1
|
Cadden GM, Schloetel JG, McKenzie G, Boocock MR, Magennis SW, Stark WM. Direct observation of subunit rotation during DNA strand exchange by serine recombinases. Nat Commun 2024; 15:10407. [PMID: 39613732 DOI: 10.1038/s41467-024-54531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Serine recombinases are proposed to catalyse site-specific recombination by a unique mechanism called subunit rotation. Cutting and rejoining DNA occurs within an intermediate synaptic complex comprising a recombinase tetramer bound to two DNA sites. After double-strand cleavage at both sites, one half of the complex rotates 180° relative to the other, before re-ligation of the DNA ends. We used single-molecule FRET (smFRET) methods to provide compelling direct physical evidence for subunit rotation by recombinases Tn3 resolvase and Sin. Synaptic complexes containing fluorescently labelled DNA show FRET fluctuations consistent with the subunit rotation model. FRET changes were associated with the rotation steps, on a timescale of 0.4-1.1s - 1 , as well as opening and closing of the gap between the scissile phosphates during cleavage and ligation. Multiple rounds of recombination were observed within the ~25 s observation period, including frequent consecutive rotation events in the cleaved-DNA state without evidence of intermediate ligation.
Collapse
Affiliation(s)
- Gillian M Cadden
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK
| | - Jan-Gero Schloetel
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Grant McKenzie
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Martin R Boocock
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK.
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
| |
Collapse
|
2
|
Abioye J, Lawson-Williams M, Lecanda A, Calhoon B, McQue AL, Colloms SD, Stark WM, Olorunniji FJ. High fidelity one-pot DNA assembly using orthogonal serine integrases. Biotechnol J 2023; 18:e2200411. [PMID: 36504358 DOI: 10.1002/biot.202200411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Large serine integrases (LSIs, derived from temperate phages) have been adapted for use in a multipart DNA assembly process in vitro, called serine integrase recombinational assembly (SIRA). The versatility, efficiency, and fidelity of SIRA is limited by lack of a sufficient number of LSIs whose activities have been characterized in vitro. METHODS AND MAJOR RESULTS In this report, we compared the activities in vitro of 10 orthogonal LSIs to explore their suitability for multiplex SIRA reactions. We found that Bxb1, ϕR4, and TG1 integrases were the most active among the set we studied, but several others were also usable. As proof of principle, we demonstrated high-efficiency one-pot assembly of six DNA fragments (made by PCR) into a 7.5 kb plasmid that expresses the enzymes of the β-carotenoid pathway in Escherichia coli, using six different LSIs. We further showed that a combined approach using a few highly active LSIs, each acting on multiple pairs of att sites with distinct central dinucleotides, can be used to scale up "poly-part" gene assembly and editing. CONCLUSIONS AND IMPLICATIONS We conclude that use of multiple orthogonal integrases may be the most predictable, efficient, and programmable approach for SIRA and other in vitro applications.
Collapse
Affiliation(s)
- Jumai Abioye
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Alicia Lecanda
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Brecken Calhoon
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Arlene L McQue
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Sean D Colloms
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Femi J Olorunniji
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Montaño SP, Rowland SJ, Fuller JR, Burke ME, MacDonald A, Boocock M, Stark W, Rice P. Structural basis for topological regulation of Tn3 resolvase. Nucleic Acids Res 2023; 51:1001-1018. [PMID: 36100255 PMCID: PMC9943657 DOI: 10.1093/nar/gkac733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific DNA recombinases play a variety of biological roles, often related to the dissemination of antibiotic resistance, and are also useful synthetic biology tools. The simplest site-specific recombination systems will recombine any two cognate sites regardless of context. Other systems have evolved elaborate mechanisms, often sensing DNA topology, to ensure that only one of multiple possible recombination products is produced. The closely related resolvases from the Tn3 and γδ transposons have historically served as paradigms for the regulation of recombinase activity by DNA topology. However, despite many proposals, models of the multi-subunit protein-DNA complex (termed the synaptosome) that enforces this regulation have been unsatisfying due to a lack of experimental constraints and incomplete concordance with experimental data. Here, we present new structural and biochemical data that lead to a new, detailed model of the Tn3 synaptosome, and discuss how it harnesses DNA topology to regulate the enzymatic activity of the recombinase.
Collapse
Affiliation(s)
- Sherwin P Montaño
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J Rowland
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mary E Burke
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Alasdair I MacDonald
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Martin R Boocock
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Sakai Y, Wilkens GD, Wolski K, Zapotoczny S, Heddle JG. Topogami: Topologically Linked DNA Origami. ACS NANOSCIENCE AU 2022; 2:57-63. [PMID: 35211697 PMCID: PMC8861903 DOI: 10.1021/acsnanoscienceau.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
DNA origami is a widely used DNA nanotechnology that allows construction of two-dimensional and three-dimensional nanometric shapes. The designability and rigidity of DNA origami make it an ideal material for construction of topologically linked molecules such as catenanes, which are attractive for their potential as motors and molecular machines. However, a general method for production of topologically linked DNA origami has been lacking. Here, we show that catenated single-stranded DNA circles can be produced and used as a universal scaffold for the production of topologically linked (catenated) DNA origami structures where the individual linked structures can be of any arbitrary design. Assembly of these topologically linked DNA origami structures is achieved via a simple one-pot annealing protocol.
Collapse
Affiliation(s)
- Yusuke Sakai
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Gerrit D Wilkens
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.,Postgraduate School of Molecular Medicine, Żwirki I Wigury 61, 02-091 Warsaw, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| |
Collapse
|
5
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
6
|
Rowland SJ, Boocock MR, Burke ME, Rice PA, Stark WM. The protein-protein interactions required for assembly of the Tn3 resolution synapse. Mol Microbiol 2021; 114:952-965. [PMID: 33405333 DOI: 10.1111/mmi.14579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The site-specific recombinase Tn3 resolvase initiates DNA strand exchange when two res recombination sites and six resolvase dimers interact to form a synapse. The detailed architecture of this intricate recombination machine remains unclear. We have clarified which of the potential dimer-dimer interactions are required for synapsis and recombination, using a novel complementation strategy that exploits a previously uncharacterized resolvase from Bartonella bacilliformis ("Bart"). Tn3 and Bart resolvases recognize different DNA motifs, via diverged C-terminal domains (CTDs). They also differ substantially at N-terminal domain (NTD) surfaces involved in dimerization and synapse assembly. We designed NTD-CTD hybrid proteins, and hybrid res sites containing both Tn3 and Bart dimer binding sites. Using these components in in vivo assays, we demonstrate that productive synapsis requires a specific "R" interface involving resolvase NTDs at all three dimer-binding sites in res. Synapses containing mixtures of wild-type Tn3 and Bart resolvase NTD dimers are recombination-defective, but activity can be restored by replacing patches of Tn3 resolvase R interface residues with Bart residues, or vice versa. We conclude that the Tn3/Bart family synapse is assembled exclusively by R interactions between resolvase dimers, except for the one special dimer-dimer interaction required for catalysis.
Collapse
Affiliation(s)
- Sally-J Rowland
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Martin R Boocock
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Mary E Burke
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
A novel decatenation assay for DNA topoisomerases using a singly-linked catenated substrate. Biotechniques 2020; 69:356-362. [PMID: 33000631 DOI: 10.2144/btn-2020-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Decatenation is a crucial in vivo reaction of DNA topoisomerases in DNA replication and is frequently used in in vitro drug screening. Usually this reaction is monitored using kinetoplast DNA as a substrate, although this assay has several limitations. Here we have engineered a substrate for Tn3 resolvase that generates a singly-linked catenane that can readily be purified from the DNA substrate after restriction enzyme digestion and centrifugation. We show that this catenated substrate can be used with high sensitivity in topoisomerase assays and drug-inhibition assays.
Collapse
|
8
|
Olorunniji FJ, Lawson-Williams M, McPherson AL, Paget JE, Stark WM, Rosser SJ. Control of ϕC31 integrase-mediated site-specific recombination by protein trans-splicing. Nucleic Acids Res 2019; 47:11452-11460. [PMID: 31667500 PMCID: PMC6868429 DOI: 10.1093/nar/gkz936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.
Collapse
Affiliation(s)
- Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Jane E Paget
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| |
Collapse
|
9
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Olorunniji FJ, McPherson AL, Rosser SJ, Smith MCM, Colloms SD, Stark WM. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res 2017; 45:8635-8645. [PMID: 28666339 PMCID: PMC5737554 DOI: 10.1093/nar/gkx567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- SynthSys - Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Abstract
The involvement of host factors is critical to our understanding of underlying mechanisms of transposition and the applications of transposon-based technologies. Modified piggyBac (PB) is one of the most potent transposon systems in mammals. However, varying transposition efficiencies of PB among different cell lines have restricted its application. We discovered that the DNA-PK complex facilitates PB transposition by binding to PB transposase (PBase) and promoting paired-end complex formation. Mass spectrometry analysis and coimmunoprecipitation revealed physical interaction between PBase and the DNA-PK components Ku70, Ku80, and DNA-PKcs Overexpression or knockdown of DNA-PK components enhances or suppresses PB transposition in tissue culture cells, respectively. Furthermore, germ-line transposition efficiency of PB is significantly reduced in Ku80 heterozygous mutant mice, confirming the role of DNA-PK in facilitating PB transposition in vivo. Fused dimer PBase can efficiently promote transposition. FRET experiments with tagged dimer PBase molecules indicated that DNA-PK promotes the paired-end complex formation of the PB transposon. These data provide a mechanistic explanation for the role of DNA-PK in facilitating PB transposition and suggest a transposition-promoting manipulation by enhancing the interaction of the PB ends. Consistent with this, deletions shortening the distance between the two PB ends, such as PB vectors with closer ends (PB-CE vectors), have a profound effect on transposition efficiency. Taken together, our study indicates that in addition to regulating DNA repair fidelity during transposition, DNA-PK also affects transposition efficiency by promoting paired-end complex formation. The approach of CE vectors provides a simple practical solution for designing efficient transposon vectors.
Collapse
|
12
|
Olorunniji FJ, Rosser SJ, Marshall Stark W. Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol 2017; 1642:229-245. [PMID: 28815504 DOI: 10.1007/978-1-4939-7169-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zinc finger recombinases (ZFRs) are designer site-specific recombinases that have been adapted for a variety of genome editing purposes. Due to their modular nature, ZFRs can be customized for targeted sequence recognition and recombination. There has been substantial research on the in vivo properties and applications of ZFRs; however, in order to fully understand and customize them, it will be necessary to study their properties in vitro. Experiments in vitro can allow us to optimize catalytic activities, improve target specificity, measure and minimize off-target activity, and characterize key steps in the recombination pathway that might be modified to improve performance. Here, we present a straightforward set of protocols for the expression and purification of ZFRs, an assay system for catalytic proficiency in vitro and bandshift assays for detection of sequence-specific DNA interactions.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland
| | - Susan J Rosser
- SynthSys-Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD, Scotland
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland.
| |
Collapse
|
13
|
Fan HF, Hsieh TS, Ma CH, Jayaram M. Single-molecule analysis of ϕC31 integrase-mediated site-specific recombination by tethered particle motion. Nucleic Acids Res 2016; 44:10804-10823. [PMID: 27986956 PMCID: PMC5159548 DOI: 10.1093/nar/gkw861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 11/14/2022] Open
Abstract
Serine and tyrosine site-specific recombinases (SRs and YRs, respectively) provide templates for understanding the chemical mechanisms and conformational dynamics of strand cleavage/exchange between DNA partners. Current evidence suggests a rather intriguing mechanism for serine recombination, in which one half of the cleaved synaptic complex undergoes a 180° rotation relative to the other. The 'small' and 'large' SRs contain a compact amino-terminal catalytic domain, but differ conspicuously in their carboxyl-terminal domains. So far, only one serine recombinase has been analyzed using single substrate molecules. We now utilized single-molecule tethered particle motion (TPM) to follow step-by-step recombination catalyzed by a large SR, phage ϕC31 integrase. The integrase promotes unidirectional DNA exchange between attB and attP sites to integrate the phage genome into the host chromosome. The recombination directionality factor (RDF; ϕC31 gp3) activates the excision reaction (attL × attR). From integrase-induced changes in TPM in the presence or absence of gp3, we delineated the individual steps of recombination and their kinetic features. The gp3 protein appears to regulate recombination directionality by selectively promoting or excluding active conformations of the synapse formed by specific att site partners. Our results support a 'gated rotation' of the synaptic complex between DNA cleavage and joining.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 112, Taiwan
- Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, 112, Taiwan
| | - Tao-Shih Hsieh
- Institute of Cellular and Organismic Biology Academia Sinica, 115, Taiwan
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Abstract
Serine resolvases are an interesting group of site-specific recombinases that, in their native contexts, resolve large fused replicons into smaller separated ones. Some resolvases are encoded by replicative transposons and resolve the transposition product, in which the donor and recipient molecules are fused, into separate replicons. Other resolvases are encoded by plasmids and function to resolve plasmid dimers into monomers. Both types are therefore involved in the spread and maintenance of antibiotic-resistance genes. Resolvases and the closely related invertases were the first serine recombinases to be studied in detail, and much of our understanding of the unusual strand exchange mechanism of serine recombinases is owed to those early studies. Resolvases and invertases have also served as paradigms for understanding how DNA topology can be harnessed to regulate enzyme activity. Finally, their relatively modular structure, combined with a wealth of structural and biochemical data, has made them good choices for engineering chimeric recombinases with designer specificity. This chapter focuses on the current understanding of serine resolvases, with a focus on the contributions of structural studies.
Collapse
|
15
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
16
|
Olorunniji FJ, McPherson AL, Pavlou HJ, McIlwraith MJ, Brazier JA, Cosstick R, Stark WM. Nicked-site substrates for a serine recombinase reveal enzyme-DNA communications and an essential tethering role of covalent enzyme-DNA linkages. Nucleic Acids Res 2015; 43:6134-43. [PMID: 25990737 PMCID: PMC4499144 DOI: 10.1093/nar/gkv521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/12/2022] Open
Abstract
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase-DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Hania J Pavlou
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Michael J McIlwraith
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - John A Brazier
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AD, UK
| | - Richard Cosstick
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
18
|
Abstract
ABSTRACT
In site-specific recombination, two short DNA sequences (‘sites’) are each cut at specific points in both strands, and the cut ends are rejoined to new partners. The enzymes that mediate recognition of the sites and the subsequent cutting and rejoining steps are called recombinases. Most recombinases fall into one of two families according to similarities of their protein sequences and mechanisms; these families are known as the tyrosine recombinases and the serine recombinases, the names referring to the conserved amino acid residue that attacks the DNA phosphodiester and becomes covalently linked to a DNA strand end during catalysis. This chapter gives an overview of our current understanding of the serine recombinases, their types, biological roles, structures, catalytic mechanisms, mechanisms of regulation, and applications.
Collapse
|
19
|
McLean MM, Chang Y, Dhar G, Heiss JK, Johnson RC. Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion. eLife 2013; 2:e01211. [PMID: 24151546 PMCID: PMC3798978 DOI: 10.7554/elife.01211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/17/2013] [Indexed: 02/01/2023] Open
Abstract
Serine recombinases are often tightly controlled by elaborate, topologically-defined, nucleoprotein complexes. Hin is a member of the DNA invertase subclass of serine recombinases that are regulated by a remote recombinational enhancer element containing two binding sites for the protein Fis. Two Hin dimers bound to specific recombination sites associate with the Fis-bound enhancer by DNA looping where they are remodeled into a synaptic tetramer competent for DNA chemistry and exchange. Here we show that the flexible beta-hairpin arms of the Fis dimers contact the DNA binding domain of one subunit of each Hin dimer. These contacts sandwich the Hin dimers to promote remodeling into the tetramer. A basic region on the Hin catalytic domain then contacts enhancer DNA to complete assembly of the active Hin tetramer. Our results reveal how the enhancer generates the recombination complex that specifies DNA inversion and regulates DNA exchange by the subunit rotation mechanism. DOI:http://dx.doi.org/10.7554/eLife.01211.001.
Collapse
Affiliation(s)
- Meghan M McLean
- Department of Biological Chemistry, David Geffen School of Medicine , University of California, Los Angeles , Los Angeles , United States
| | | | | | | | | |
Collapse
|
20
|
Keenholtz RA, Mouw KW, Boocock MR, Li NS, Piccirilli JA, Rice PA. Arginine as a general acid catalyst in serine recombinase-mediated DNA cleavage. J Biol Chem 2013; 288:29206-14. [PMID: 23970547 DOI: 10.1074/jbc.m113.508028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3'O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3' phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3'O leaving group and is the prime candidate for the general acid that protonates the 3'O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.
Collapse
|
21
|
Gated rotation mechanism of site-specific recombination by ϕC31 integrase. Proc Natl Acad Sci U S A 2012; 109:19661-6. [PMID: 23150546 DOI: 10.1073/pnas.1210964109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a "subunit rotation" mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid "phes" recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive "360° rotation" rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory "gating" mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round.
Collapse
|
22
|
Nomura W, Masuda A, Ohba K, Urabe A, Ito N, Ryo A, Yamamoto N, Tamamura H. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system. Biochemistry 2012; 51:1510-7. [PMID: 22304662 DOI: 10.1021/bi201878x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ∼30 amino acids with a ββα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Prorocic MM, Wenlong D, Olorunniji FJ, Akopian A, Schloetel JG, Hannigan A, McPherson AL, Stark WM. Zinc-finger recombinase activities in vitro. Nucleic Acids Res 2011; 39:9316-28. [PMID: 21849325 PMCID: PMC3241657 DOI: 10.1093/nar/gkr652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc-finger recombinases (ZFRs) are chimaeric proteins comprising a serine recombinase catalytic domain linked to a zinc-finger DNA binding domain. ZFRs can be tailored to promote site-specific recombination at diverse 'Z-sites', which each comprise a central core sequence flanked by zinc-finger domain-binding motifs. Here, we show that purified ZFRs catalyse efficient high-specificity reciprocal recombination between pairs of Z-sites in vitro. No off-site activity was detected. Under different reaction conditions, ZFRs can catalyse Z-site-specific double-strand DNA cleavage. ZFR recombination activity in Escherichia coli and in vitro is highly dependent on the length of the Z-site core sequence. We show that this length effect is manifested at reaction steps prior to formation of recombinants (binding, synapsis and DNA cleavage). The design of the ZFR protein itself is also a crucial variable affecting activity. A ZFR with a very short (2 amino acids) peptide linkage between the catalytic and zinc-finger domains has high activity in vitro, whereas a ZFR with a very long linker was less recombination-proficient and less sensitive to variations in Z-site length. We discuss the causes of these phenomena, and their implications for practical applications of ZFRs.
Collapse
Affiliation(s)
- Marko M Prorocic
- Institute of Infection, Immunity and Inflammation, University of Glasgow, GBRC, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Heiss JK, Sanders ER, Johnson RC. Intrasubunit and intersubunit interactions controlling assembly of active synaptic complexes during Hin-catalyzed DNA recombination. J Mol Biol 2011; 411:744-64. [PMID: 21708172 DOI: 10.1016/j.jmb.2011.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Serine recombinases, which generate double-strand breaks in DNA, must be carefully regulated to ensure that chemically active DNA complexes are assembled correctly. In the Hin-catalyzed site-specific DNA inversion reaction, two inversely oriented recombination sites on the same DNA molecule assemble into a synaptic complex that uniquely generates inversion products. The Fis-bound recombinational enhancer, together with topological constraints directed by DNA supercoiling, functions to regulate Hin synaptic complex formation and activity. We have isolated a collection of gain-of-function mutants in 22 positions within the catalytic and oligomerization domains of Hin using two genetic screens and by site-directed mutagenesis. One genetic screen measured recombination in the absence of Fis and the other assessed SOS induction as a readout of increased DNA cleavage. These mutations, together with molecular modeling, identify important sites of dynamic intrasubunit and intersubunit interactions that regulate assembly of the active tetrameric recombination complex. Of particular interest are interactions between the oligomerization helix (helix E) and the catalytic domain of the same subunit that function to hold the dimer in an inactive state in the absence of the Fis/enhancer system. Among these is a relay involving a triad of phenylalanines that are proposed to switch positions during the transition from dimers to the catalytically active tetramer. Novel Hin mutants that generate synaptic complexes that are blocked at steps prior to DNA cleavage are also described.
Collapse
Affiliation(s)
- John K Heiss
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
25
|
Keenholtz RA, Rowland SJ, Boocock MR, Stark WM, Rice PA. Structural basis for catalytic activation of a serine recombinase. Structure 2011; 19:799-809. [PMID: 21645851 PMCID: PMC3238390 DOI: 10.1016/j.str.2011.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/01/2022]
Abstract
Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 Å crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.
Collapse
Affiliation(s)
- Ross A. Keenholtz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J. Rowland
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Martin R. Boocock
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - W. Marshall Stark
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Proudfoot C, McPherson AL, Kolb AF, Stark WM. Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One 2011; 6:e19537. [PMID: 21559340 PMCID: PMC3084882 DOI: 10.1371/journal.pone.0019537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene), mediated by zinc finger recombinases (ZFRs), chimaeric enzymes with linked zinc finger (DNA recognition) and recombinase (catalytic) domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.
Collapse
Affiliation(s)
- Chris Proudfoot
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Arlene L. McPherson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andreas F. Kolb
- Nutrition and Epigenetics Group, Life Long Health Division, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - W. Marshall Stark
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Abstract
Site-specific recombinases are enzymes that promote precise rearrangements of DNA sequences. They do this by cutting and rejoining the DNA strands at specific positions within a pair of target sites recognized and bound by the recombinase. One group of these enzymes, the serine recombinases, initiates strand exchange by making double-strand breaks in the DNA of the two sites, in an intermediate built around a catalytic tetramer of recombinase subunits. However, these catalytic steps are only the culmination of a complex pathway that begins when recombinase subunits recognize and bind to their target sites as dimers. To form the tetramer-containing reaction intermediate, two dimer-bound sites are brought together by protein dimer–dimer interactions. During or after this initial synapsis step, the recombinase subunit and tetramer conformations change dramatically by repositioning of component subdomains, bringing about a transformation of the enzyme from an inactive to an active configuration. In natural serine recombinase systems, these steps are subject to elaborate regulatory mechanisms in order to ensure that cleavage and rejoining of DNA strands only happen when and where they should, but we and others have identified recombinase mutants that have lost dependence on this regulation, thus facilitating the study of the basic steps leading to catalysis. We describe how our studies on activated mutants of two serine recombinases, Tn3 resolvase and Sin, are providing us with insights into the structural changes that occur before catalysis of strand exchange, and how these steps in the reaction pathway are regulated.
Collapse
|
28
|
Mouw KW, Steiner AM, Ghirlando R, Li NS, Rowland SJ, Boocock MR, Stark WM, Piccirilli JA, Rice PA. Sin resolvase catalytic activity and oligomerization state are tightly coupled. J Mol Biol 2010; 404:16-33. [PMID: 20868695 DOI: 10.1016/j.jmb.2010.08.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022]
Abstract
Serine recombinases promote specific DNA rearrangements by a cut-and-paste mechanism that involves cleavage of all four DNA strands at two sites recognized by the enzyme. Dissecting the order and timing of these cleavage events and the steps leading up to them is difficult because the cleavage reaction is readily reversible. Here, we describe assays using activated Sin mutants and a DNA substrate with a 3'-bridging phosphorothiolate modification that renders Sin-mediated DNA cleavage irreversible. We find that activating Sin mutations promote DNA cleavage rather than simply stabilize the cleavage product. Cleavage events at the scissile phosphates on complementary strands of the duplex are tightly coupled, and the overall DNA cleavage rate is strongly dependent on Sin concentration. When combined with analytical ultracentrifugation data, these results suggest that Sin catalytic activity and oligomerization state are tightly linked, and that activating mutations promote formation of a cleavage-competent oligomeric state that is normally formed only transiently within the full synaptic complex.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The active-site interactions involved in the catalysis of DNA site-specific recombination by the serine recombinases are still incompletely understood. Recent crystal structures of synaptic gammadelta resolvase-DNA intermediates and biochemical analysis of Tn3 resolvase mutants have provided new insights into the structure of the resolvase active site, and how interactions of the catalytic residues with the DNA substrate might promote the phosphoryl transfer reactions.
Collapse
|
30
|
Olorunniji FJ, Stark WM. The catalytic residues of Tn3 resolvase. Nucleic Acids Res 2009; 37:7590-602. [PMID: 19789272 PMCID: PMC2794168 DOI: 10.1093/nar/gkp797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 11/16/2022] Open
Abstract
To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site ('site I'), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 resulted in greatly reduced cleavage and recombination activity, suggesting crucial roles of these six residues in catalysis, whereas mutations of the other residues had less dramatic effects. No mutations strongly inhibited binding of resolvase to site I, but several caused conspicuous changes in the yield or stability of the synapse of two site Is observed by non-denaturing gel electrophoresis. The involvement of some residues in both synapsis and catalysis suggests that they contribute to a regulatory mechanism, in which engagement of catalytic residues with the substrate is coupled to correct assembly of the synapse.
Collapse
Affiliation(s)
| | - W. Marshall Stark
- Faculty of Biomedical and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
31
|
Rowland SJ, Boocock MR, McPherson AL, Mouw KW, Rice PA, Stark WM. Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol 2009; 74:282-98. [PMID: 19508283 PMCID: PMC2764113 DOI: 10.1111/j.1365-2958.2009.06756.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The resolvase Sin regulates DNA strand exchange by assembling an elaborate interwound synaptosome containing catalytic and regulatory Sin tetramers, and an architectural DNA-bending protein. The crystal structure of the regulatory tetramer was recently solved, providing new insights into the structural basis for regulation. Here we describe the selection and characterization of two classes of Sin mutations that, respectively, bypass or disrupt the functions of the regulatory tetramer. Activating mutations, which allow the catalytic tetramer to assemble and function independently at site I (the crossover site), were found at approximately 20% of residues in the N-terminal domain. The most strongly activating mutation (Q115R) stabilized a catalytically active synaptic tetramer in vitro. The positions of these mutations suggest that they act by destabilizing the conformation of the ground-state site I-bound dimers, or by stabilizing the altered conformation of the active catalytic tetramer. Mutations that block activation by the regulatory tetramer mapped to just two residues, F52 and R54, supporting a functional role for a previously reported crystallographic dimer-dimer interface. We suggest how F52/R54 contacts between regulatory and catalytic subunits might promote assembly of the active catalytic tetramer within the synaptosome.
Collapse
Affiliation(s)
- Sally-J Rowland
- University of Glasgow, FBLS, Division of Molecular Genetics, Glasgow, Scotland, UK.
| | | | | | | | | | | |
Collapse
|