs are capable not only to influence the translational phase but also to affect epigenetic processes. They have been identified in almost all kingdoms of life (from archaea to human and plants). In this chapter we outline the currently available resources that could be used for the screening of viral and bacterial ncRNAs.
Collapse
|
41
|
Liu WB, Shi Y, Yao LL, Zhou Y, Ye BC. Prediction and characterization of small non-coding RNAs related to secondary metabolites in Saccharopolyspora erythraea. PLoS One 2013; 8:e80676. [PMID: 24236194 PMCID: PMC3827479 DOI: 10.1371/journal.pone.0080676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/06/2013] [Indexed: 12/14/2022] Open
Abstract
Saccharopolyspora erythraea produces a large number of secondary metabolites with biological activities, including erythromycin. Elucidation of the mechanisms through which the production of these secondary metabolites is regulated may help to identify new strategies for improved biosynthesis of erythromycin. In this paper, we describe the systematic prediction and analysis of small non-coding RNAs (sRNAs) in S. erythraea, with the aim to elucidate sRNA-mediated regulation of secondary metabolite biosynthesis. In silico and deep-sequencing technologies were applied to predict sRNAs in S. erythraea. Six hundred and forty-seven potential sRNA loci were identified, of which 382 cis-encoded antisense RNA are complementary to protein-coding regions and 265 predicted transcripts are located in intergenic regions. Six candidate sRNAs (sernc292, sernc293, sernc350, sernc351, sernc361, and sernc389) belong to four gene clusters (tpc3, pke, pks6, and nrps5) that are involved in secondary metabolite biosynthesis. Deep-sequencing data showed that the expression of all sRNAs in the strain HL3168 E3 (E3) was higher than that in NRRL23338 (M), except for sernc292 and sernc361 expression. The relative expression of six sRNAs in strain M and E3 were validated by qRT-PCR at three different time points (24, 48, and 72 h). The results showed that, at each time point, the transcription levels of sernc293, sernc350, sernc351, and sernc389 were higher in E3 than in M, with the largest difference observed at 72 h, whereas no signals for sernc292 and sernc361 were detected. sernc293, sernc350, sernc351, and sernc389 probably regulate iron transport, terpene metabolism, geosmin synthesis, and polyketide biosynthesis, respectively. The major significance of this study is the successful prediction and identification of sRNAs in genomic regions close to the secondary metabolism-related genes in S. erythraea. A better understanding of the sRNA-target interaction would help to elucidate the complete range of functions of sRNAs in S. erythraea, including sRNA-mediated regulation of erythromycin biosynthesis.
Collapse
Affiliation(s)
- Wei-Bing Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Shi
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Li-Li Yao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Faria JP, Overbeek R, Xia F, Rocha M, Rocha I, Henry CS. Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Brief Bioinform 2013; 15:592-611. [DOI: 10.1093/bib/bbs071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Ramos CG, Grilo AM, da Costa PJ, Leitão JH. Experimental identification of small non-coding regulatory RNAs in the opportunistic human pathogen Burkholderia cenocepacia J2315. Genomics 2013; 101:139-48. [DOI: 10.1016/j.ygeno.2012.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 01/07/2023]
|
44
|
Ahmad R, Hansen GÅ, Hansen H, Hjerde E, Pedersen HL, Paulsen SM, Nyrud MLJ, Strauss A, Willassen NP, Haugen P. Prediction, Microarray and Northern Blot Analyses Identify New Intergenic Small RNAs in Aliivibrio salmonicida. J Mol Microbiol Biotechnol 2012; 22:352-60. [DOI: 10.1159/000345769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Khoo JS, Chai SF, Mohamed R, Nathan S, Firdaus-Raih M. Computational discovery and RT-PCR validation of novel Burkholderia conserved and Burkholderia pseudomallei unique sRNAs. BMC Genomics 2012; 13 Suppl 7:S13. [PMID: 23282220 PMCID: PMC3521395 DOI: 10.1186/1471-2164-13-s7-s13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sRNAs of bacterial pathogens are known to be involved in various cellular roles including environmental adaptation as well as regulation of virulence and pathogenicity. It is expected that sRNAs may also have similar functions for Burkholderia pseudomallei, a soil bacterium that can adapt to diverse environmental conditions, which causes the disease melioidosis and is also able to infect a wide variety of hosts. RESULTS By integrating several proven sRNA prediction programs into a computational pipeline, available Burkholderia spp. genomes were screened to identify sRNA gene candidates. Orthologous sRNA candidates were then identified via comparative analysis. From the total prediction, 21 candidates were found to have Rfam homologs. RT-PCR and sequencing of candidate sRNA genes of unknown functions revealed six putative sRNAs which were highly conserved in Burkholderia spp. and two that were unique to B. pseudomallei present in a normal culture conditions transcriptome. The validated sRNAs include potential cis-acting elements associated with the modulation of methionine metabolism and one B. pseudomallei-specific sRNA that is expected to bind to the Hfq protein. CONCLUSIONS The use of the pipeline developed in this study and subsequent comparative analysis have successfully aided in the discovery and shortlisting of sRNA gene candidates for validation. This integrated approach identified 29 B. pseudomallei sRNA genes - of which 21 have Rfam homologs and 8 are novel.
Collapse
Affiliation(s)
- Jia-Shiun Khoo
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | | | | | | | | |
Collapse
|
46
|
Bobay LM, Rocha EPC, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol 2012; 30:737-51. [PMID: 23243039 PMCID: PMC3603311 DOI: 10.1093/molbev/mss279] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rapid turnover of mobile elements drives the plasticity of bacterial genomes. Integrated bacteriophages (prophages) encode host-adaptive traits and represent a sizable fraction of bacterial chromosomes. We hypothesized that natural selection shapes prophage integration patterns relative to the host genome organization. We tested this idea by detecting and studying 500 prophages of 69 strains of Escherichia and Salmonella. Phage integrases often target not only conserved genes but also intergenic positions, suggesting purifying selection for integration sites. Furthermore, most integration hotspots are conserved between the two host genera. Integration sites seem also selected at the large chromosomal scale, as they are nonrandomly organized in terms of the origin-terminus axis and the macrodomain structure. The genes of lambdoid prophages are systematically co-oriented with the bacterial replication fork and display the host high frequency of polarized FtsK-orienting polar sequences motifs required for chromosome segregation. matS motifs are strongly avoided by prophages suggesting counter selection of motifs disrupting macrodomains. These results show how natural selection for seamless integration of prophages in the chromosome shapes the evolution of the bacterium and the phage. First, integration sites are highly conserved for many millions of years favoring lysogeny over the lytic cycle for temperate phages. Second, the global distribution of prophages is intimately associated with the chromosome structure and the patterns of gene expression. Third, the phage endures selection for DNA motifs that pertain exclusively to the biology of the prophage in the bacterial chromosome. Understanding prophage genetic adaptation sheds new lights on the coexistence of horizontal transfer and organized bacterial genomes.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Microbial Evolutionary Genomics Group, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
47
|
Li L, Huang D, Cheung MK, Nong W, Huang Q, Kwan HS. BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res 2012. [PMID: 23203879 PMCID: PMC3531160 DOI: 10.1093/nar/gks1264] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In bacteria, small regulatory non-coding RNAs (sRNAs) are the most abundant class of post-transcriptional regulators. They are involved in diverse processes including quorum sensing, stress response, virulence and carbon metabolism. Recent developments in high-throughput techniques, such as genomic tiling arrays and RNA-Seq, have allowed efficient detection and characterization of bacterial sRNAs. However, a comprehensive repository to host sRNAs and their annotations is not available. Existing databases suffer from a limited number of bacterial species or sRNAs included. In addition, these databases do not have tools to integrate or analyse high-throughput sequencing data. Here, we have developed BSRD (http://kwanlab.bio.cuhk.edu.hk/BSRD), a comprehensive bacterial sRNAs database, as a repository for published bacterial sRNA sequences with annotations and expression profiles. BSRD contains over nine times more experimentally validated sRNAs than any other available databases. BSRD also provides combinatorial regulatory networks of transcription factors and sRNAs with their common targets. We have built and implemented in BSRD a novel RNA-Seq analysis platform, sRNADeep, to characterize sRNAs in large-scale transcriptome sequencing projects. We will update BSRD regularly.
Collapse
Affiliation(s)
- Lei Li
- Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
48
|
Li W, Ying X, Lu Q, Chen L. Predicting sRNAs and their targets in bacteria. GENOMICS PROTEOMICS & BIOINFORMATICS 2012. [PMID: 23200137 PMCID: PMC5054197 DOI: 10.1016/j.gpb.2012.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bacterial small RNAs (sRNAs) are an emerging class of regulatory RNAs of about 40–500 nucleotides in length and, by binding to their target mRNAs or proteins, get involved in many biological processes such as sensing environmental changes and regulating gene expression. Thus, identification of bacterial sRNAs and their targets has become an important part of sRNA biology. Current strategies for discovery of sRNAs and their targets usually involve bioinformatics prediction followed by experimental validation, emphasizing a key role for bioinformatics prediction. Here, therefore, we provided an overview on prediction methods, focusing on the merits and limitations of each class of models. Finally, we will present our thinking on developing related bioinformatics models in future.
Collapse
Affiliation(s)
- Wuju Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | | | | | | |
Collapse
|
49
|
Pischimarov J, Kuenne C, Billion A, Hemberger J, Cemič F, Chakraborty T, Hain T. sRNAdb: a small non-coding RNA database for gram-positive bacteria. BMC Genomics 2012; 13:384. [PMID: 22883983 PMCID: PMC3439263 DOI: 10.1186/1471-2164-13-384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/01/2012] [Indexed: 11/16/2022] Open
Abstract
Background The class of small non-coding RNA molecules (sRNA) regulates gene expression by different mechanisms and enables bacteria to mount a physiological response due to adaptation to the environment or infection. Over the last decades the number of sRNAs has been increasing rapidly. Several databases like Rfam or fRNAdb were extended to include sRNAs as a class of its own. Furthermore new specialized databases like sRNAMap (gram-negative bacteria only) and sRNATarBase (target prediction) were established. To the best of the authors’ knowledge no database focusing on sRNAs from gram-positive bacteria is publicly available so far. Description In order to understand sRNA’s functional and phylogenetic relationships we have developed sRNAdb and provide tools for data analysis and visualization. The data compiled in our database is assembled from experiments as well as from bioinformatics analyses. The software enables comparison and visualization of gene loci surrounding the sRNAs of interest. To accomplish this, we use a client–server based approach. Offline versions of the database including analyses and visualization tools can easily be installed locally on the user’s computer. This feature facilitates customized local addition of unpublished sRNA candidates and related information such as promoters or terminators using tab-delimited files. Conclusion sRNAdb allows a user-friendly and comprehensive comparative analysis of sRNAs from available sequenced gram-positive prokaryotic replicons. Offline versions including analysis and visualization tools facilitate complex user specific bioinformatics analyses.
Collapse
Affiliation(s)
- Jordan Pischimarov
- Institute of Medical Microbiology, Justus-Liebig-University, Schubertstrasse 81, Giessen, D-35392, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Patel AV, Eaves D, Jessen WJ, Rizvi TA, Ecsedy JA, Qian MG, Aronow BJ, Perentesis JP, Serra E, Cripe TP, Miller SJ, Ratner N. Ras-driven transcriptome analysis identifies aurora kinase A as a potential malignant peripheral nerve sheath tumor therapeutic target. Clin Cancer Res 2012; 18:5020-30. [PMID: 22811580 DOI: 10.1158/1078-0432.ccr-12-1072] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Patients with neurofibromatosis type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST), which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to use comprehensive gene expression analysis to identify novel therapeutic targets. EXPERIMENTAL DESIGN Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST because of the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase overexpression in MPNST in vitro and in vivo using Aurora kinase short hairpin RNAs (shRNA) and compounds that inhibit Aurora kinase. RESULTS We identified 2,000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically overexpressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. CONCLUSION Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST.
Collapse
Affiliation(s)
- Ami V Patel
- Divisions of Experimental Hematology and Cancer Biology, Oncology, and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|