1
|
Yang Z, Zhang H, Tan X, Wei Z, Wen C, Sun Z, Sun B, Chen J. Insights Into the Effect of Rice Stripe Virus P2 on Rice Defense by Comparative Proteomic Analysis. Front Microbiol 2022; 13:897589. [PMID: 35747367 PMCID: PMC9209781 DOI: 10.3389/fmicb.2022.897589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.
Collapse
Affiliation(s)
- Zihang Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Bingjian Sun,
| | - Jianping Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jianping Chen,
| |
Collapse
|
2
|
Kumari P, Bhavesh NS. Human DND1-RRM2 forms a non-canonical domain swapped dimer. Protein Sci 2021; 30:1184-1195. [PMID: 33860980 PMCID: PMC8138521 DOI: 10.1002/pro.4083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/09/2022]
Abstract
RNA recognition motif (RRM) being the most abundant RNA binding domain in eukaryotes, is a major player in cellular regulation. Several variations in the canonical βαββαβ topology have been observed. We have determined the 2.3 Å crystal structure of the human DND1-RRM2 domain. The structure revealed an interesting non-canonical RRM fold, which is maintained by the formation of a 3D domain swapped dimer between β1 and β4 strands across protomers. We have delineated the structural basis of the stable domain swapped dimer formation using the residue level dynamics of protein explored by NMR spectroscopy and MD simulations. Our structural and dynamics studies substantiate major determinants and molecular basis for domain swapped dimerization observed in the RRM domain.
Collapse
Affiliation(s)
- Pooja Kumari
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| | - Neel Sarovar Bhavesh
- Transcription Regulation GroupInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
| |
Collapse
|
3
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032771. [PMID: 29959194 DOI: 10.1101/cshperspect.a032771] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) posttranscriptionally regulate gene expression by repressing protein synthesis and exert a broad influence over development, physiology, adaptation, and disease. Over the past two decades, great strides have been made toward elucidating how miRNAs go about shutting down messenger RNA (mRNA) translation and promoting mRNA decay.
Collapse
Affiliation(s)
- Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc R Fabian
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
5
|
Chen EYY, Chen JS, Ying SY. The microRNA and the perspectives of miR-302. Heliyon 2019; 5:e01167. [PMID: 30723835 PMCID: PMC6351428 DOI: 10.1016/j.heliyon.2019.e01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
MiRNAs are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. MiRNAs play important roles in many aspects of physiology and pathology throughout the body, particularly in cancer, which have made miRNAs attractive tools and targets for translational research. The types of non-coding RNAs, biogenesis of miRNAs, circulating miRNAs, and direct delivery of miRNA were briefly reviewed. As a case of point, the role and perspective of miR-302, a family of ES-specific miRNA, on cancer, iPSCs, heart disease were presented.
Collapse
Affiliation(s)
- Emily Yen Yu Chen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Jack S. Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Fernandes H, Czapinska H, Grudziaz K, Bujnicki JM, Nowacka M. Crystal structure of human Acinus RNA recognition motif domain. PeerJ 2018; 6:e5163. [PMID: 30042883 PMCID: PMC6057467 DOI: 10.7717/peerj.5163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Acinus is an abundant nuclear protein involved in apoptosis and splicing. It has been implicated in inducing apoptotic chromatin condensation and DNA fragmentation during programmed cell death. Acinus undergoes activation by proteolytic cleavage that produces a truncated p17 form that comprises only the RNA recognition motif (RRM) domain. We have determined the crystal structure of the human Acinus RRM domain (AcRRM) at 1.65 Å resolution. It shows a classical four-stranded antiparallel β-sheet fold with two flanking α-helices and an additional, non-classical α-helix at the C-terminus, which harbors the caspase-3 target sequence that is cleaved during Acinus activation. In the structure, the C-terminal α-helix partially occludes the potential ligand binding surface of the β-sheet and hypothetically shields it from non-sequence specific interactions with RNA. Based on the comparison with other RRM-RNA complex structures, it is likely that the C-terminal α-helix changes its conformation with respect to the RRM core in order to enable RNA binding by Acinus.
Collapse
Affiliation(s)
- Humberto Fernandes
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Katarzyna Grudziaz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Martyna Nowacka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
8
|
Cieplak-Rotowska MK, Tarnowski K, Rubin M, Fabian MR, Sonenberg N, Dadlez M, Niedzwiecka A. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:158-173. [PMID: 29080206 PMCID: PMC5785596 DOI: 10.1007/s13361-017-1830-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. Graphical Abstract.
Collapse
Affiliation(s)
- Maja K Cieplak-Rotowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Krzysztof Tarnowski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Marcin Rubin
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Goodman Cancer Center, McGill University, Montréal, Québec, Canada
| | - Michal Dadlez
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02106, Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
9
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Donald C Chang
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
10
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
11
|
Eichhorn CD, Chug R, Feigon J. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA. Nucleic Acids Res 2016; 44:9977-9989. [PMID: 27679474 PMCID: PMC5175362 DOI: 10.1093/nar/gkw833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal La module binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear. We report the solution NMR structure of the hLARP7 CTD and show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Rahul Chug
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
12
|
Zielezinski A, Karlowski WM. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol 2016; 12:761-70. [PMID: 26106978 PMCID: PMC4615383 DOI: 10.1080/15476286.2015.1051302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- a Department of Computational Biology; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University ; Poznan , Poland
| | | |
Collapse
|
13
|
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16:421-33. [PMID: 26077373 DOI: 10.1038/nrg3965] [Citation(s) in RCA: 1367] [Impact Index Per Article: 136.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5'-to-3' exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5'-to-3' degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.
Collapse
Affiliation(s)
- Stefanie Jonas
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| |
Collapse
|
14
|
Stroynowska-Czerwinska A, Fiszer A, Krzyzosiak WJ. The panorama of miRNA-mediated mechanisms in mammalian cells. Cell Mol Life Sci 2014; 71:2253-70. [PMID: 24468964 PMCID: PMC4031385 DOI: 10.1007/s00018-013-1551-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/02/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs comprise a large family of short, non-coding RNAs that are present in most eukaryotic organisms and are typically involved in downregulating the expression of protein-coding genes. The detailed mechanisms of miRNA functioning in animals and plants have been under investigation for more than decade. In mammalian cells, miRNA guides the effector complex miRISC to bind with partially complementary sequences, usually within the 3′UTR of mRNAs, and inhibit protein synthesis with or without transcript degradation. In addition to these main mechanisms, several other modes of miRNA-mediated gene expression regulation have been described, but their scale and importance remain a matter of debate. In this review, we briefly summarize the pathway of miRNA precursor processing during miRNA biogenesis and continue with the description of the miRISC assembly process. Then, we present the miRNA-mediated mechanisms of gene expression regulation in detail, and we gather information concerning the proteins involved in these processes. In addition, we briefly refer to the current applications of miRNA mechanisms in therapeutic strategies. Finally, we highlight some of the remaining controversies surrounding the regulation of mammalian gene expression by miRNAs.
Collapse
Affiliation(s)
- Anna Stroynowska-Czerwinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | | | | |
Collapse
|
15
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|
16
|
An SNP in the trinucleotide repeat region of the TNRC6A gene maps to a major TNGW1 autoepitope in patients with autoantibodies to GW182. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:243-59. [PMID: 23224974 DOI: 10.1007/978-1-4614-5107-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GW/P bodies contain two TNRC6A protein isoforms (GW182 and TNGW1) that function as translational repressors of mRNA through Ago2-mediated RNA silencing. Autoantibodies to GW/P body components GW182, Ge-1 and Ago2 have previously been correlated with clinical autoimmune diseases including neurological disease, Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and primary biliary cirrhosis. No studies were published to date examining if patients with autoantibodies directed against GW/P bodies contain autoantibodies to the trinucleotide repeat (TNR) region of TNGW1, which differs from GW182 only by the addition of an N-terminal QP-rich 253 amino acid sequence. Our data show that 85.7% of GW/P body positive plasma contain autoantibodies to various epitopes in the TNR region of TNGW1. Given the association of neurological diseases with autoantibodies directed to the TNR region on exon 5 of TNRC6A, this study examined whether there were TNR expansions as described in other neurological diseases and/or mutations in the nucleotide sequence of the CAG/CCA/G-rich region in seven anti-GW/P body positive patients, six control and eight breast cancer patients. Although a TNR expansion was not identified, 28.6% of patients containing autoantibodies to the TNR of TNGW1 were shown to have a single nucleotide polymorphism (SNP) at c.344C > A in the CAG/CCA/G-rich region of TNRC6A, which when translated, would produce a protein variant of p.Pro115Gln. The amino acid change may alter the structure of TNGW1 and/or perturb its miRNA regulatory function although this has not been examined experimentally. A putative change in protein structure may lead to a loss of tolerance to the TNGW1 protein or result in a "neo-antigen" in patients containing the specific TNRC6A SNPs. Further studies of a larger cohort of GW/P body positive patients and structure-function relationships of the variant TNRC6A are required to fully understand the role that such SNPs play in GW/P body autoantibody production and/or pathogenesis of related autoimmune diseases.
Collapse
|
17
|
Li J, Hobman TC, Simmonds AJ. Gawky (GW) is the Drosophila melanogaster GW182 homologue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:127-45. [PMID: 23224968 DOI: 10.1007/978-1-4614-5107-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Li
- Department of Cell Biology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
18
|
Moser JJ, Fritzler MJ. Relationship of other cytoplasmic ribonucleoprotein bodies (cRNPB) to GW/P bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:213-42. [PMID: 23224973 DOI: 10.1007/978-1-4614-5107-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GW/P body components are involved in the post-transcriptional -processing of messenger RNA (mRNA) through the RNA interference and 5' → 3' mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
19
|
Braun JE, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:147-63. [PMID: 23224969 DOI: 10.1007/978-1-4614-5107-5_9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
20
|
Yao B, Li S, Chan EKL. Function of GW182 and GW bodies in siRNA and miRNA pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:71-96. [PMID: 23224966 DOI: 10.1007/978-1-4614-5107-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GW182 is an 182 kDa protein with multiple glycine/tryptophan repeats (GW or WG) playing a central role in siRNA- and miRNA-mediated gene silencing. GW182 interacts with its functional partner Argonaute proteins (AGO) via multiple domains to exert its silencing activity in both pathways. In siRNA-mediated silencing, knockdown either GW182 or Ago2 causes loss of silencing activity correlating with the disassembly of GWBs. In contrast, GW182 and its longer isoform TNGW1 appear to be downstream repressors that function independent of Ago2, whereas the Ago2-GW182 interaction is critical for the localization of Ago2 in the cytoplasmic foci and its repression function. GW182 contains two non-overlapping repression domains that can trigger translational repression with mild effect on mRNA decay. Collectively, GW182 plays a critical role in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
21
|
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19:586-93. [PMID: 22664986 DOI: 10.1038/nsmb.2296] [Citation(s) in RCA: 750] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since their discovery almost two decades ago, microRNAs (miRNAs) have been shown to function by post-transcriptionally regulating protein accumulation. Understanding how miRNAs silence targeted mRNAs has been the focus of intensive research. Multiple models have been proposed, with few mechanistic details having been worked out. However, the past few years have witnessed a quantum leap forward in our understanding of the molecular mechanics of miRNA-mediated gene silencing. In this review we describe recent discoveries, with an emphasis on how miRISC post-transcriptionally controls gene expression by inhibiting translation and/or initiating mRNA decay, and how trans-acting factors control miRNA action.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
22
|
PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 2012; 19:603-8. [PMID: 22635249 DOI: 10.1038/nsmb.2309] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/24/2012] [Indexed: 12/20/2022]
Abstract
Polyadenylated mRNAs are typically more strongly repressed by microRNAs (miRNAs) than their nonadenylated counterparts. Using a Drosophila melanogaster cell-free translation system, we found that this effect is mediated by the poly(A)-binding protein (PABP). miRNA repression was positively correlated with poly(A) tail length, but this stimulatory effect on repression was lost when translation was repressed by the tethered GW182 silencing domain rather than the miRNA-induced silencing complex (miRISC) itself. These findings are mechanistically explained by a notable function of PABP: it promotes association of miRISC with miRNA-regulated mRNAs. We also found that PABP association with mRNA rapidly diminished with miRISC recruitment and before detectable deadenylation. We integrated these data into a revised model for the function of PABP and the poly(A) tail in miRNA-mediated translational repression.
Collapse
|
23
|
Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 2012; 40:5651-65. [PMID: 22402495 PMCID: PMC3384334 DOI: 10.1093/nar/gks218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GW182 family proteins are essential for miRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets via interactions with Argonaute proteins and then promote translational repression and degradation of the miRNA targets. The human and Drosophila melanogaster GW182 proteins share a similar domain organization and interact with PABPC1 as well as with subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. The homologous proteins in Caenorhabditis elegans, AIN-1 and AIN-2, lack most of the domains present in the vertebrate and insect proteins, raising the question as to how AIN-1 and AIN-2 contribute to silencing. Here, we show that both AIN-1 and AIN-2 interact with Argonaute proteins through GW repeats in the middle region of the AIN proteins. However, only AIN-1 interacts with C. elegans and D. melanogaster PABPC1, PAN3, NOT1 and NOT2, suggesting that AIN-1 and AIN-2 are functionally distinct. Our findings reveal a surprising evolutionary plasticity of the GW182 protein interaction network and demonstrate that binding to PABPC1 and deadenylase complexes has been maintained throughout evolution, highlighting the significance of these interactions for silencing.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
24
|
Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 2011; 18:1218-26. [PMID: 21984184 PMCID: PMC3885283 DOI: 10.1038/nsmb.2166] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/29/2011] [Indexed: 01/05/2023]
Abstract
miRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR4-NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR4-NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR4-NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNAs, including inhibiting translation independently of deadenylation.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 2011; 18:1211-7. [PMID: 21984185 DOI: 10.1038/nsmb.2149] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022]
Abstract
miRNAs recruit the miRNA-induced silencing complex (miRISC), which includes Argonaute and GW182 as core proteins. GW182 proteins effect translational repression and deadenylation of target mRNAs. However, the molecular mechanisms of GW182-mediated repression remain obscure. We show here that human GW182 independently interacts with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Interaction of GW182 with CCR4-NOT is mediated by two newly discovered phylogenetically conserved motifs. Although either motif is sufficient to bind CCR4-NOT, only one of them can promote processive deadenylation of target mRNAs. Thus, GW182 serves as both a platform that recruits deadenylases and as a deadenylase coactivator that facilitates the removal of the poly(A) tail by CCR4-NOT.
Collapse
|
26
|
Su H, Meng S, Lu Y, Trombly MI, Chen J, Lin C, Turk A, Wang X. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Mol Cell 2011; 43:97-109. [PMID: 21726813 DOI: 10.1016/j.molcel.2011.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/16/2011] [Accepted: 06/10/2011] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin ligase activity is dispensable for EDD function in miRNA silencing. Instead, EDD interacts with GW182 family proteins in the Argonaute-miRNA complexes. The PABC domain of EDD is essential for its silencing function. Through the PABC domain, EDD participates in miRNA silencing by recruiting downstream effectors. Among the PABC-interactors, DDX6 and Tob1/2 are both required and sufficient for silencing mRNA targets. Taken together, these data demonstrate a critical function for EDD in miRNA silencing.
Collapse
Affiliation(s)
- Hong Su
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Martin-Tumasz S, Richie AC, Clos LJ, Brow DA, Butcher SE. A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop. Nucleic Acids Res 2011; 39:7837-47. [PMID: 21653550 PMCID: PMC3177201 DOI: 10.1093/nar/gkr455] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its β-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24′s annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly.
Collapse
|
28
|
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34. [PMID: 20813183 PMCID: PMC3001194 DOI: 10.1016/j.cellsig.2010.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival.
Collapse
Key Words
- atxn2, ataxin-2
- bicd, bicaudal d
- cbp, creb binding protein
- cpeb, cytoplasmic polyadenylation element binding protein
- dhc, dynein heavy chain
- dic, dynein intermediate chain
- fak, focal adhesion kinase
- fus/tls/hnrnp p2, fused in sarcoma
- g3bp, ras-gap sh3 domain binding protein
- gcn2, general control nonderepressible-2
- grb7, growth factor receptor-bound protein 7
- hap, hnrnp a1 interacting protein
- hdac6, histone deacetylase 6
- hri, heme-regulated inhibitor
- hsf, heat shock transcription factor
- khc, kinesin heavy chain
- klc, kinesin light chain
- mln51, metastatic lymph node 51
- nmd, nonsense mediated decay
- nsbs, nuclear stress bodies
- ogfod1, 2–14 oxoglutarate and fe(ii)-dependent oxygenase domain containing 1
- pb, processing body
- perk, pancreatic endoplasmic reticulum eif2alpha kinase
- pkr/eif2ak2, double stranded rna-dependent protein kinase
- pp1, protein phosphatase 1
- prp, prion protein
- rbp, rna binding protein
- rnp, ribonucleoparticle
- sam68, src associated in mitosis 68 kda
- member of star, signal transducer and activator of rna
- sca, spinocerebellar ataxia
- sg, stress granule
- sma, spinal muscular atrophy
- fmrp, fragile x mental retardation protein
- smn, survival of motor neuron
- tdp43, tar dna-binding protein 43
- traf2, tnf receptor associated factor 2
- uvgs, uv rna granules
- processing body
- stress granule
- kinesin
- dynein
- bicaudal d
- aggresome
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mariela Loschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Andrea Desbats
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- University of Buenos Aires
| |
Collapse
|
29
|
Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EKL. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2010; 39:2534-47. [PMID: 21131274 PMCID: PMC3074120 DOI: 10.1093/nar/gkq1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Metazoan cells form cytoplasmic mRNA granules such as stress granules (SG) and processing bodies (P bodies) that are proposed to be sites of aggregated, translationally silenced mRNAs and mRNA degradation. Poliovirus (PV) is a plus-strand RNA virus containing a genome that is a functional mRNA; thus, we investigated if PV antagonizes the processes that lead to formation of these structures. We have previously shown that PV infection inhibits the ability of cells to form stress granules by cleaving RasGAP-SH3-binding protein (G3BP). Here, we show that P bodies are also disrupted during PV infection in cells by 4 h postinfection. The disruption of P bodies is more rapid and more complete than disruption of stress granules. The kinetics of P body disruption correlated with production of viral proteinases and required substantial viral gene product expression. The organizing mechanism that forms P body foci in cells is unknown; however, potential scaffolding, aggregating, or other regulatory proteins found in P bodies were investigated for degradation. Two factors involved in 5'-end mRNA decapping and degradation, Xrn1 and Dcp1a, and the 3' deadenylase complex component Pan3 underwent accelerated degradation during infection, and Dcp1a may be a direct substrate of PV 3C proteinase. Several other key factors proposed to be essential for P body formation, GW182, Edc3, and Edc4, were unaffected by poliovirus infection. Since deadenylation has been reported to be required for P body formation, viral inhibition of deadenylation, through Pan3 degradation, is a potential mechanism of P body disruption.
Collapse
|
31
|
Moser JJ, Fritzler MJ. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One 2010; 5:e13445. [PMID: 20976148 PMCID: PMC2956662 DOI: 10.1371/journal.pone.0013445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 09/14/2010] [Indexed: 12/18/2022] Open
Abstract
Background GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. Methodology/Principal Findings RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. Conclusions/Significance The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.
Collapse
Affiliation(s)
- Joanna J. Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J. Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
32
|
Chekulaeva M, Parker R, Filipowicz W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 2010; 38:6673-83. [PMID: 20530530 PMCID: PMC2965232 DOI: 10.1093/nar/gkq501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
33
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2382] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
34
|
Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nat Rev Mol Cell Biol 2010; 11:379-84. [PMID: 20379206 DOI: 10.1038/nrm2885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GW182 proteins have emerged as key components of microRNA (miRNA) silencing complexes in animals. Although the precise molecular function of GW182 proteins is not fully understood, new findings indicate that they act as poly(A)-binding protein (PABP)-interacting proteins (PAIPs) that promote gene silencing, at least in part, by interfering with cytoplasmic PABP1 (PABPC1) function during translation and mRNA stabilization. This recent discovery paves the way for future studies of miRNA silencing mechanisms.
Collapse
|
35
|
Benoit RM, Meisner NC, Kallen J, Graff P, Hemmig R, Cèbe R, Ostermeier C, Widmer H, Auer M. The X-ray Crystal Structure of the First RNA Recognition Motif and Site-Directed Mutagenesis Suggest a Possible HuR Redox Sensing Mechanism. J Mol Biol 2010; 397:1231-44. [DOI: 10.1016/j.jmb.2010.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 02/06/2023]
|
36
|
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 2009; 29:6220-31. [PMID: 19797087 DOI: 10.1128/mcb.01081-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.
Collapse
|
37
|
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CYA, Shyu AB, Yates JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 2009; 35:868-80. [PMID: 19716330 DOI: 10.1016/j.molcel.2009.08.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
39
|
Lazzaretti D, Tournier I, Izaurralde E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA (NEW YORK, N.Y.) 2009; 15:1059-66. [PMID: 19383768 PMCID: PMC2685519 DOI: 10.1261/rna.1606309] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 05/24/2023]
Abstract
Proteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4). We also show that TNRC6A, TNRC6B, and TNRC6C silence the expression of bound mRNAs. This activity is mediated by their C-terminal silencing domains, and thus, is independent of the interaction with AGO1-AGO4. Silencing by TNRC6A, TNRC6B, and TNRC6C is effected by changes in protein expression and mRNA stability that can, in part, be attributed to deadenylation. Our findings indicate that TNRC6A, TNRC6B, and TNRC6C are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein; the TNRC6s then promote translational repression and/or degradation of miRNA targets through a C-terminal silencing domain.
Collapse
Affiliation(s)
- Daniela Lazzaretti
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
40
|
Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA (NEW YORK, N.Y.) 2009; 15:1067-77. [PMID: 19383769 PMCID: PMC2685512 DOI: 10.1261/rna.1605509] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182-AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine-tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21:452-60. [PMID: 19450959 DOI: 10.1016/j.ceb.2009.04.009] [Citation(s) in RCA: 537] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | |
Collapse
|