1
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024:gkae919. [PMID: 39445825 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Kago G, Parrish S. The Mimivirus L375 Nudix enzyme hydrolyzes the 5' mRNA cap. PLoS One 2021; 16:e0245820. [PMID: 34582446 PMCID: PMC8478210 DOI: 10.1371/journal.pone.0245820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
The giant Mimivirus is a member of the nucleocytoplasmic large DNA viruses (NCLDV), a group of diverse viruses that contain double-stranded DNA (dsDNA) genomes that replicate primarily in eukaryotic hosts. Two members of the NCLDV, Vaccinia Virus (VACV) and African Swine Fever Virus (ASFV), both synthesize Nudix enzymes that have been shown to decap mRNA, a process thought to accelerate viral and host mRNA turnover and promote the shutoff of host protein synthesis. Mimivirus encodes two Nudix enzymes in its genome, denoted as L375 and L534. Importantly, L375 exhibits sequence similarity to ASFV-DP and eukaryotic Dcp2, two Nudix enzymes shown to possess mRNA decapping activity. In this work, we demonstrate that recombinant Mimivirus L375 cleaves the 5' m7GpppN mRNA cap, releasing m7GDP as a product. L375 did not significantly cleave mRNAs containing an unmethylated 5'GpppN cap, indicating that this enzyme specifically hydrolyzes methylated-capped transcripts. A point mutation in the L375 Nudix motif completely eliminated cap hydrolysis, showing that decapping activity is dependent on this motif. Addition of uncapped RNA significantly reduced L375 decapping activity, suggesting that L375 may recognize its substrate through interaction with the RNA body.
Collapse
Affiliation(s)
- Grace Kago
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
| | - Susan Parrish
- Department of Biology, McDaniel College, Westminster, Maryland, United States of America
| |
Collapse
|
3
|
Sharma S, Grudzien-Nogalska E, Hamilton K, Jiao X, Yang J, Tong L, Kiledjian M. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res 2020; 48:6788-6798. [PMID: 32432673 PMCID: PMC7337524 DOI: 10.1093/nar/gkaa402] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
We recently reported the presence of nicotinamide adenine dinucleotide (NAD)-capped RNAs in mammalian cells and a role for DXO and the Nudix hydrolase Nudt12 in decapping NAD-capped RNAs (deNADding) in cells. Analysis of 5'caps has revealed that in addition to NAD, mammalian RNAs also contain other metabolite caps including flavin adenine dinucleotide (FAD) and dephosphoCoA (dpCoA). In the present study we systematically screened all mammalian Nudix proteins for their potential deNADing, FAD cap decapping (deFADding) and dpCoA cap decapping (deCoAping) activity. We demonstrate that Nudt16 is a novel deNADding enzyme in mammalian cells. Additionally, we identified seven Nudix proteins-Nudt2, Nudt7, Nudt8, Nudt12, Nudt15, Nudt16 and Nudt19, to possess deCoAping activity in vitro. Moreover, our screening revealed that both mammalian Nudt2 and Nudt16 hydrolyze FAD-capped RNAs in vitro with Nudt16 regulating levels of FAD-capped RNAs in cells. All decapping activities identified hydrolyze the metabolite cap substrate within the diphosphate linkage. Crystal structure of human Nudt16 in complex with FAD at 2.7 Å resolution provide molecular insights into the binding and metal-coordinated hydrolysis of FAD by Nudt16. In summary, our study identifies novel cellular deNADding and deFADding enzymes and establishes a foundation for the selective functionality of the Nudix decapping enzymes on non-canonical metabolite caps.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Keith Hamilton
- Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Luo Y, Schofield JA, Simon MD, Slavoff SA. Global Profiling of Cellular Substrates of Human Dcp2. Biochemistry 2020; 59:4176-4188. [PMID: 32365300 DOI: 10.1021/acs.biochem.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| |
Collapse
|
5
|
Global deletion of the RNA decapping enzyme Dcp2 postnatally in male mice results in infertility. Biochem Biophys Res Commun 2020; 526:512-518. [DOI: 10.1016/j.bbrc.2020.03.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 02/03/2023]
|
6
|
Grudzien-Nogalska E, Wu Y, Jiao X, Cui H, Mateyak MK, Hart RP, Tong L, Kiledjian M. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat Chem Biol 2019; 15:575-582. [PMID: 31101919 PMCID: PMC6527130 DOI: 10.1038/s41589-019-0293-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
We recently demonstrated mammalian cells harbor NAD-capped mRNAs that are hydrolyzed by the DXO deNADding enzyme. Here we report the Nudix protein Nudt12 is a second mammalian deNADding enzyme structurally and mechanistically distinct from DXO and targeting different RNAs. Crystal structure of mouse Nudt12 in complex with the deNADding product AMP and three Mg2+ ions at 1.6 Å resolution provides exquisite insights into the molecular basis of the deNADding activity within the NAD pyrophosphate. Disruption of the Nudt12 gene stabilizes transfected NAD-capped RNA in cells and its endogenous NAD-capped mRNA targets are enriched in those encoding proteins involved in cellular energetics. Furthermore, exposure of cells to nutrient or environmental stress manifests changes in NAD-capped RNA levels that are selectively responsive to Nudt12 or DXO respectively, indicating an association of deNADding to cellular metabolism.
Collapse
Affiliation(s)
| | - Yixuan Wu
- Department Biological Sciences, Columbia University, New York, NY, USA
| | - Xinfu Jiao
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Cui
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Maria K Mateyak
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ronald P Hart
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Liang Tong
- Department Biological Sciences, Columbia University, New York, NY, USA.
| | - Megerditch Kiledjian
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Zhang MN, Tang QY, Li RM, Song MG. MicroRNA-141-3p/200a-3p target and may be involved in post-transcriptional repression of RNA decapping enzyme Dcp2 during renal development. Biosci Biotechnol Biochem 2018; 82:1724-1732. [PMID: 29912646 DOI: 10.1080/09168451.2018.1486176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA decapping enzyme Dcp2 is a crucial enzyme involved in the process of RNA turnover, which can post-transcriptionally regulate gene expression. Dcp2 has been found to be highly expressed in embryonic, but not adult, kidneys. Here we showed that Dcp2 mRNA was expressed, but Dcp2 proteins were absent, in mouse kidneys after postnatal day 10 (P10). In kidneys of adult Dcp2-IRES-EGFP knock-in mice, Dcp2 was undetectable but EGFP was expressed, indicating that Dcp2 mRNA was not completely silenced in adult kidneys. Using luciferase reporter assays, we found that miR-141-3p/200a-3p directly targeted the 3' UTR of Dcp2 mRNA. Overexpression of miR-141-3p and miR-200a-3p downregulated endogenous Dcp2 protein expression. Furthermore, miR-141-3p and miR-200a-3p expression was low in embryonic kidneys but increased dramatically after P10 and was negatively correlated with Dcp2 protein expression during renal development. These results suggest miR-141-3p/200a-3p may be involved in post-transcriptional repression of Dcp2 expression during renal development. ABBREVIATIONS IRES: internal ribosome entry site; EGFP: enhanced green fluorescent protein; UTR: untranslated region.
Collapse
Affiliation(s)
- Ming-Nan Zhang
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Qun-Ye Tang
- b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China.,c Department of Urology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Rui-Min Li
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Man-Gen Song
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| |
Collapse
|
9
|
Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW, Castelló A, Revilla Y. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 2017; 91:e00990-17. [PMID: 29021398 PMCID: PMC5709586 DOI: 10.1128/jvi.00990-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.
Collapse
Affiliation(s)
- Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Núñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Alfredo Castelló
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Tsuzuki M, Motomura K, Kumakura N, Takeda A. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. JOURNAL OF PLANT RESEARCH 2017; 130:211-226. [PMID: 28197782 DOI: 10.1007/s10265-017-0906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazuki Motomura
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Naoyoshi Kumakura
- Center for Sustainable Resource Science, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
11
|
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27425147 DOI: 10.1002/wrna.1379] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Removal of the 5' end cap is a critical determinant controlling mRNA stability and efficient gene expression. Removal of the cap is exquisitely controlled by multiple direct and indirect regulators that influence association with the cap and the catalytic step. A subset of these factors directly stimulate activity of the decapping enzyme, while others influence remodeling of factors bound to mRNA and indirectly stimulate decapping. Furthermore, the components of the general decapping machinery can also be recruited by mRNA-specific regulatory proteins to activate decapping. The Nudix hydrolase, Dcp2, identified as a first decapping enzyme, cleaves capped mRNA and initiates 5'-3' degradation. Extensive studies on Dcp2 led to broad understanding of its activity and the regulation of transcript specific decapping and decay. Interestingly, seven additional Nudix proteins possess intrinsic decapping activity in vitro and at least two, Nudt16 and Nudt3, are decapping enzymes that regulate mRNA stability in cells. Furthermore, a new class of decapping proteins within the DXO family preferentially function on incompletely capped mRNAs. Importantly, it is now evident that each of the characterized decapping enzymes predominantly modulates only a subset of mRNAs, suggesting the existence of multiple decapping enzymes functioning in distinct cellular pathways. WIREs RNA 2017, 8:e1379. doi: 10.1002/wrna.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
12
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
13
|
Abstract
Messenger RNAs transcribed by RNA polymerase II are modified at their 5'-end by the cotranscriptional addition of a 7-methylguanosine (m(7)G) cap. The cap is an important modulator of gene expression and the mechanism and components involved in its removal have been extensively studied. At least two decapping enzymes, Dcp2 and Nudt16, and an array of decapping regulatory proteins remove the m(7)G cap from an mRNA exposing the 5'-end to exonucleolytic decay. In contrast, relatively less is known about the decay of mRNAs that may be aberrantly capped. The recent demonstration that the Saccharomyces cerevisiae Rai1 protein selectively hydrolyzes aberrantly capped mRNAs provides new insights into the modulation of mRNA that lack a canonical m(7)G cap 5'-end. Whether an mRNA is uncapped or capped but missing the N7 methyl moiety, Rai1 hydrolyzes its 5'-end to generate an mRNA with a 5' monophosphate. Interestingly, Rai1 heterodimerizes with the Rat1 5'-3' exoribonuclease, which subsequently degrades the 5'-end monophosphorylated mRNA. Importantly, Rat1 stimulates the 5'-end hydrolysis activities of Rai1 to generate a 5'-end unprotected mRNA substrate for Rat1 and, in turn, Rai1 stimulates the activity of Rat1. The Rai1-Rat1 heterodimer functions as a molecular motor to detect and degrade mRNAs with aberrant caps and defines a novel quality control mechanism that ensures mRNA 5'-end integrity. The increase in aberrantly capped mRNA population following nutritional stress in S. cerevisiae demonstrates the presence of aberrantly capped mRNAs in cells and further reinforces the functional significance of the Rai1 in ensuring mRNA 5'-end integrity.
Collapse
Affiliation(s)
- Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
14
|
Motomura K, Le QT, Kumakura N, Fukaya T, Takeda A, Watanabe Y. The role of decapping proteins in the miRNA accumulation in Arabidopsis thaliana. RNA Biol 2012; 9:644-52. [PMID: 22614834 DOI: 10.4161/rna.19877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Decapping 1 (DCP1), Decapping 2 (DCP2) and VARICOSE (VCS) are components of the decapping complex that removes the 7-methyl-guanosine 5'-diphosphate from the 5' end of mRNAs. In animals, the decapping proteins are involved in miRNA-mediated gene silencing, whereas in plants the roles of the decapping proteins in the miRNA pathway are not well understood. Here we demonstrated that the accumulation of miRNAs decreased in dcp1, dcp2 and vcs mutants, indicating that DCP1, DCP2 and VCS are important for the miRNA pathway in Arabidopsis thaliana. The primary miRNAs (pri-miRNAs) did not increase and miRNA biogenesis components did not decrease in these mutants, suggesting that the miRNA decrease in decapping mutants is not due to the defect of pri-miRNA processing. We showed that the accumulation of miRNA targets increased concomitantly with the decrease of miRNA in the decapping mutants. Our results suggested that the seedling lethal phenotypes in the dcp1, dcp2 and vcs mutants are caused not only by the defect in decapping, but also by the disruption of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Kazuki Motomura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7. Mol Cell Biol 2012; 32:1164-72. [PMID: 22252322 DOI: 10.1128/mcb.06328-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Dcp2 mRNA-decapping protein functions primarily on a subset of mRNAs in a transcript-specific manner. Here we show that Dcp2 is an important modulator of genes involved in the type I interferon (IFN) response, which is the initial line of antiviral innate immune response elicited by a viral challenge. Mouse embryonic fibroblast cells with reduced Dcp2 levels (Dcp2(β/β)) contained significantly elevated levels of mRNAs encoding proteins involved in the type I IFN response. In particular, analysis of a key type I IFN transcription factor, IFN regulatory factor 7 (IRF-7), revealed an increase in both IRF-7 mRNA and protein in Dcp2(β/β) cells. Importantly, the increase in IRF-7 mRNA within the background of reduced Dcp2 levels was attributed to a stabilization of the IRF-7 mRNA, suggesting that Dcp2 normally modulates IRF-7 mRNA stability. Moreover, Dcp2 expression was also induced upon viral infection, consistent with a role in attenuating the antiviral response by promoting IRF-7 mRNA degradation. The induction of Dcp2 levels following a viral challenge and the specificity of Dcp2 in targeting the decay of IRF-7 mRNA suggest that Dcp2 may negatively contribute to the innate immune response in a negative feedback mechanism to restore normal homeostasis following viral infection.
Collapse
|
16
|
Wang HG, Wang XF, Jing XY, Li Z, Zhang Y, Lv ZJ. Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression. GENETICS AND MOLECULAR RESEARCH 2011; 10:1866-83. [PMID: 21948750 DOI: 10.4238/vol10-3gmr1169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our previous studies have shown that tandem Alu repeats inhibit green fluorescent protein (GFP) gene expression when inserted downstream of the GFP gene in the pEGFP-C1 vector. We found that the 22R sequence (5'-GTGAAAAAAATGCTTTATTTGT-3') from the antisense PolyA (240 bp polyadenylation signal) of simian virus 40, eliminated repression of GFP gene expression when inserted between the GFP gene and the Alu repeats. The 22R sequence contains an imperfect palindrome; based on RNA structure software prediction, it forms an unstable stem-loop structure, including a loop, a first stem, a bulge, and a second stem. Analysis of mutations of the loop length of the 22R sequence showed that the three-nucleotide loop (wild-type, 22R) induced much stronger GFP expression than did other loop lengths. Two mutations, 4TMI (A7→T, A17→T) and 5AMI (A6→T, T18→A), which caused the base type changes in the bulge and in the second stem in the 22R sequence, induced stronger GFP gene expression than 22R itself. Mutation of the bulge base (A17→T), leading to complete complementation of the stem, caused weaker GFP gene expression. Sequences without a palindrome (7pieA, 5'-GTGAAAAAAATG CAAAAAAAGT-3', 7pieT, 5'-GTGTTTTTTTTGCTTTTTTTGT-3') did not activate GFP gene expression. We conclude that an imperfect palindrome affects and can increase GFP gene expression.
Collapse
Affiliation(s)
- H G Wang
- Hebei Key Lab of Laboratory Animal, Department of Genetics, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | |
Collapse
|
17
|
Li Y, Song M, Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA (NEW YORK, N.Y.) 2011; 17:419-428. [PMID: 21224379 PMCID: PMC3039142 DOI: 10.1261/rna.2439811] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/09/2010] [Indexed: 05/30/2023]
Abstract
mRNA decapping is a crucial step in the regulation of mRNA stability and gene expression. Dcp2 is an mRNA decapping enzyme that has been widely studied. We recently reported the presence of a second mammalian cytoplasmic decapping enzyme, Nudt16. Here we address the differential utilization of the two decapping enzymes in specified mRNA decay processes. Using mouse embryonic fibroblast (MEF) cell lines derived from a hypomorphic knockout of the Dcp2 gene with undetectable levels of Dcp2 or MEF cell lines harboring a Nudt16-directed shRNA to generate reduced levels of Nudt16, we demonstrate the distinct roles for Dcp2 and Nudt16 in nonsense-mediated mRNA decay (NMD), decay of ARE-containing mRNA and miRNA-mediated silencing. Our results indicated that NMD preferentially utilizes Dcp2 rather than Nudt16; Dcp2 and Nudt16 are redundant in miRNA-mediated silencing; and Dcp2 and Nudt16 are differentially utilized for ARE-mRNA decay. These data demonstrate that the two distinct decapping enzymes can uniquely function in specific mRNA decay processes in mammalian cells.
Collapse
Affiliation(s)
- You Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | | | |
Collapse
|
18
|
Rymarquis LA, Souret FF, Green PJ. Evidence that XRN4, an Arabidopsis homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories. RNA (NEW YORK, N.Y.) 2011; 17:501-11. [PMID: 21224377 PMCID: PMC3039149 DOI: 10.1261/rna.2467911] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/30/2010] [Indexed: 05/19/2023]
Abstract
One of the major players controlling RNA decay is the cytoplasmic 5'-to-3' exoribonuclease, which is conserved among eukaryotic organisms. In Arabidopsis, the 5'-to-3' exoribonuclease XRN4 is involved in disease resistance, the response to ethylene, RNAi, and miRNA-mediated RNA decay. Curiously, XRN4 appears to display selectivity among its substrates because certain 3' cleavage products formed by miRNA-mediated decay, such as from ARF10 mRNA, accumulate in the xrn4 mutant, whereas others, such as from AGO1, do not. To examine the nature of this selectivity, transcripts that differentially accumulate in xrn4 were identified by combining PARE and Affymetrix arrays. Certain functional categories, such as stamen-associated proteins and hydrolases, were over-represented among transcripts decreased in xrn4, whereas transcripts encoding nuclear-encoded chloroplast-targeted proteins and nucleic acid-binding proteins were over-represented in transcripts increased in xrn4. To ascertain if RNA sequence influences the apparent XRN4 selectivity, a series of chimeric constructs was generated in which the miRNA-complementary sites and different portions of the surrounding sequences from AGO1 and ARF10 were interchanged. Analysis of the resulting transgenic plants revealed that the presence of a 150 nucleotide sequence downstream from the ARF10 miRNA-complementary site conferred strong accumulation of the 3' cleavage products in xrn4. In addition, sequence analysis of differentially accumulating transcripts led to the identification of 27 hexamer motifs that were over-represented in transcripts or miRNA-cleavage products accumulating in xrn4. Taken together, the data indicate that specific mRNA sequences, like those in ARF10, and mRNAs from select functional categories are attractive targets for XRN4-mediated decay.
Collapse
Affiliation(s)
- Linda A Rymarquis
- Department of Plant and Soil Sciences, University of Delaware, Delaware 19716, USA
| | | | | |
Collapse
|
19
|
Abstract
With most of the important players identified, the process of decapping is thought, for the most part, to be well understood. In this issue of Molecular Cell, Song et al. (2010) challenge this notion with the identification of a previously uncharacterized mRNA decapping enzyme.
Collapse
Affiliation(s)
- Sarah Geisler
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
20
|
Song MG, Li Y, Kiledjian M. Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 2010; 40:423-32. [PMID: 21070968 DOI: 10.1016/j.molcel.2010.10.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/10/2010] [Accepted: 08/25/2010] [Indexed: 01/18/2023]
Abstract
Regulation of RNA degradation plays an important role in the control of gene expression. One mechanism of eukaryotic mRNA decay proceeds through an initial deadenylation followed by 5' end decapping and exonucleolytic decay. Dcp2 is currently believed to be the only cytoplasmic decapping enzyme responsible for decapping of all mRNAs. Here we report that Dcp2 protein modestly contributes to bulk mRNA decay and surprisingly is not detectable in a subset of mouse and human tissues. Consistent with these findings, a hypomorphic knockout of Dcp2 had no adverse consequences in mice. In contrast, the previously reported Xenopus nucleolar decapping enzyme, Nudt16, is an ubiquitous cytoplasmic decapping enzyme in mammalian cells. Like Dcp2, Nudt16 also regulates the stability of a subset of mRNAs including a member of the motin family of proteins involved in angiogenesis, Angiomotin-like 2. These data demonstrate mammalian cells possess multiple mRNA decapping enzymes, including Nudt16 to regulate mRNA turnover.
Collapse
Affiliation(s)
- Man-Gen Song
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
21
|
Li Y, Kiledjian M. Regulation of mRNA decapping. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:253-65. [PMID: 21935889 DOI: 10.1002/wrna.15] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decapping is a critical step in the control of mRNA stability and the regulation of gene expression. Two major decapping enzymes involved in mRNA turnover have been identified, each functioning in one of the two exonucleolytic mRNA decay pathways in eukaryotic cells. The Dcp2 protein cleaves capped mRNA and initiates 5' to 3' degradation; the scavenger decapping enzyme, DcpS, hydrolyzes the cap structure generated by the 3' to 5' decay pathway. Consistent with the important role of decapping in gene expression, cap hydrolysis is exquisitely controlled by multiple regulators that influence association with the cap and the catalytic step. In this review, we will discuss the functions of the two different decapping enzymes, their regulation by cis-elements and trans-factors, and the potential role of the decapping enzymes in human neurological disorders.
Collapse
Affiliation(s)
- You Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA
| | | |
Collapse
|
22
|
Lammich S, Buell D, Zilow S, Ludwig AK, Nuscher B, Lichtenthaler SF, Prinzen C, Fahrenholz F, Haass C. Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5'-untranslated region. J Biol Chem 2010; 285:15753-60. [PMID: 20348102 DOI: 10.1074/jbc.m110.110742] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing of the amyloid precursor protein by alpha-secretase prevents formation of the amyloid beta-peptide (Abeta), which is the main constituent of amyloid plaques in brains of Alzheimer disease (AD) patients. alpha-Secretase activity is decreased in AD, and overexpression of the alpha-secretase ADAM10 (a disintegrin and metalloprotease 10) in an AD animal model prevents amyloid pathology. ADAM10 has a 444-nucleotide-long, very GC-rich 5'-untranslated region (5'-UTR) with two upstream open reading frames. Because similar properties of 5'-UTRs are found in transcripts of many genes, which are regulated by translational control mechanisms, we asked whether ADAM10 expression is translationally controlled by its 5'-UTR. We demonstrate that the 5'-UTR of ADAM10 represses the rate of ADAM10 translation. In the absence of the 5'-UTR, we observed a significant increase of ADAM10 protein levels in HEK293 cells, whereas mRNA levels were not changed. Moreover, the 5'-UTR of ADAM10 inhibits translation of a luciferase reporter in an in vitro transcription/translation assay. Successive deletion of the first half of the ADAM10 5'-UTR revealed a striking increase in ADAM10 protein expression in HEK293 cells, suggesting that this part of the 5'-UTR contains inhibitory elements for translation. Moreover, we detect an enhanced alpha-secretase activity and consequently reduced Abeta levels in the conditioned medium of HEK293 cells expressing both amyloid precursor protein and a 5'-UTR-ADAM10 deletion construct lacking the first half of the 5'-UTR. Thus, we provide evidence that the 5'-UTR of ADAM10 may have an important role for post-transcriptional regulation of ADAM10 expression and consequently Abeta production.
Collapse
Affiliation(s)
- Sven Lammich
- German Center for Neurodegenerative Diseases (DZNE) and Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parrish S, Hurchalla M, Liu SW, Moss B. The African swine fever virus g5R protein possesses mRNA decapping activity. Virology 2009; 393:177-82. [PMID: 19695654 PMCID: PMC3392020 DOI: 10.1016/j.virol.2009.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/23/2009] [Indexed: 01/29/2023]
Abstract
The African Swine Fever Virus (ASFV) encodes a single Nudix enzyme in its genome, termed the g5R protein (g5Rp). Nudix phosphohydrolases cleave a variety of substrates, such as nucleotides and diphosphoinositol polyphosphates. Previously, ASFV g5Rp was shown to hydrolyze diphosphoinositol polyphosphates and GTP, but was unable to cleave methylated mRNA cap analogues. In vaccinia virus (VACV), a distant relative of ASFV, the D9 and D10 Nudix enzymes were shown to cleave the mRNA cap, but only when the cap was attached to an RNA body. Here, we show that recombinant ASFV g5Rp hydrolyzes the mRNA cap when tethered to an RNA moiety, liberating m(7)GDP as a product. Mutations in the Nudix motif abolished mRNA decapping activity, confirming that g5Rp was responsible for cap cleavage. The decapping activity of g5Rp was potently inhibited by excess uncapped RNA but not by methylated cap analogues, suggesting that substrate recognition occurs by RNA binding.
Collapse
Affiliation(s)
- Susan Parrish
- McDaniel College, 2 College Hill, Eaton Hall, Room 212, Westminster, MD 21157, USA.
| | | | | | | |
Collapse
|