1
|
Chowdhury M, Hudson RHE. Exploring Nucleobase Modifications in Oligonucleotide Analogues for Use as Environmentally Responsive Fluorophores and Beyond. CHEM REC 2023; 23:e202200218. [PMID: 36344432 DOI: 10.1002/tcr.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Over the past two decades, it has become abundantly clear that nucleic acid biochemistry, especially with respect to RNA, is more convoluted and complex than previously appreciated. Indeed, the application and exploitation of nucleic acids beyond their predestined role as the medium for storage and transmission of genetic information to the treatment and study of diseases has been achieved. In other areas of endeavor, utilization of nucleic acids as a probe molecule requires that they possess a reporter group. The reporter group of choice is often a luminophore because fluorescence spectroscopy has emerged as an indispensable tool to probe the structural and functional properties of modified nucleic acids. The scope of this review spans research done in the Hudson lab at The University of Western Ontario and is focused on modified pyrimidine nucleobases and their applications as environmentally sensitive fluorophores, base discriminating fluorophores, and in service of antisense applications as well as tantalizing new results as G-quadruplex destabilizing agents. While this review is a focused personal account, particularly influential work of colleagues in the chemistry community will be highlighted. The intention is not to make a comprehensive review, citations to the existing excellent reviews are given, any omission of the wonderful and impactful work being done by others globally is not intentional. Thus, this review will briefly introduce the context of our work, summarize what has been accomplished and finish with the prospects of future developments.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
2
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
3
|
Budow-Busse S, Jana SK, Kondhare D, Daniliuc C, Seela F. 8-Furylimidazolo-2'-deoxycytidine: crystal structure, packing, atropisomerism and fluorescence. Acta Crystallogr C Struct Chem 2022; 78:141-147. [PMID: 35245210 PMCID: PMC8896525 DOI: 10.1107/s2053229622001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
8-Furylimidazolo-2'-deoxycytidine (furImidC), C14H14N4O5, is a fluorescent analogue of 2'-deoxycytidine, also displaying the same recognition face. As a constituent of DNA, furImidC forms extraordinarily strong silver-mediated self-pairs. Crystal structure determination revealed that furImidC adopts two types of disordered residues: the sugar unit and the furyl moiety. The disorder of the sugar residue amounts to an 87:13 split. The disorder of the furyl ring results from axial chirality at the C8-C2'' bond connecting the nucleobase to the heterocycle. The two atropisomers are present in unequal proportions [occupancies of 0.69 (2) and 0.31 (2)], and the nucleobase and the furyl moiety are coplanar. Considering the atomic sites with predominant occupancy, an anti conformation with χ = - 147.2 (7)° was found at the glycosylic bond and the 2'-deoxyribosyl moiety shows a C2'-endo (S, 2T1) conformation, with P = 160.0°. A 1H NMR-based conformational analysis of the furanose puckering revealed that the S conformation predominates also in solution. In the solid state, two neighbouring furImidC molecules are arranged in a head-to-tail fashion, but with a notable tilt of the molecules with respect to each other. Consequently, one N-H...N hydrogen bond is found for neighbouring molecules within one layer, while a second N-H...N hydrogen bond is formed to a molecule of an adjacent layer. In addition, hydrogen bonding is observed between the nucleobase and the sugar residue. A Hirshfeld surface analysis was performed to visualize the intermolecular interactions observed in the X-ray study. In addition, the fluorescence spectra of furImidC were measured in solvents of different polarity and viscosity. furImidC responds to microenvironmental changes (polarity and viscosity), which is explained by a hindered rotation of the furyl residue in solvents of high viscosity.
Collapse
Affiliation(s)
- Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sunit K. Jana
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
4
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
5
|
Kotandeniya D, Rogers MS, Fernandez J, Kanugula S, Hudson RHE, Rodriguez F, Lipscomb JD, Tretyakova N. 6-phenylpyrrolocytosine as a fluorescent probe to examine nucleotide flipping catalyzed by a DNA repair protein. Biopolymers 2020; 112:e23405. [PMID: 33098572 DOI: 10.1002/bip.23405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/05/2022]
Abstract
Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.
Collapse
Affiliation(s)
- Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melanie S Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jenna Fernandez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Robert H E Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Freddys Rodriguez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Yang T, Low JJA, Woon ECY. A general strategy exploiting m5C duplex-remodelling effect for selective detection of RNA and DNA m5C methyltransferase activity in cells. Nucleic Acids Res 2020; 48:e5. [PMID: 31691820 PMCID: PMC7145549 DOI: 10.1093/nar/gkz1047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
RNA:5-methylcytosine (m5C) methyltransferases are currently the focus of intense research following a series of high-profile reports documenting their physiological links to several diseases. However, no methods exist which permit the specific analysis of RNA:m5C methyltransferases in cells. Herein, we described how a combination of biophysical studies led us to identify distinct duplex-remodelling effects of m5C on RNA and DNA duplexes. Specifically, m5C induces a C3′-endo to C2′-endo sugar-pucker switch in CpG RNA duplex but triggers a B-to-Z transformation in CpG DNA duplex. Inspired by these different ‘structural signatures’, we developed a m5C-sensitive probe which fluoresces spontaneously in response to m5C-induced sugar-pucker switch, hence useful for sensing RNA:m5C methyltransferase activity. Through the use of this probe, we achieved real-time imaging and flow cytometry analysis of NOP2/Sun RNA methyltransferase 2 (NSUN2) activity in HeLa cells. We further applied the probe to the cell-based screening of NSUN2 inhibitors. The developed strategy could also be adapted for the detection of DNA:m5C methyltransferases. This was demonstrated by the development of DNA m5C-probe which permits the screening of DNA methyltransferase 3A inhibitors. To our knowledge, this study represents not only the first examples of m5C-responsive probes, but also a new strategy for discriminating RNA and DNA m5C methyltransferase activity in cells.
Collapse
Affiliation(s)
- Tianming Yang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| | - Joanne J A Low
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| | - Esther C Y Woon
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543 Singapore
| |
Collapse
|
7
|
Michel BY, Dziuba D, Benhida R, Demchenko AP, Burger A. Probing of Nucleic Acid Structures, Dynamics, and Interactions With Environment-Sensitive Fluorescent Labels. Front Chem 2020; 8:112. [PMID: 32181238 PMCID: PMC7059644 DOI: 10.3389/fchem.2020.00112] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
Collapse
Affiliation(s)
- Benoît Y. Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| | - Dmytro Dziuba
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
- Mohamed VI Polytechnic University, UM6P, Ben Guerir, Morocco
| | - Alexander P. Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, Kyiv, Ukraine
- Institute of Physical, Technical and Computer Science, Yuriy Fedkovych National University, Chernivtsi, Ukraine
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 – Parc Valrose, Nice, France
| |
Collapse
|
8
|
Cho SJ, Ghorbani-Choghamarani A, Saito Y, Hudson RHE. 6-Phenylpyrrolocytidine: An Intrinsically Fluorescent, Environmentally Responsive Nucleoside Analogue. ACTA ACUST UNITED AC 2019; 76:e75. [PMID: 30725523 DOI: 10.1002/cpnc.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The detailed synthetic protocols for the preparation of phosphoramidite reagents compatible with standard, automated oligonucleotide synthesis for the 2'-deoxy- and ribo-6-phenylpyrrolocyitidine are reported. Each protocol starts with the parent nucleoside and prepares the 5'-O-dimethoxytrityl-N4 -benzoyl-5-iodocytosine derivative for the nucleobase modification chemistry. The key step is the direct formation of 6-phenylpyrrolocytosine aglycon via a sequential, one-pot Pd-catalyzed Sonogashira-type cross- coupling followed by a 5-endo-dig cyclization. Subsequent standard transformations provide the deoxy- and 2'-O-tert-butyldimethysilyl protected ribo- nucleoside phosphoramidite reagents. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sung Ju Cho
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Arash Ghorbani-Choghamarani
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Yoshio Saito
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Ro JJ, Go GH, Wilhelmsson LM, Kim BH. Fluorescence properties of 6-aryl-2'-deoxy-furanouridine and -pyrrolocytidine and their derivatives. Methods Appl Fluoresc 2017; 6:015004. [PMID: 28933349 DOI: 10.1088/2050-6120/aa8e19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
2'-deoxyfuranouridine derivatives presenting various aryl groups have been synthesized through Cu(I)-catalyzed intramolecular cyclizations. Moreover, corresponding pyrrolo-dC derivatives have been synthesized and both families of compounds thoroughly characterized using UV/vis and fluorescence spectroscopy as well as time-dependent density functional theory calculations. The photophysical characterization, show that our newly synthesized derivatives of the important pyrrolo-dC family have high fluorescence quantum yields (QYs) and brightness values. Pyrrolo-dC derivative, 3a, shows an environment sensitive QY of up to >60% and brightness of almost 3000, in low polarity solvents and excitation and emission maxima between 365-381 nm and 479-510 nm, respectively, in solvents of different polarities. Two other derivatives, 3b and 3c, show high QYs and brightness values of up to 3300 that are fairly insensitive to their microenvironment. These promising photophysical features suggest future applicability as fluorescent nucleobase analogs.
Collapse
Affiliation(s)
- Jong Jin Ro
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Guo X, Leonard P, Ingale SA, Seela F. Gemcitabine, Pyrrologemcitabine, and 2'-Fluoro-2'-Deoxycytidines: Synthesis, Physical Properties, and Impact of Sugar Fluorination on Silver Ion Mediated Base Pairing. Chemistry 2017; 23:17740-17754. [PMID: 28906062 DOI: 10.1002/chem.201703427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Indexed: 01/06/2023]
Abstract
The stability of silver-mediated "dC-dC" base pairs relies not only on the structure of the nucleobase, but is also sensitive to structural modification of the sugar moiety. 2'-Fluorinated 2'-deoxycytidines with fluorine atoms in the arabino (up) and ribo (down) configuration as well as with geminal fluorine substitution (anticancer drug gemcitabine) and the novel fluorescent phenylpyrrolo-gemcitabine (ph PyrGem) have been synthesized. All the nucleosides display the recognition face of naturally occurring 2'-deoxycytidine. The nucleosides were converted into phosphoramidites and incorporated into 12-mer oligonucleotides by solid-phase synthesis. The addition of silver ions to DNA duplexes with a fluorine-modified "dC-dC" pair near the central position led to significant duplex stabilization. The increase in stability was higher for duplexes with fluorinated sugar residues than for those with an unchanged 2'-deoxyribose moiety. Similar observations were made for "dC-dT" pairs and to a minor extent for "dC-dA" pairs. The increase in silver ion mediated base-pair stability was reversed by annulation of a pyrrole ring to the cytosine moiety, as shown for 2'-fluorinated ph PyrGem in comparison with phenylpyrrolo-dC (ph PyrdC). This phenomenon results from stereoelectronic effects induced by fluoro substitution, which are transmitted from the sugar moiety to the silver ion mediated base pairs. The extent of the effect depends on the number of fluorine substituents, their configuration, and the structure of the nucleobase.
Collapse
Affiliation(s)
- Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
12
|
An end-point method based on graphene oxide for RNase H analysis and inhibitors screening. Biosens Bioelectron 2016; 90:103-109. [PMID: 27886596 DOI: 10.1016/j.bios.2016.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 12/12/2022]
Abstract
As a highly conserved damage repair protein, RNase H can hydrolysis DNA-RNA heteroduplex endonucleolytically and cleave RNA-DNA junctions as well. In this study, we have developed an accurate and sensitive RNase H assay based on fluorophore-labeled chimeric substrate hydrolysis and the differential affinity of graphene oxide on RNA strand with different length. This end-point measurement method can detect RNase H in a range of 0.01 to 1 units /mL with a detection limit of 5.0×10-3 units/ mL under optimal conditions. We demonstrate the utility of the assay by screening antibiotics, resulting in the identification of gentamycin, streptomycin and kanamycin as inhibitors with IC50 of 60±5µM, 70±8µM and 300±20µM, respectively. Furthermore, the assay was reliably used to detect RNase H in complicated biosamples and found that RNase H activity in tumor cells was inhibited by gentamycin and streptomycin sulfate in a concentration-dependent manner. The average level of RNase H in serums of HBV infection group was similar to that of control group. In summary, the assay provides an alternative tool for biochemical analysis for this enzyme and indicates the feasibility of high throughput screening inhibitors of RNase H in vitro and in vivo.
Collapse
|
13
|
Dziuba D, Pospíšil P, Matyašovský J, Brynda J, Nachtigallová D, Rulíšek L, Pohl R, Hof M, Hocek M. Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chem Sci 2016; 7:5775-5785. [PMID: 30034716 PMCID: PMC6021979 DOI: 10.1039/c6sc02548j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
A nucleoside bearing a solvatochromic push-pull fluorene fluorophore (dCFL ) was designed and synthesized by the Sonogashira coupling of alkyne-linked fluorene 8 with 5-iodo-2'-deoxycytidine. The fluorene building block 8 and labeled nucleoside dCFL exerted bright fluorescence with significant solvatochromic effect providing emission maxima ranging from 421 to 544 nm and high quantum yields even in highly polar solvents, including water. The solvatochromism of 8 was studied by DFT and ADC(2) calculations to show that, depending on the polarity of the solvent, emission either from the planar or the twisted conformation of the excited state can occur. The nucleoside was converted to its triphosphate variant dCFLTP which was found to be a good substrate for DNA polymerases suitable for the enzymatic synthesis of oligonucleotide or DNA probes by primer extension or PCR. The fluorene-linked DNA can be used as fluorescent probes for DNA-protein (p53) or DNA-lipid interactions, exerting significant color changes visible even to the naked eye. They also appear to be suitable for time-dependent fluorescence shift studies on DNA, yielding information on DNA hydration and dynamics.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Petr Pospíšil
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
| | - Martin Hof
- J. H eyrovský Institute of Physical Chemistry , Czech Academy of Sciences , Dolejskova 3 , CZ-182 23 Prague , Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Gilead & IOCB Research Center , Flemingovo nam. 2 , CZ-16610 Prague 6 , Czech Republic .
- Department of Organic Chemistry , Faculty of Science , Charles University in Prague , Hlavova 8 , CZ-12843 Prague 2 , Czech Republic
| |
Collapse
|
14
|
Cheruiyot SK, Rozners E. Fluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids. Chembiochem 2016; 17:1558-62. [PMID: 27223320 DOI: 10.1002/cbic.201600182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 01/18/2023]
Abstract
Development of new fluorescent peptide nucleic acids (PNAs) is important for fundamental research and practical applications. The goal of this study was the design of fluorogenic nucleobases for incorporation in triplex-forming PNAs. The underlying design principle was the use of a protonation event that accompanied binding of a 2-aminopyridine (M) nucleobase to a G-C base pair as an on switch for a fluorescence signal. Two fluorogenic nucleobases, 3-(1-phenylethynyl)-M and phenylpyrrolo-M, were designed, synthesized and studied. The new M derivatives provided modest enhancement of fluorescence upon protonation but showed reduced RNA binding affinity and quenching of fluorescence signal upon triple-helix formation with cognate double-stranded RNA. Our study illustrates the principal challenges of design and provides guidelines for future improvement of fluorogenic PNA nucleobases. The 3-(1-phenylethynyl)-M may be used as a fluorescent nucleobase to study PNA-RNA triple-helix formation.
Collapse
Affiliation(s)
- Samwel K Cheruiyot
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, USA.
| |
Collapse
|
15
|
Elmehriki AAH, Suchý M, Chicas KJ, Wojciechowski F, Hudson RHE. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs. ARTIFICIAL DNA, PNA & XNA 2015; 5:e29174. [PMID: 25483932 DOI: 10.4161/adna.29174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2'-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2'-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2'-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior.
Collapse
Affiliation(s)
- Adam A H Elmehriki
- a Department of Chemistry; The University of Western Ontario; London, ON Canada
| | | | | | | | | |
Collapse
|
16
|
Yang H, Mei H, Seela F. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding. Chemistry 2015; 21:10207-19. [PMID: 26096946 DOI: 10.1002/chem.201500582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/11/2022]
Abstract
Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany).
| |
Collapse
|
17
|
Dziuba D, Pohl R, Hocek M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem Commun (Camb) 2015; 51:4880-2. [DOI: 10.1039/c5cc00530b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent molecular rotors are for the first time used as light-up probes for sensing of DNA–protein interaction.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Gilead & IOCB Research Center
- CZ-16610 Prague 6
- Czech Republic
| |
Collapse
|
18
|
Pawar MG, Nuthanakanti A, Srivatsan SG. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjug Chem 2014; 24:1367-77. [PMID: 23841942 DOI: 10.1021/bc400194g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although numerous biophysical tools have provided effective systems to study nucleic acids, our current knowledge on how RNA structure complements its function is limited. Therefore, development of robust tools to study the structure–function relationship of RNA is highly desired. Toward this endeavor, we have developed a new ribonucleoside analog, based on a (selenophen-2-yl)pyrimidine core, which could serve as a fluorescence probe to study the function of RNA in real time and as an anomalous scattering label (selenium atom) for the phase determination in X-ray crystallography. The fluorescent selenophene-modified uridine analog is minimally perturbing and exhibits probe-like properties such as sensitivity to microenvironment and conformation changes. Utilizing these properties and amicability of the corresponding ribonucleotide analog to enzymatic incorporation, we have synthesized a fluorescent bacterial ribosomal decoding site (A-site) RNA construct and have developed a fluorescence binding assay to effectively monitor the binding of aminoglycoside antibiotics to the A-site. Our results demonstrate that this simple approach of building a dual probe could provide new avenues to study the structure–function relationship of not only nucleic acids, but also other biomacromolecules.
Collapse
|
19
|
Yamada K, Masaki Y, Tsunoda H, Ohkubo A, Seio K, Sekine M. A new modified cytosine base capable of base pairing with guanine using four hydrogen bonds. Org Biomol Chem 2014; 12:2255-62. [PMID: 24569493 DOI: 10.1039/c3ob42420k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligonucleotides, containing 4-N-(1H-pyrrol-2-ylcarbonyl)deoxycytidine (dC(Pyc)) and related derivatives, were synthesized via deprotection using 1.5 M NaOMe/MeOH. Among them, oligodeoxynucleotides containing dC(Pyc) exhibited a higher hybridization affinity for DNA and RNA than the unmodified oligodeoxynucleotides. Comparative analysis between dC(Pyc) and its derivatives by molecular dynamic simulation indicated that the C(Pyc) residue could form four hydrogen bonds with the opposite G nucleobase keeping a more planar structure than the C(Inc) residue where the Pyc group was replaced with a 1H-indol-2-ylcarbonyl group.
Collapse
Affiliation(s)
- Ken Yamada
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501 Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Mei H, Ingale SA, Seela F. Imidazolo-dC metal-mediated base pairs: purine nucleosides capture two Ag(+) ions and form a duplex with the stability of a covalent DNA cross-link. Chemistry 2014; 20:16248-57. [PMID: 25336305 DOI: 10.1002/chem.201404422] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 12/13/2022]
Abstract
8-Phenylimidazolo-dC ((ph) ImidC, 2) forms metal-mediated DNA base pairs by entrapping two silver ions. To this end, the fluorescent "purine" 2'-deoxyribonucleoside 2 has been synthesised and converted into the phosphoramidite 6. Owing to the ease of nucleobase deprotonation, the new Ag(+) -mediated base pair containing a "purine" skeleton is much stronger than that derived from the pyrrolo- [3,4-d]pyrimidine system ((ph) PyrdC, 1). The silver-mediated (ph) ImidC-(ph) ImidC base pair fits well into the DNA double helix and has the stability of a covalent cross-link. The formation of such artificial metal base pairs might not be limited to DNA but may be applicable to other nucleic acids such as RNA, PNA and GNA as well as other biopolymers.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857; Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | | | | |
Collapse
|
21
|
Perlíková P, Karlsen KK, Pedersen EB, Wengel J. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability. Chembiochem 2014; 15:146-56. [PMID: 24501777 DOI: 10.1002/cbic.201300567] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.
Collapse
|
22
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|
23
|
Mei H, Yang H, Röhl I, Seela F. Silver Arrays Inside DNA Duplexes Constructed from Silver(I)-Mediated Pyrrolo-dC-Pyrrolo-dC Base Pairs. Chempluschem 2014. [DOI: 10.1002/cplu.201402060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Zilbershtein-Shklanovsky L, Kafri P, Shav-Tal Y, Yavin E, Fischer B. Development of fluorescent double-strand probes labeled with 8-(p-CF3-cinnamyl)-adenosine for the detection of cyclin D1 breast cancer marker. Eur J Med Chem 2014; 79:77-88. [DOI: 10.1016/j.ejmech.2014.03.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 12/14/2022]
|
25
|
Pawar MG, Srivatsan SG. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment. J Phys Chem B 2013; 117:14273-82. [PMID: 24161106 DOI: 10.1021/jp4071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.
Collapse
Affiliation(s)
- Maroti G Pawar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
26
|
Mei H, Röhl I, Seela F. Ag+-mediated DNA base pairing: extraordinarily stable pyrrolo-dC-pyrrolo-dC pairs binding two silver ions. J Org Chem 2013; 78:9457-63. [PMID: 23965151 DOI: 10.1021/jo401109w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
6-Substituted pyrrolo-dC-pyrrolo-dC mismatches selectively capture silver ions to form extraordinarily stable metal-mediated base pairs. One single modification in a 12-mer duplex causes a Tm increase of 36.0 °C relative to the metal-free mismatched duplex. Spectrophotometric titrations as well as ESI mass spectra confirmed the binding of two silver ions per base pair. The Ag(+)-mediated base pairs may permit the construction of metal-responsive DNA with a very high silver loading.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
27
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. ACTA ACUST UNITED AC 2012; 19:937-54. [PMID: 22921062 DOI: 10.1016/j.chembiol.2012.07.011] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023]
Abstract
Oligonucleotides (ONs), and their chemically modified mimics, are now routinely used in the laboratory as a means to control the expression of fundamentally interesting or therapeutically relevant genes. ONs are also under active investigation in the clinic, with many expressing cautious optimism that at least some ON-based therapies will succeed in the coming years. In this review, we will discuss several classes of ONs used for controlling gene expression, with an emphasis on antisense ONs (AONs), small interfering RNAs (siRNAs), and microRNA-targeting ONs (anti-miRNAs). This review provides a current and detailed account of ON chemical modification strategies for the optimization of biological activity and therapeutic application, while clarifying the biological pathways, chemical properties, benefits, and limitations of oligonucleotide analogs used in nucleic acids research.
Collapse
Affiliation(s)
- Glen F Deleavey
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada.
| | | |
Collapse
|
29
|
Tanpure AA, Srivatsan SG. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA. Chembiochem 2012; 13:2392-9. [PMID: 23070860 DOI: 10.1002/cbic.201200408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/07/2022]
Abstract
The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
30
|
Ming X, Seela F. A Nucleobase-Discriminating Pyrrolo-dC Click Adduct Designed for DNA Fluorescence Mismatch Sensing. Chemistry 2012; 18:9590-600. [DOI: 10.1002/chem.201103385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/17/2012] [Indexed: 11/10/2022]
|
31
|
Noé MS, Ríos AC, Tor Y. Design, synthesis, and spectroscopic properties of extended and fused pyrrolo-dC and pyrrolo-C analogs. Org Lett 2012; 14:3150-3. [PMID: 22646728 PMCID: PMC3426657 DOI: 10.1021/ol3012327] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The syntheses of four fluorescent nucleoside analogs, related to pyrrolo-C (PyC) and pyrrolo-dC (PydC) through the conjugation or fusion of a thiophene moiety, are described. A thorough photophysical analysis of the nucleosides, in comparison to PyC, is reported.
Collapse
Affiliation(s)
- Mary S Noé
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | |
Collapse
|
32
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
33
|
Segal M, Fischer B. Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): synthesis and photophysical properties. Org Biomol Chem 2012; 10:1571-80. [PMID: 22222762 DOI: 10.1039/c1ob06536j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.
Collapse
Affiliation(s)
- Meirav Segal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | |
Collapse
|
34
|
Tanpure AA, Srivatsan SG. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site. Chemistry 2011; 17:12820-7. [PMID: 21956450 DOI: 10.1002/chem.201101194] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/18/2011] [Indexed: 11/10/2022]
Abstract
Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|
35
|
Wahba AS, Azizi F, Deleavey GF, Brown C, Robert F, Carrier M, Kalota A, Gewirtz AM, Pelletier J, Hudson RHE, Damha MJ. Phenylpyrrolocytosine as an unobtrusive base modification for monitoring activity and cellular trafficking of siRNA. ACS Chem Biol 2011; 6:912-9. [PMID: 21667942 DOI: 10.1021/cb200070k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
6-Phenylpyrrolocytosine (PhpC) is a cytosine mimic with excellent base-pairing fidelity, thermal stability, and high fluorescence. In this work, PhpC-containing small interfering RNAs (siRNAs) are shown to possess thermal stability and gene silencing activity that is virtually identical to that of natural siRNA. The emissive properties of PhpC allow the cellular trafficking of PhpC-containing siRNAs to be monitored by fluorescence microscopy. Accumulation in the cytoplasm of HeLa cells was observed using real time imaging. These findings demonstrate that PhpC-modified siRNAs retain the properties of natural siRNAs while allowing for fluorescence-based detection and monitoring, providing an ideal system for probing siRNA uptake and trafficking.
Collapse
Affiliation(s)
- Alexander S. Wahba
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | - Fereshteh Azizi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | - Glen F. Deleavey
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | - Claire Brown
- McGill University Life Sciences Complex Imaging Facility, Montreal, QC, Canada H3G 0B1
| | - Francis Robert
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, Quebec, Canada H3G 0B1
| | - Marilyn Carrier
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, Quebec, Canada H3G 0B1
| | - Anna Kalota
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alan M. Gewirtz
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Center, McGill University, Montreal, Quebec, Canada H3G 0B1
| | - Robert H. E. Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Masad J. Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| |
Collapse
|
36
|
Xie X, Xu W, Li T, Liu X. Colorimetric detection of HIV-1 ribonuclease H activity by gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1393-1396. [PMID: 21438149 DOI: 10.1002/smll.201002150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/24/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Xiaoji Xie
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore.
| | | | | | | |
Collapse
|
37
|
Pawar MG, Srivatsan SG. Synthesis, photophysical characterization, and enzymatic incorporation of a microenvironment-sensitive fluorescent uridine analog. Org Lett 2011; 13:1114-7. [PMID: 21275418 DOI: 10.1021/ol103147t] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synthesis of a microenvironment-sensitive base-modified fluorescent ribonucleoside analog based on a 5-(benzo[b]thiophen-2-yl)pyrimidine core, enzymatic incorporation of its corresponding triphosphate into RNA oligonucleotides, and photophysical characterization of fluorescently modified oligoribonucleotides are described.
Collapse
Affiliation(s)
- Maroti G Pawar
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|