1
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
2
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
3
|
Irony-Tur Sinai M, Kerem B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg Top Life Sci 2023; 7:277-287. [PMID: 37876349 PMCID: PMC10754330 DOI: 10.1042/etls20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 microsatellite sequences by human DNA polymerase δ holoenzymes is dependent on dNTP and RPA levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566133. [PMID: 37986888 PMCID: PMC10659299 DOI: 10.1101/2023.11.07.566133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Difficult-to-Replicate Sequences (DiToRS) are natural impediments in the human genome that inhibit DNA replication under endogenous replication. Some of the most widely-studied DiToRS are A+T-rich, high "flexibility regions," including long stretches of perfect [AT/TA] microsatellite repeats that have the potential to collapse into hairpin structures when in single-stranded DNA (ssDNA) form and are sites of recurrent structural variation and double-stranded DNA (dsDNA) breaks. Currently, it is unclear how these flexibility regions impact DNA replication, greatly limiting our fundamental understanding of human genome stability. To investigate replication through flexibility regions, we utilized FRET to characterize the effects of the major ssDNA-binding complex, RPA, on the structure of perfect [AT/TA]25 microsatellite repeats and also re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with A+T-rich DNA template sequences. The results indicate that [AT/TA]25 sequences adopt hairpin structures that are unwound by RPA and pol δ holoenzymes support dNTP incorporation through the [AT/TA]25 sequences as well as an A+T-rich, non-structure forming sequence. Furthermore, the extent of dNTP incorporation is dependent on the sequence of the DNA template and the concentration of dNTPs. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on the concentration of dNTPs, whereas the effects of RPA on the replication of an A+T-rich, non-structure forming sequence are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how flexibility regions contribute to genome instability.
Collapse
Affiliation(s)
- Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristin A. Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
5
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
6
|
Benitez A, Sebald M, Kanagaraj R, Rodrigo-Brenni MC, Chan YW, Liang CC, West SC. GEN1 promotes common fragile site expression. Cell Rep 2023; 42:112062. [PMID: 36729836 DOI: 10.1016/j.celrep.2023.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.
Collapse
Affiliation(s)
- Anaid Benitez
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Radhakrishnan Kanagaraj
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Monica C Rodrigo-Brenni
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Ying Wai Chan
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Chih-Chao Liang
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, DNA Recombination and Repair Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Sebastian W, Sukumaran S, Gopalakrishnan A. The signals of selective constraints on the mitochondrial non-coding control region: insights from comparative mitogenomics of Clupeoid fishes. Genetica 2021; 149:191-201. [PMID: 33914198 DOI: 10.1007/s10709-021-00121-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
The vertebrate mitochondrial genome is characterized by an exceptional organization evolving towards a reduced size. However, the persistence of a non-coding and highly variable control region is against this evolutionary trend that is explained by the presence of conserved sequence motifs or binding sites for nuclear-organized proteins that regulate mtDNA maintenance and expression. We performed a comparative mitogenomic investigation of the non-coding control region to understand its evolutionary patterns in Clupeoid fishes which are widely distributed across oceans of the world, exhibiting exemplary evolutionary potential. We confirmed the ability of sequence flanking the conserved sequence motifs in the control region to form stable secondary structures. The existence of evolutionarily conserved secondary structures without primary structure conservation suggested the action of selective constraints towards maintaining the secondary structure. The functional secondary structure is maintained by retaining the frequency of discontinuous AT and TG repeats along with compensatory base substitutions in the stem forming regions which can be considered as a selective constraint. The nucleotide polymorphism along the flanking regions of conserved sequence motifs can be explained as errors during the enzymatic replication of secondary structure-forming repeat elements. The evidence for selective constraints on secondary structures emphasizes the role of the control region in mitogenome function. Maintenance of high frequency of discontinuous repeats can be proposed as a model of adaptive evolution against the mutations that break the secondary structure involved in the efficient regulation of mtDNA functions substantiating the efficient functioning of the control region even in a high nucleotide polymorphism environment.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| |
Collapse
|
10
|
Vondrak T, Oliveira L, Novák P, Koblížková A, Neumann P, Macas J. Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Comput Struct Biotechnol J 2021; 19:2179-2189. [PMID: 33995911 PMCID: PMC8091179 DOI: 10.1016/j.csbj.2021.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Repeat-rich regions of higher plant genomes are usually associated with constitutive heterochromatin, a specific type of chromatin that forms tightly packed nuclear chromocenters and chromosome bands. There is a large body of cytogenetic evidence that these chromosome regions are often composed of tandemly organized satellite DNA. However, comparatively little is known about the sequence arrangement within heterochromatic regions, which are difficult to assemble due to their repeated nature. Here, we explore long-range sequence organization of heterochromatin regions containing the major satellite repeat CUS-TR24 in the holocentric plant Cuscuta europaea. Using a combination of ultra-long read sequencing with assembly-free sequence analysis, we reveal the complex structure of these loci, which are composed of short arrays of CUS-TR24 interrupted frequently by emerging simple sequence repeats and targeted insertions of a specific lineage of LINE retrotransposons. These data suggest that the organization of satellite repeats constituting heterochromatic chromosome bands can be more complex than previously envisioned, and demonstrate that heterochromatin organization can be efficiently investigated without the need for genome assembly.
Collapse
Affiliation(s)
- Tihana Vondrak
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice CZ-37005, Czech Republic
| |
Collapse
|
11
|
Walker CR, Scally A, De Maio N, Goldman N. Short-range template switching in great ape genomes explored using pair hidden Markov models. PLoS Genet 2021; 17:e1009221. [PMID: 33651813 PMCID: PMC7954356 DOI: 10.1371/journal.pgen.1009221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes’ genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons. DNA replication is an imperfect process which causes the mutations that give rise to genetic diversity during the evolution of genomes. While many mutations are independent, single-nucleotide substitutions or small insertions and deletions, some mutations arise as nonindependent clusters of substitutions and larger scale chromosomal rearrangements. Large-scale rearrangements (also called structural variants) in particular can have a profound impact on genome evolution and contribute to both germline and somatic disease in humans. The replication-based mechanisms underlying structural variation typically involve a polymerase switch event in which a large segment of DNA is copied using a template from an alternate location in the genome. Methods for identifying these template switch mutations lack the power to detect smaller scale rearrangements which can arise through the same replication-based pathways. Here we outline a model which can detect and assess the statistical significance of such small-scale template switches within their evolutionary context. We show that these events are widespread in the evolution of great apes and that the genomic features associated with these small-scale rearrangements are similar to those of large-scale structural variants.
Collapse
Affiliation(s)
- Conor R. Walker
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
13
|
Szlachta K, Manukyan A, Raimer HM, Singh S, Salamon A, Guo W, Lobachev KS, Wang YH. Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res 2020; 48:6654-6671. [PMID: 32501506 PMCID: PMC7337936 DOI: 10.1093/nar/gkaa483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| |
Collapse
|
14
|
Hazeslip L, Zafar MK, Chauhan MZ, Byrd AK. Genome Maintenance by DNA Helicase B. Genes (Basel) 2020; 11:E578. [PMID: 32455610 PMCID: PMC7290933 DOI: 10.3390/genes11050578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
DNA Helicase B (HELB) is a conserved helicase in higher eukaryotes with roles in the initiation of DNA replication and in the DNA damage and replication stress responses. HELB is a predominately nuclear protein in G1 phase where it is involved in initiation of DNA replication through interactions with DNA topoisomerase 2-binding protein 1 (TOPBP1), cell division control protein 45 (CDC45), and DNA polymerase α-primase. HELB also inhibits homologous recombination by reducing long-range end resection. After phosphorylation by cyclin-dependent kinase 2 (CDK2) at the G1 to S transition, HELB is predominately localized to the cytosol. However, this cytosolic localization in S phase is not exclusive. HELB has been reported to localize to chromatin in response to replication stress and to localize to the common fragile sites 16D (FRA16D) and 3B (FRA3B) and the rare fragile site XA (FRAXA) in S phase. In addition, HELB is phosphorylated in response to ionizing radiation and has been shown to localize to chromatin in response to various types of DNA damage, suggesting it has a role in the DNA damage response.
Collapse
Affiliation(s)
- Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Muhammad Zain Chauhan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
- Winthrop P. Rockefeller Cancer Institute, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A, Wang YH, Kerem B. AT-dinucleotide rich sequences drive fragile site formation. Nucleic Acids Res 2019; 47:9685-9695. [PMID: 31410468 PMCID: PMC6765107 DOI: 10.1093/nar/gkz689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/18/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions prone to breakage under replication stress conditions recurrently rearranged in cancer. Many CFSs are enriched with AT-dinucleotide rich sequences (AT-DRSs) which have the potential to form stable secondary structures upon unwinding the double helix during DNA replication. These stable structures can potentially perturb DNA replication progression, leading to genomic instability. Using site-specific targeting system, we show that targeted integration of a 3.4 kb AT-DRS derived from the human CFS FRA16C into a chromosomally stable region within the human genome is able to drive fragile site formation under conditions of replication stress. Analysis of >1300 X chromosomes integrated with the 3.4 kb AT-DRS revealed recurrent gaps and breaks at the integration site. DNA sequences derived from the integrated AT-DRS showed in vitro a significantly increased tendency to fold into branched secondary structures, supporting the predicted mechanism of instability. Our findings clearly indicate that intrinsic DNA features, such as complexed repeated sequence motifs, predispose the human genome to chromosomal instability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Noemie Stanleigh
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Tchelet Goldberg
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Aryeh Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 229080733, USA
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
16
|
Huckaby AC, Granum CS, Carey MA, Szlachta K, Al-Barghouthi B, Wang YH, Guler JL. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res 2019; 47:1615-1627. [PMID: 30576466 PMCID: PMC6393310 DOI: 10.1093/nar/gky1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Antimalarial resistance is a major obstacle in the eradication of the human malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA copy number variation (CNV), facilitate overexpression of drug targets and contribute to parasite survival. Long monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that other proximal sequence features, such as DNA hairpins, act with A/T tracks to trigger CNV formation. By adapting a sequence analysis pipeline to investigate previously reported CNVs, we identified breakpoints in 35 parasite clones with near single base-pair resolution. Using parental genome sequence, we predicted the formation of stable hairpins within close proximity to all future breakpoint locations. Especially stable hairpins were predicted to form near five shared breakpoints, establishing that the initiating event could have occurred at these sites. Further in-depth analyses defined characteristics of these 'trigger sites' across the genome and detected signatures of error-prone repair pathways at the breakpoints. We propose that these two genomic signals form the initial lesion (hairpins) and facilitate microhomology-mediated repair (A/T tracks) that lead to CNV formation across this highly repetitive genome. Targeting these repair pathways in P. falciparum may be used to block adaptation to antimalarial drugs.
Collapse
Affiliation(s)
- Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Claire S Granum
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Basel Al-Barghouthi
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Ji J, Tang X, Hu W, Maggert KA, Rong YS. The processivity factor Pol32 mediates nuclear localization of DNA polymerase delta and prevents chromosomal fragile site formation in Drosophila development. PLoS Genet 2019; 15:e1008169. [PMID: 31100062 PMCID: PMC6542543 DOI: 10.1371/journal.pgen.1008169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/30/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32’s role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism. Cancer etiological studies suggest that the majority of pathological mutations occurred under near normal DNA replication conditions, emphasizing the importance of understanding replication regulation under non-lethal conditions. To gain such a better understanding, we investigated the function of Pol32, a conserved ancillary subunit of the essential DNA polymerase Delta complex, through the development of the fruit fly Drosophila. We uncovered a previously unappreciated function of Pol32 in regulating the nuclear import of the polymerase complex, and this function is developmentally regulated. By utilizing mutations in pol32 and other replication factors, we have started to define basic features of Chromosome Fragile Sites (CFS) in Drosophila somatic cells. CFS is a major source of genome instability associated with replication stresses, and has been an important topic of cancer biology. We discovered that CFS formation does not favor genomic regions with repetitive sequences except the highly transcribed locus encoding ribosomal RNA. Our work lays the groundwork for future studies using Drosophila as an alternative system to uncover the most fundamental features of CFS.
Collapse
Affiliation(s)
- Jingyun Ji
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaona Tang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wen Hu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith A. Maggert
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Yikang S. Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
18
|
Irony-Tur Sinai M, Kerem B. Genomic instability in fragile sites-still adding the pieces. Genes Chromosomes Cancer 2018; 58:295-304. [PMID: 30525255 DOI: 10.1002/gcc.22715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic regions in normal chromosomes that exhibit genomic instability under DNA replication stress. As replication stress is an early feature of cancer development, CFSs are involved in the signature of genomic instability found in malignant tumors. The landscape of CFSs is tissue-specific and differs under different replication stress inducers. Nevertheless, the features underlying CFS sensitivity to replication stress are shared. Here, we review the events generating replication stress and discuss the unique characteristics of CFS regions and the cellular responses aimed to stabilizing these regions.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
19
|
Palumbo E, Russo A. Common fragile site instability in normal cells: Lessons and perspectives. Genes Chromosomes Cancer 2018; 58:260-269. [PMID: 30387295 DOI: 10.1002/gcc.22705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
Mechanisms and events related to common fragile site (CFS) instability are well known in cancer cells. Here, we argue that normal cells remain an important experimental model to address questions related to CFS instability in the absence of alterations in cell cycle and DNA damage repair pathways, which are common features acquired in cancer. Furthermore, a major gap of knowledge concerns the stability of CFSs during gametogenesis. CFS instability in meiotic or postmeiotic stages of the germ cell line could generate chromosome deletions or large rearrangements. This in turn can lead to the functional loss of the several CFS-associated genes with tumor suppressor function. Our hypothesis is that such mutations can potentially result in genetic predisposition to develop cancer. Indirect evidence for CFS instability in human germ cells has been provided by genomic investigations in family pedigrees associated with genetic disease. The issue of CFS instability in the germ cell line should represent one of the future efforts, and may take advantage of the existence of sequence and functional conservation of CFSs between rodents and humans.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Zheglo D, Brueckner LM, Sepman O, Wecht EM, Kuligina E, Suspitsin E, Imyanitov E, Savelyeva L. The FRA14B
common fragile site maps to a region prone to somatic and germline rearrangements within the large GPHN
gene. Genes Chromosomes Cancer 2018; 58:284-294. [DOI: 10.1002/gcc.22706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Diana Zheglo
- FSBI Research Centre for Medical Genetics; Moscow Russia
| | - Lena M. Brueckner
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Olga Sepman
- Klinik fuer Allgemein-, Viszeral-, Thorax- und minimal-invasive Chirurgie; Pforzheim Germany
| | - Elisa M. Wecht
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | | | - Evgenij Suspitsin
- Petrov Institute of Oncology; St Petersburg Russia
- St. Petersburg Pediatric Medical University; Sankt-Peterburg Russia
| | - Evgenij Imyanitov
- Petrov Institute of Oncology; St Petersburg Russia
- Mechnikov North-Western Medical University; Saint Petersburg Russia
| | - Larissa Savelyeva
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
21
|
Wang H, Li S, Zhang H, Wang Y, Hao S, Wu X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 2018; 14:e1007816. [PMID: 30496191 PMCID: PMC6289451 DOI: 10.1371/journal.pgen.1007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Genome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT). BLM deficiency leads to increased DSB formation and hyper mitotic recombination at CFS-AT and induces instability of the plasmids containing CFS-AT. We further showed that BLM is required for suppression of CFS breakage upon oncogene expression. Both helicase activity and ATR-mediated phosphorylation of BLM are important for preventing genetic instability at CFS-AT sequences. Furthermore, the role of BLM in protecting CFS-AT is not epistatic to that of FANCM, a translocase that is involved in preserving CFS stability. Loss of BLM helicase activity leads to drastic decrease of cell viability in FANCM deficient cells. We propose that BLM and FANCM utilize different mechanisms to remove DNA secondary structures forming at CFS-AT on replication forks, thereby preventing DSB formation and maintaining CFS stability. Common fragile sites (CFSs) are large chromosomal regions which are more prone to breakage than other places in the genome. They are a part of normal chromosome structure and are present in all human beings, but are also hotspots for chromosomal rearrangement during oncogenesis. Understanding how CFSs are protected to prevent genome instability is thus extremely important for revealing the mechanism underlying cancer development. We found that Bloom syndrome protein BLM is involved in resolving DNA secondary structures that arise at AT-rich sequences in CFSs, suggesting a critical function of BLM in protecting CFSs. We also found that this BLM function is distinct from the role of Fanconi anemia protein FANCM in protecting CFSs, and loss of both BLM and FANCM activities leads to cell death. These studies reveal important mechanisms of the maintenance of CFS stability in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huimin Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis. DNA Repair (Amst) 2017; 57:1-11. [PMID: 28605669 DOI: 10.1016/j.dnarep.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022]
Abstract
Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA.
Collapse
|
24
|
Madireddy A, Gerhardt J. Replication Through Repetitive DNA Elements and Their Role in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:549-581. [PMID: 29357073 DOI: 10.1007/978-981-10-6955-0_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.
Collapse
|
25
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
26
|
Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, Smith DI. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:59-74. [PMID: 27636103 DOI: 10.1002/gcc.22415] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - David I Smith
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Mukai A, Ichiraku A, Horikawa K. Reliable handling of highly A/T-rich genomic DNA for efficient generation of knockin strains of Dictyostelium discoideum. BMC Biotechnol 2016; 16:37. [PMID: 27075750 PMCID: PMC4831088 DOI: 10.1186/s12896-016-0267-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022] Open
Abstract
Background Social amoeba, Dictyostelium discoideum, is a well-established model organism for studying cellular physiology and developmental pattern formation. Its haploid genome facilitates functional analysis of genes by a single round of mutagenesis including targeted disruption. Although the efficient generation of knockout strains based on an intrinsically high homologous recombination rate has been demonstrated, successful reports for knockin strains have been limited. As social amoeba has an exceptionally high adenine and thymine (A/T)-content, conventional plasmid-based vector construction has been constrained due to deleterious deletion in E. coli. Results We describe here a simple and efficient strategy to construct GFP-knockin cassettes by using a linear DNA cloning vector derived from N15 bacteriophage. This allows reliable handling of DNA fragments whose A/T-content may be as high as 85 %, and which cannot be cloned into a circular plasmid. By optimizing the length of recombination arms, we successfully generate GFP-knockin strains for five genes involved in cAMP signalling, including a triple-colour knockin strain. Conclusions This robust strategy would be useful in handling DNA fragments with biased A/T-contents such as the genome of lower organisms and the promoter/terminator regions of higher organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0267-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asuka Mukai
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Aya Ichiraku
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Kazuki Horikawa
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan.
| |
Collapse
|
28
|
Abstract
There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Elaine M Taylor
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Howard D Lindsay
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
29
|
Thys RG, Wang YH. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene. J Biol Chem 2015; 290:28953-62. [PMID: 26463209 PMCID: PMC4661408 DOI: 10.1074/jbc.m115.660324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/27/2023] Open
Abstract
DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease.
Collapse
Affiliation(s)
- Ryan Griffin Thys
- From the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Yuh-Hwa Wang
- From the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
30
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells. Mutat Res 2015; 779:86-95. [PMID: 26163765 PMCID: PMC4808301 DOI: 10.1016/j.mrfmmm.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual chemotherapeutic drug exposure in generation of DNA breakage at sites with a propensity to form leukemia-causing gene rearrangements.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
31
|
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:425-48. [PMID: 25621662 DOI: 10.1146/annurev-pathol-012414-040424] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland;
| | | |
Collapse
|
32
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
33
|
Teasley DC, Parajuli S, Nguyen M, Moore HR, Alspach E, Lock YJ, Honaker Y, Saharia A, Piwnica-Worms H, Stewart SA. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand. J Biol Chem 2015; 290:15133-45. [PMID: 25922071 DOI: 10.1074/jbc.m115.647388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/01/2023] Open
Abstract
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.
Collapse
Affiliation(s)
- Daniel C Teasley
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Shankar Parajuli
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Mai Nguyen
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Hayley R Moore
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Elise Alspach
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Ying Jie Lock
- From the Departments of Cell Biology and Physiology and
| | - Yuchi Honaker
- From the Departments of Cell Biology and Physiology and
| | | | | | - Sheila A Stewart
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110 Medicine,
| |
Collapse
|
34
|
Franchitto A, Pichierri P. Replication fork recovery and regulation of common fragile sites stability. Cell Mol Life Sci 2014; 71:4507-17. [PMID: 25216703 PMCID: PMC11113654 DOI: 10.1007/s00018-014-1718-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The acquisition of genomic instability is a triggering factor in cancer development, and common fragile sites (CFS) are the preferential target of chromosomal instability under conditions of replicative stress in the human genome. Although the mechanisms leading to CFS expression and the cellular factors required to suppress CFS instability remain largely undefined, it is clear that DNA becomes more susceptible to breakage when replication is impaired. The models proposed so far to explain how CFS instability arises imply that replication fork progression along these regions is perturbed due to intrinsic features of fragile sites and events that directly affect DNA replication. The observation that proteins implicated in the safe recovery of stalled forks or in engaging recombination at collapsed forks increase CFS expression when downregulated or mutated suggests that the stabilization and recovery of perturbed replication forks are crucial to guarantee CFS integrity.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy,
| | | |
Collapse
|
35
|
Der Sarkissian C, Brotherton P, Balanovsky O, Templeton JEL, Llamas B, Soubrier J, Moiseyev V, Khartanovich V, Cooper A, Haak W. Mitochondrial genome sequencing in Mesolithic North East Europe Unearths a new sub-clade within the broadly distributed human haplogroup C1. PLoS One 2014; 9:e87612. [PMID: 24503968 PMCID: PMC3913659 DOI: 10.1371/journal.pone.0087612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined “C1f”. We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail: (CDS); (WH)
| | - Paul Brotherton
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Oleg Balanovsky
- Vavilov Institute for General Genetics, Russian Academy of Sciences, Moscow, Russia
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Jennifer E. L. Templeton
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg, Russia
| | - Valery Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg, Russia
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Wolfgang Haak
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail: (CDS); (WH)
| | | |
Collapse
|
36
|
Martorell M, Martínez-Pasarell O, Lopez O, Polo A, Sandalinas M, Garcia-Guixé E, Bassas L. Chromosome 16 Abnormalities in Embryos and in Sperm from a Male with a Fragile Site at 16q22.1. Cytogenet Genome Res 2014; 142:134-9. [DOI: 10.1159/000357411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
|
37
|
Zainabadi K, Jain AV, Donovan FX, Elashoff D, Rao NP, Murty VV, Chandrasekharappa SC, Srivatsan ES. One in four individuals of African-American ancestry harbors a 5.5kb deletion at chromosome 11q13.1. Genomics 2014; 103:276-87. [PMID: 24412158 DOI: 10.1016/j.ygeno.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/11/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Abstract
Cloning and sequencing of 5.5 kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines have revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5 kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African-American ancestry samples but only in 4.8% of Caucasian samples (p<0.0001). This observation is strengthened by the copy number variation (CNV) data of the HapMap samples which showed that this deletion occurs in 27% of YRI (Yoruba--West African) population but none in non-African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5 kb deletion in people of African ancestry. Computational analysis of 175 kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/hairpin secondary structures that are hallmarks of common fragile sites.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | - Anuja V Jain
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
| | - Frank X Donovan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Elashoff
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Nagesh P Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Settara C Chandrasekharappa
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS West Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| |
Collapse
|
38
|
Minocherhomji S, Hickson ID. Structure-specific endonucleases: guardians of fragile site stability. Trends Cell Biol 2013; 24:321-7. [PMID: 24361091 DOI: 10.1016/j.tcb.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/26/2022]
Abstract
Fragile sites are conserved loci predisposed to form breaks in metaphase chromosomes. The inherent instability of these loci is associated with chromosomal rearrangements in cancers and is a feature of cells from patients with chromosomal instability syndromes. One class of fragile sites, the common fragile sites (CFSs), have previously been shown to recruit several DNA repair proteins after the completion of bulk DNA synthesis in the cell, probably indicative of their inability to complete timely DNA replication. CFS loci are also prone to trigger mitotic non-disjunction of sister chromatids, leading to the formation of ultra-fine anaphase bridges (UFBs) and micronuclei. We discuss recent developments in the CFS field; in particular, the role of DNA structure-specific endonucleases in promoting cleavage at CFSs.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Ian D Hickson
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
39
|
Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID. MUS81 promotes common fragile site expression. Nat Cell Biol 2013; 15:1001-7. [PMID: 23811685 DOI: 10.1038/ncb2773] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
Fragile sites are chromosomal loci with a propensity to form gaps or breaks during early mitosis, and their instability is implicated as being causative in certain neurological disorders and cancers. Recent work has demonstrated that the so-called common fragile sites (CFSs) often impair the faithful disjunction of sister chromatids in mitosis. However, the mechanisms by which CFSs express their fragility, and the cellular factors required to suppress CFS instability, remain largely undefined. Here, we report that the DNA structure-specific nuclease MUS81-EME1 localizes to CFS loci in early mitotic cells, and promotes the cytological appearance of characteristic gaps or breaks observed at CFSs in metaphase chromosomes. These data indicate that CFS breakage is an active, MUS81-EME1-dependent process, and not a result of inadvertent chromatid rupturing during chromosome condensation. Moreover, CFS cleavage by MUS81-EME1 promotes faithful sister chromatid disjunction. Our findings challenge the prevailing view that CFS breakage is a nonspecific process that is detrimental to cells, and indicate that CFS cleavage actually promotes genome stability.
Collapse
Affiliation(s)
- Songmin Ying
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, Van Allen E, Kryukov GV, Sboner A, Theurillat JP, Soong TD, Nickerson E, Auclair D, Tewari A, Beltran H, Onofrio RC, Boysen G, Guiducci C, Barbieri CE, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Ramos AH, Winckler W, Cipicchio M, Ardlie K, Kantoff PW, Berger MF, Gabriel SB, Golub TR, Meyerson M, Lander ES, Elemento O, Getz G, Demichelis F, Rubin MA, Garraway LA. Punctuated evolution of prostate cancer genomes. Cell 2013; 153:666-77. [PMID: 23622249 DOI: 10.1016/j.cell.2013.03.021] [Citation(s) in RCA: 941] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis.
Collapse
|
41
|
Brueckner LM, Hess EM, Schwab M, Savelyeva L. Instability at the FRA8I common fragile site disrupts the genomic integrity of the KIAA0146, CEBPD and PRKDC genes in colorectal cancer. Cancer Lett 2013; 336:85-95. [PMID: 23603433 DOI: 10.1016/j.canlet.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 01/13/2023]
Abstract
Specific patterns of genomic aberrations have been associated with different types of malignancies. In colorectal cancer, losses of chromosome arm 8p and gains of chromosome arm 8q are among the most common chromosomal rearrangements, suggesting that the centromeric portion of chromosome 8 is particularly sensitive to breakage. Genomic alterations frequently occur in the early stages of tumorigenesis at specific genomic regions known as common fragile sites (cFSs). CFSs represent parts of the normal chromosome structure that are prone to breakage under replication stress. In this study, we identified the genomic location of FRA8I, spanning 530 kb at 8q11.21 and assessed the composition of the fragile DNA sequence. FRA8I encompasses KIAA0146, a large protein-coding gene with yet unknown function, as well as CEBPD and part of PRKDC, two genes encoding proteins involved in tumorigenesis in a variety of cancers. We show that FRA8I is unstable in lymphocytes and epithelial cells, displaying similar expression rates. We examined copy number alteration patterns within FRA8I in a panel of 25 colorectal cancer cell lines and surveyed publically available profiles of 56 additional colorectal cancer cell lines. Combining these data shows that focal recombination events disrupt the genomic integrity of KIAA0146 and neighboring cFS genes in 12.3% of colorectal cancer cell lines. Moreover, data analysis revealed evidence that KIAA0146 is a translocation partner of the immunoglobulin heavy chain gene in recurrent t(8;14)(q11;q32) translocations in a subset of patients with B-cell precursor acute lymphoblastic leukemia. Our data molecularly describe a region of enhanced chromosomal instability in the human genome and point to a role of the KIAA0146 gene in tumorigenesis.
Collapse
Affiliation(s)
- Lena M Brueckner
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Unno J, Takagi M, Piao J, Sugimoto M, Honda F, Maeda D, Masutani M, Kiyono T, Watanabe F, Morio T, Teraoka H, Mizutani S. Artemis-dependent DNA double-strand break formation at stalled replication forks. Cancer Sci 2013; 104:703-10. [PMID: 23465063 DOI: 10.1111/cas.12144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/26/2013] [Accepted: 03/02/2013] [Indexed: 11/28/2022] Open
Abstract
Stalled replication forks undergo DNA double-strand breaks (DSBs) under certain conditions. However, the precise mechanism underlying DSB induction and the cellular response to persistent replication fork stalling are not fully understood. Here we show that, in response to hydroxyurea exposure, DSBs are generated in an Artemis nuclease-dependent manner following prolonged stalling with subsequent activation of the ataxia-telangiectasia mutated (ATM) signaling pathway. The kinase activity of the catalytic subunit of the DNA-dependent protein kinase, a prerequisite for stimulation of the endonuclease activity of Artemis, is also required for DSB generation and subsequent ATM activation. Our findings indicate a novel function of Artemis as a molecular switch that converts stalled replication forks harboring single-stranded gap DNA lesions into DSBs, thereby activating the ATM signaling pathway following prolonged replication fork stalling.
Collapse
Affiliation(s)
- Junya Unno
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dillon LW, Pierce LCT, Ng MCY, Wang YH. Role of DNA secondary structures in fragile site breakage along human chromosome 10. Hum Mol Genet 2013; 22:1443-56. [PMID: 23297364 DOI: 10.1093/hmg/dds561] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease.
Collapse
Affiliation(s)
- Laura W Dillon
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | | | |
Collapse
|
44
|
dela Paz JS, Stronghill PE, Douglas SJ, Saravia S, Hasenkampf CA, Riggs CD. Chromosome fragile sites in Arabidopsis harbor matrix attachment regions that may be associated with ancestral chromosome rearrangement events. PLoS Genet 2012; 8:e1003136. [PMID: 23284301 PMCID: PMC3527283 DOI: 10.1371/journal.pgen.1003136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the BREVIPEDICELLUS (BP) gene of Arabidopsis thaliana condition a pleiotropic phenotype featuring defects in internode elongation, the homeotic conversion of internode to node tissue, and downward pointing flowers and pedicels. We have characterized five mutant alleles of BP, generated by EMS, fast neutrons, x-rays, and aberrant T–DNA insertion events. Curiously, all of these mutagens resulted in large deletions that range from 140 kbp to over 900 kbp just south of the centromere of chromosome 4. The breakpoints of these mutants were identified by employing inverse PCR and DNA sequencing. The south breakpoints of all alleles cluster in BAC T12G13, while the north breakpoint locations are scattered. With the exception of a microhomology at the bp-5 breakpoint, there is no homology in the junction regions, suggesting that double-stranded breaks are repaired via non-homologous end joining. Southwestern blotting demonstrated the presence of nuclear matrix binding sites in the south breakpoint cluster (SBC), which is A/T rich and possesses a variety of repeat sequences. In situ hybridization on pachytene chromosome spreads complemented the molecular analyses and revealed heretofore unrecognized structural variation between the Columbia and Landsberg erecta genomes. Data mining was employed to localize other large deletions around the HY4 locus to the SBC region and to show that chromatin modifications in the region shift from a heterochromatic to euchromatic profile. Comparisons between the BP/HY4 regions of A. lyrata and A. thaliana revealed that several chromosome rearrangement events have occurred during the evolution of these two genomes. Collectively, the features of the region are strikingly similar to the features of characterized metazoan chromosome fragile sites, some of which are associated with karyotype evolution. Chromosome evolution involves both small-scale (e.g. single nucleotide) changes, as well as large-scale rearrangements such as inversions, translocations, and fusion events. We investigated mutations of the BREVIPEDICELLUS gene of Arabidopsis, which is a master regulator of inflorescence architecture. These mutations are not due to single nucleotide changes, but rather to large deletions, some spanning nearly one million base pairs. Molecular and biochemical analyses reveal that the chromosome breakpoints cluster in an area that is rich in repetitive elements and harbor multiple binding sites for nuclear matrix proteins. Data mining revealed intriguing correlations between the breakpoint cluster and hotspots of genetic recombination, regions of the chromosome that have undergone several rearrangement events during evolution, and changes in histone protein modifications. We propose that these unstable regions are chromosome fragile sites that assist in marking a boundary between gene-poor, transcriptionally repressed centromeric chromatin and a more relaxed chromatin domain that is gene-rich.
Collapse
Affiliation(s)
- Joelle S dela Paz
- Department of Biological Sciences and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Aswini S, Jegatheesan T, Chandra N. Spontaneous expression of FRA16B in a non-consanguineous couple experiencing multiple fetal losses. J Obstet Gynaecol Res 2012; 38:1223-7. [DOI: 10.1111/j.1447-0756.2012.01850.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Brueckner LM, Sagulenko E, Hess EM, Zheglo D, Blumrich A, Schwab M, Savelyeva L. Genomic rearrangements at the FRA2H common fragile site frequently involve non-homologous recombination events across LTR and L1(LINE) repeats. Hum Genet 2012; 131:1345-59. [PMID: 22476624 DOI: 10.1007/s00439-012-1165-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/24/2012] [Indexed: 01/11/2023]
Abstract
Common fragile sites (cFSs) are non-random chromosomal regions that are prone to breakage under conditions of replication stress. DNA damage and chromosomal alterations at cFSs appear to be critical events in the development of various human diseases, especially carcinogenesis. Despite the growing interest in understanding the nature of cFS instability, only a few cFSs have been molecularly characterised. In this study, we fine-mapped the location of FRA2H using six-colour fluorescence in situ hybridisation and showed that it is one of the most active cFSs in the human genome. FRA2H encompasses approximately 530 kb of a gene-poor region containing a novel large intergenic non-coding RNA gene (AC097500.2). Using custom-designed array comparative genomic hybridisation, we detected gross and submicroscopic chromosomal rearrangements involving FRA2H in a panel of 54 neuroblastoma, colon and breast cancer cell lines. The genomic alterations frequently involved different classes of long terminal repeats and long interspersed nuclear elements. An analysis of breakpoint junction sequence motifs predominantly revealed signatures of microhomology-mediated non-homologous recombination events. Our data provide insight into the molecular structure of cFSs and sequence motifs affected by their activation in cancer. Identifying cFS sequences will accelerate the search for DNA biomarkers and targets for individualised therapies.
Collapse
Affiliation(s)
- Lena M Brueckner
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Dillon LW, Burrow AA, Wang YH. DNA instability at chromosomal fragile sites in cancer. Curr Genomics 2011; 11:326-37. [PMID: 21286310 PMCID: PMC2944998 DOI: 10.2174/138920210791616699] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/06/2010] [Accepted: 05/18/2010] [Indexed: 01/02/2023] Open
Abstract
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.
Collapse
Affiliation(s)
- Laura W Dillon
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | |
Collapse
|
48
|
Failure of Origin Activation in Response to Fork Stalling Leads to Chromosomal Instability at Fragile Sites. Mol Cell 2011; 43:122-31. [DOI: 10.1016/j.molcel.2011.05.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 03/07/2011] [Accepted: 05/20/2011] [Indexed: 12/27/2022]
|