1
|
Guo W, Wang D, Chen W, Rao C, Tang Y, Li W. The heterogeneous expression, extraction, and purification of recombinant Caldanaerobacter subterraneus subsp. tengcongensis apurine/apyrimidine endonuclease in Escherichia coli. Protein Expr Purif 2025; 226:106621. [PMID: 39528145 DOI: 10.1016/j.pep.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Thermostable apurinic/apyrimidinic (AP) endonuclease (TtAP), cloned from Caldanaerobacter subterraneus subsp. tengcongensis, is an exonuclease III (Exo III) family protein with high-heat resistance, has activities of AP site endonuclease, 3'-5' exonuclease, and 3'-nuclease, and facilitates efficient amplification of lengthy DNA fragments in PCR. However, the research of the combinant TtAP in Escherichia coli with its expression, large-scale extraction and purification of its protein was limited. In this study, we optimized the codons of TtAP gene for expression in E. coli and constructed a fusion gene encoding TtAP with a 6His tag (TtAP-6His). TtAP-6His was put into vector pET-30a(+) to form the expression vector pET-30a(+)-TtAP-6His, and was then introduced into E. coli strain Rosetta (DE3). We established a systematic process for the extraction of TtAP protein using 5 liters of bacterial suspension, including the optimization of IPTG induction time (6 h), followed by protein extraction using enzymolysis buffers, the heat treatment of temperature (70 °C) with 60 min to remove impurity, precipitation with ammonium sulfate (55 %), protein purification with Ni-affinity chromatography, and the enzyme activities finally were determined. The purification yield of TtAP-6His ranged from 73.67 to 115.25 mg/L (47 KU/mg).
Collapse
Affiliation(s)
- Wanli Guo
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Dajin Wang
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Wei Chen
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Chuyang Rao
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yunxuan Tang
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China
| | - Wangfeng Li
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China.
| |
Collapse
|
2
|
Zhang L, Luo S, Fan R, Li R, Li W, Chen S, Lan F, Zhu Y, Ji T, Zhang Y, Li L. Localized Cas12a-based cascade amplification for sensitive and robust detection of APE1. Talanta 2024; 280:126773. [PMID: 39197313 DOI: 10.1016/j.talanta.2024.126773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
APE1, an essential enzyme for DNA repair, is overexpressed in various cancers and has been identified as a potential biomarker for cancer diagnosis. However, detecting APE1 at low expression levels in the early stage of cancer presents a significant obstacle. Here, we introduced a novel localized Cas12a-based cascade amplification (LCas12a-CA) method. This method confined both the terminal deoxynucleotidyl transferase and the crRNA/Cas12a complex onto the surfaces of gold nanoparticles (AuNPs). This confinement not only boosts the stability of the multiple enzymes but also induces a substrate channeling effect. As a result, it significantly accelerates the reaction rate and enhances the sensitivity of APE1 detection. Upon the addition of APE1, the AP sites within the APE1 primer can be recognized and cleaved by APE1, exposing the 3'-OH ends. In the presence of LCas12a-CA, polyA sequences are generated at 3'-OH ends with the help of TdT and dATP. The sequences directly enter the Cas12a system, activating the trans-cleavage activity of Cas12a, thereby cutting the reporters on the surface of AuNPs and releasing fluorescence. Our platform demonstrates a detection limit (LOD) as low as 2.51 × 10-6 U/mL, which is more than 60 times lower than that of free Cas12a-CA. Furthermore, the LCas12a-CA exhibits enhanced resistance ability in extreme environments and has been proven effective for the detection of APE1 in clinical samples. Overall, this work offers a promising platform for robust biosensing in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruixi Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yitong Zhu
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Kaur S, Verma H, Dhiman M, Mantha AK. Activation of multifunctional DNA repair APE1/Ref-1 enzyme by the dietary phytochemical Ferulic acid protects human neuroblastoma SH-SY5Y cells against Aβ(25-35)-induced oxidative stress and inflammatory responses. Mitochondrion 2024; 79:101947. [PMID: 39151817 DOI: 10.1016/j.mito.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with the amyloid beta (Aβ) and tau hallmarks. The molecular insights into how neuroinflammation is initially triggered and how it affects neuronal cells are yet at the age of infancy. In this study, SH-SY5Y cells were used as a model for neurons by differentiating and were co-cultured with differentiated THP1 cells (microglia model) as well as treated with Aβ(25-35) and with antioxidant FA to study inflammatory, oxidative stress responses and their effects on co-cultured neurons. Neurons co-cultured with microglial cells showed pronounced increase in ROS levels, NOS expression, truncated N-terminal form (34 kDa) of APE1 expression and AIF's translocation in the nucleus. The pre-treatment of FA, on the other hand reversed these effects. It was further evaluated how FA/Aβ treatment altered microglial phenotype that in turn affected the neurons. Microglial cells showed M1 phenotype upon Aβ(25-35) stress, while FA induced M2 phenotype against Aβ stress, suggesting that FA alleviated Aβ induced phenotype and its associated effects in the co-cultured neurons by altering the phenotype of microglial cells and induced expression of full length (37 kDa) APE1 enzyme and inhibiting AIF's nuclear translocation, thus inhibiting apoptosis. This is the first study that revealed Aβ induced cleavage of APE1 enzyme in differentiated neurons, suggesting that APE1 may be the potential early target of Aβ that loses its function and exacerbates AD pathology. FA activated a fully functional form of APE1 against Aβ stress. The impaired function of APE1 could be the initial mechanism by which Aβ induces oxidative and inflammatory responses and dietary phytochemical FA can be a potential therapeutic strategy in managing the disease by activating APE1 that not only repairs oxidative DNA base damage but also maintains mitochondrial function and alleviates neuroinflammatory responses.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India.
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda Village, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Liu Q, Zhang Q, Zhang Y, Tian F, Long K, Yang Y, Wang W, Peng C, Wang H. A recognition-induced three-dimensional bipedal DNA walker for highly sensitive detection of APE1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6220-6228. [PMID: 39193784 DOI: 10.1039/d4ay01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In contrast to the unipedal DNA walker, a bipedal DNA walker features a broader walking area and exhibits faster walking kinetics, leading to enhanced amplification efficiency. In this study, we designed a stochastic three-dimensional (3D) bipedal DNA walker, capable of navigating AuNP-based 3D tracks, driven by exonuclease III (Exo III). This detection system enables the linear detection of the non-invasive biomarker apurinic/apyrimidinic endonuclease 1 (APE1) activity across a range of 0 to 120 U per mL, with a detection limit of 0.03 U per mL. The platform not only offers a novel DNA walker for sensitive APE1 detection in cell lysate but also facilitates the precise assessment of NCA's inhibitory effect on APE1. This research holds promise for future screening of other potential APE1 inhibitors.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yuting Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Fanghong Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Kang Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
5
|
Cao X, Zheng J, Zhang R, Sun Y, Zhao M. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@DNA probe. Nucleic Acids Res 2024; 52:e41. [PMID: 38554110 PMCID: PMC11077052 DOI: 10.1093/nar/gkae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinghui Zheng
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Bulygin AA, Syryamina VN, Kuznetsova AA, Novopashina DS, Dzuba SA, Kuznetsov NA. Inner Amino Acid Contacts Are Key Factors of Multistage Structural Rearrangements of DNA and Affect Substrate Specificity of Apurinic/Apyrimidinic Endonuclease APE1. Int J Mol Sci 2023; 24:11474. [PMID: 37511233 PMCID: PMC10380840 DOI: 10.3390/ijms241411474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is one of the most important enzymes in base excision repair. Studies on this enzyme have been conducted for a long time, but some aspects of its activity remain poorly understood. One such question concerns the mechanism of damaged-nucleotide recognition by the enzyme, and the answer could shed light on substrate specificity control in all enzymes of this class. In the present study, by pulsed electron-electron double resonance (DEER, also known as PELDOR) spectroscopy and pre-steady-state kinetic analysis along with wild-type (WT) APE1 from Danio rerio (zAPE1) or three mutants (carrying substitution N253G, A254G, or E260A), we aimed to elucidate the molecular events in the process of damage recognition. The data revealed that the zAPE1 mutant E260A has much higher activity toward DNA substrates containing 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), or 1,N6-ethenoadenosine (εA). Examination of conformational changes in DNA clearly revealed multistep DNA rearrangements during the formation of the catalytic complex. These structural rearrangements of DNA are directly associated with the capacity of damaged DNA for enzyme-induced bending and unwinding, which are required for eversion of the damaged nucleotide from the DNA duplex and for its placement into the active site of the enzyme. Taken together, the results experimentally prove the factors that control substrate specificity of the AP endonuclease zAPE1.
Collapse
Affiliation(s)
- Anatoly A Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Zaunz S, De Smedt J, Lauwereins L, Cleuren L, Laffeber C, Bajaj M, Lebbink JHG, Marteijn JA, De Keersmaecker K, Verfaillie C. APEX1 Nuclease and Redox Functions are Both Essential for Adult Mouse Hematopoietic Stem and Progenitor Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10550-0. [PMID: 37266894 PMCID: PMC10390635 DOI: 10.1007/s12015-023-10550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function. In this study, we demonstrated that complete loss of APEX1 from murine bone marrow HSPCs (induced by CRISPR/Cas9) caused severe hematopoietic failure following transplantation, as well as a HSPC expansion defect in culture conditions maintaining in vivo HSC functionality. Using specific inhibitors against either the nuclease or redox domains of APEX1 in combination with single cell transcriptomics (CITE-seq), we found that both APEX1 nuclease and redox domains are regulating mouse HSPCs, but through distinct underlying transcriptional changes. Inhibition of the APEX1 nuclease function resulted in loss of HSPCs accompanied by early activation of differentiation programs and enhanced lineage commitment. By contrast, inhibition of the APEX1 redox function significantly downregulated interferon-stimulated genes and regulons in expanding HSPCs and their progeny, resulting in dysfunctional megakaryocyte-biased HSPCs, as well as loss of monocytes and lymphoid progenitor cells. In conclusion, we demonstrate that APEX1 is a key regulator for adult regenerative hematopoiesis, and that the APEX1 nuclease and redox domains differently impact proliferating HSPCs.
Collapse
Affiliation(s)
- Samantha Zaunz
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium.
| | - Jonathan De Smedt
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
- GlaxoSmithKline Biologicals SA, 1300, Wavre, Belgium
| | - Lukas Lauwereins
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Lana Cleuren
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manmohan Bajaj
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, O&N IV Herestraat 49, 3000, Louvain, Belgium
| |
Collapse
|
10
|
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair. Genes (Basel) 2022; 14:genes14010098. [PMID: 36672839 PMCID: PMC9859040 DOI: 10.3390/genes14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Eduardo E. Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pawlos P. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana-Purdue University, Indianapolis, IN 46202, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
11
|
Kinetic Features of 3'-5'-Exonuclease Activity of Apurinic/Apyrimidinic Endonuclease Apn2 from Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms232214404. [PMID: 36430884 PMCID: PMC9697762 DOI: 10.3390/ijms232214404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In yeast Saccharomyces cerevisiae cells, apurinic/apyrimidinic (AP) sites are primarily repaired by base excision repair. Base excision repair is initiated by one of two AP endonucleases: Apn1 or Apn2. AP endonucleases catalyze hydrolytic cleavage of the phosphodiester backbone on the 5' side of an AP site, thereby forming a single-strand break containing 3'-OH and 5'-dRP ends. In addition, Apn2 has 3'-phosphodiesterase activity (removing 3'-blocking groups) and 3' → 5' exonuclease activity (both much stronger than its AP endonuclease activity). Nonetheless, the role of the 3'-5'-exonuclease activity of Apn2 remains unclear and presumably is involved in the repair of damage containing single-strand breaks. In this work, by separating reaction products in a polyacrylamide gel and by a stopped-flow assay, we performed a kinetic analysis of the interaction of Apn2 with various model DNA substrates containing a 5' overhang. The results allowed us to propose a mechanism for the cleaving off of nucleotides and to determine the rate of the catalytic stage of the process. It was found that dissociation of a reaction product from the enzyme active site is not a rate-limiting step in the enzymatic reaction. We determined an influence of the nature of the 3'-terminal nucleotide that can be cleaved off on the course of the enzymatic reaction. Finally, it was found that the efficiency of the enzymatic reaction is context-specific.
Collapse
|
12
|
Yuan Y, Fu D, Xu Y, Wang X, Deng X, Zhou S, Du F, Cui X, Deng Y, Tang Z. Pt(IV) Prodrug as a Potential Antitumor Agent with APE1 Inhibitory Activity. J Med Chem 2022; 65:15344-15357. [DOI: 10.1021/acs.jmedchem.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dingqiang Fu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan Xu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xuyang Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiongfei Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
13
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
14
|
Xue Z, Demple B. Knockout and Inhibition of Ape1: Roles of Ape1 in Base Excision DNA Repair and Modulation of Gene Expression. Antioxidants (Basel) 2022; 11:antiox11091817. [PMID: 36139891 PMCID: PMC9495735 DOI: 10.3390/antiox11091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism.
Collapse
Affiliation(s)
- Zhouyiyuan Xue
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Molecular and Cellular Biochemistry Program, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Correspondence: ; Tel.: +1-(631)-444-3978
| |
Collapse
|
15
|
Senchurova SI, Syryamina VN, Kuznetsova AA, Novopashina DS, Ishchenko AA, Saparbaev M, Dzuba SA, Fedorova OS, Kuznetsov NA. The mechanism of damage recognition by apurinic/apyrimidinic endonuclease Nfo from Escherichia coli. Biochim Biophys Acta Gen Subj 2022; 1866:130216. [PMID: 35905924 DOI: 10.1016/j.bbagen.2022.130216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
Apurinic/apyrimidinic (AP) endonuclease Nfo from Escherichia coli recognises AP sites in DNA and catalyses phosphodiester bond cleavage on the 5' side of AP sites and some damaged or undamaged nucleotides. Here, the mechanism of target nucleotide recognition by Nfo was analysed by pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer detection of DNA conformational changes during DNA binding. The efficiency of endonucleolytic cleavage of a target nucleotide in model DNA substrates was ranked as (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran [F-site] > 5,6-dihydro-2'-deoxyuridine > α-anomer of 2'-deoxyadenosine >2'-deoxyuridine > undamaged DNA. Real-time conformational changes of DNA during interaction with Nfo revealed an increase of distances between duplex ends during the formation of the initial enzyme-substrate complex. The use of rigid-linker spin-labelled DNA duplexes in DEER measurements indicated that double-helix bending and unwinding by the target nucleotide itself is one of the key factors responsible for indiscriminate recognition of a target nucleotide by Nfo. The results for the first time show that AP endonucleases from different structural families utilise a common strategy of damage recognition, which globally may be integrated with the mechanism of searching for specific sites in DNA by other enzymes.
Collapse
Affiliation(s)
- Svetlana I Senchurova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia
| | - Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentieva, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|
16
|
Bakman AS, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. Pre-steady-state kinetic and mutational insights into mechanisms of endo- and exonuclease DNA processing by mutant forms of human AP endonuclease. Biochim Biophys Acta Gen Subj 2022; 1866:130198. [PMID: 35809816 DOI: 10.1016/j.bbagen.2022.130198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Human apurinic/apyrimidinic endonuclease APE1 catalyzes endonucleolytic hydrolysis of phosphodiester bonds on the 5' side of structurally unrelated damaged nucleotides in DNA or native nucleotides in RNA. APE1 additionally possesses 3'-5'-exonuclease, 3'-phosphodiesterase, and 3'-phosphatase activities. According to structural data, endo- and exonucleolytic cleavage of DNA is executed in different complexes when the excised residue is everted from the duplex or placed within the intrahelical DNA cavity without nucleotide flipping. In this study, we investigated the functions of residues Arg177, Arg181, Tyr171 and His309 in the APE1 endo- and exonucleolytic reactions. The interaction between residues Arg177 and Met270, which was hypothesized recently to be a switch for endo- and exonucleolytic catalytic mode regulation, was verified by pre-steady-state kinetic analysis of the R177A APE1 mutant. The function of another DNA-binding-site residue, Arg181, was analyzed too; it changed its conformation when enzyme-substrate and enzyme-product complexes were compared. Mutation R181A significantly facilitated the product dissociation stage and only weakly affected DNA-binding affinity. Moreover, R181A reduced the catalytic rate constant severalfold due to a loss of contact with a phosphate group. Finally, the protonation/deprotonation state of residues Tyr171 and His309 in the catalytic reaction was verified by their substitution. Mutations Y171F and H309A inhibited the chemical step of the AP endonucleolytic reaction by several orders of magnitude with retention of capacity for (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran-containing-DNA binding and without changes in the pH dependence profile of AP endonuclease activity, indicating that deprotonation of these residues is likely not important for the catalytic reaction.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
17
|
Comparative Analysis of Exo- and Endonuclease Activities of APE1-like Enzymes. Int J Mol Sci 2022; 23:ijms23052869. [PMID: 35270011 PMCID: PMC8911113 DOI: 10.3390/ijms23052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
Apurinic/apyrimidinic (AP)-endonucleases are multifunctional enzymes that are required for cell viability. AP-endonucleases incise DNA 5′ to an AP-site; can recognize and process some damaged nucleosides; and possess 3′-phosphodiesterase, 3′-phosphatase, and endoribonuclease activities. To elucidate the mechanism of substrate cleavage in detail, we analyzed the effect of mono- and divalent metal ions on the exo- and endonuclease activities of four homologous APE1-like endonucleases (from an insect (Rrp1), amphibian (xAPE1), fish (zAPE1), and from humans (hAPE1)). It was found that the enzymes had similar patterns of dependence on metal ions’ concentrations in terms of AP-endonuclease activity, suggesting that the main biological function (AP-site cleavage) was highly conserved among evolutionarily distant species. The efficiency of the 3′-5′ exonuclease activity was the highest in hAPE1 among these enzymes. In contrast, the endoribonuclease activity of the enzymes could be ranked as hAPE1 ≈ zAPE1 ≤ xAPE1 ≤ Rrp1. Taken together, the results revealed that the tested enzymes differed significantly in their capacity for substrate cleavage, even though the most important catalytic and substrate-binding amino acid residues were conserved. It can be concluded that substrate specificity and cleavage efficiency were controlled by factors external to the catalytic site, e.g., the N-terminal domain of these enzymes.
Collapse
|
18
|
Li F, Xie Q, Qin Y, Tong C, Liu B, Wang W. Real-time monitoring and effector screening of APE1 based on rGO assisted DNA nanoprobe. Anal Biochem 2021; 633:114394. [PMID: 34610334 DOI: 10.1016/j.ab.2021.114394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Human apurinic/pyrimidine endonuclease 1 (APE1) played a critical role in the occurrence, progress and prognosis of tumors through overexpression and subcellular localization. Thus, it has become an important target for enhancing the sensitivity of tumor cells to radiotherapy and chemotherapy. Therefore, detecting and imaging its intracellular activity is of great significance for inhibitor discovery, cancer diagnosis and therapy. In this work, using DNA-based nanoprobe, we developed a new method for monitor intracellular APE1 activity. The detecting system was consisted by single fluorophore labeled hairpin probe and reduced graphene oxide (rGO). The in vitro result showed that a liner response of the detection method ranged from 0.02 U/mL to 2 U/mL with a limit of detection of 0.02 U/mL. Furthermore, this strategy possessing high specificity was successfully applied for APE1-related inhibitor screening using intracellular fluorescence imaging. Panaxytriol, an effective inhibitor of APE1 activity, was screened from traditional Chinese medicine (TCM) and its effect on APE1 activity was monitored in real time in A549 cells. In summary, this sensitive and specific APE1 detection technology is expected to provide an assistance for APE1-related inhibitor screening and diseases diagnosis.
Collapse
Affiliation(s)
- Fei Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Qian Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, 410082, China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
19
|
Kuznetsova AA, Senchurova SI, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. Common Kinetic Mechanism of Abasic Site Recognition by Structurally Different Apurinic/Apyrimidinic Endonucleases. Int J Mol Sci 2021; 22:8874. [PMID: 34445579 PMCID: PMC8396254 DOI: 10.3390/ijms22168874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases Nfo (Escherichia coli) and APE1 (human) represent two conserved structural families of enzymes that cleave AP-site-containing DNA in base excision repair. Nfo and APE1 have completely different structures of the DNA-binding site, catalytically active amino acid residues and catalytic metal ions. Nonetheless, both enzymes induce DNA bending, AP-site backbone eversion into the active-site pocket and extrusion of the nucleotide located opposite the damage. All these stages may depend on local stability of the DNA duplex near the lesion. Here, we analysed effects of natural nucleotides located opposite a lesion on catalytic-complex formation stages and DNA cleavage efficacy. Several model DNA substrates that contain an AP-site analogue [F-site, i.e., (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] opposite G, A, T or C were used to monitor real-time conformational changes of the tested enzymes during interaction with DNA using changes in the enzymes' intrinsic fluorescence intensity mainly caused by Trp fluorescence. The extrusion of the nucleotide located opposite F-site was recorded via fluorescence intensity changes of two base analogues. The catalytic rate constant slightly depended on the opposite-nucleotide nature. Thus, structurally different AP endonucleases Nfo and APE1 utilise a common strategy of damage recognition controlled by enzyme conformational transitions after initial DNA binding.
Collapse
Affiliation(s)
- Alexandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| | - Svetlana I. Senchurova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A. Ishchenko
- Group Mechanisms of DNA Repair and Carcinogenesis, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif, France; (A.A.I.); (M.S.)
| | - Murat Saparbaev
- Group Mechanisms of DNA Repair and Carcinogenesis, Equipe Labellisée LIGUE 2016, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, F-94805 Villejuif, France; (A.A.I.); (M.S.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.K.); (S.I.S.)
| |
Collapse
|
20
|
Barchiesi A, Bazzani V, Jabczynska A, Borowski LS, Oeljeklaus S, Warscheid B, Chacinska A, Szczesny RJ, Vascotto C. DNA Repair Protein APE1 Degrades Dysfunctional Abasic mRNA in Mitochondria Affecting Oxidative Phosphorylation. J Mol Biol 2021; 433:167125. [PMID: 34224750 DOI: 10.1016/j.jmb.2021.167125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
APE1 is a multifunctional protein which plays a central role in the maintenance of nuclear and mitochondrial genomes repairing DNA lesions caused by oxidative and alkylating agents. In addition, it works as a redox signaling protein regulating gene expression by interacting with many transcriptional factors. Apart from these canonical activities, recent studies have shown that APE1 is also enzymatically active on RNA molecules. The present study unveils for the first time a new role of the mitochondrial form of APE1 protein in the metabolism of RNA in mitochondria. Our data demonstrate that APE1 is associated with mitochondrial messenger RNA and exerts endoribonuclease activity on abasic sites. Loss of APE1 results in the accumulation of damaged mitochondrial mRNA species, determining impairment in protein translation and reduced expression of mitochondrial-encoded proteins, finally leading to less efficient mitochondrial respiration. Altogether, our data demonstrate that APE1 plays an active role in the degradation of the mitochondrial mRNA and has a profound impact on mitochondrial well-being.
Collapse
Affiliation(s)
| | | | - Agata Jabczynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Carlo Vascotto
- Department of Medicine, University of Udine, 33100 Udine, Italy; Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
21
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
22
|
Altered APE1 activity on abasic ribonucleotides is mediated by changes in the nucleoside sugar pucker. Comput Struct Biotechnol J 2021; 19:3293-3302. [PMID: 34188778 PMCID: PMC8207216 DOI: 10.1016/j.csbj.2021.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Ribonucleotides (rNTPs) are predicted to be incorporated into the genome at a rate of up to 3 million times per cell division, making rNTPs the most common non-standard nucleotide in the human genome. Typically, misinserted ribonucleotides are repaired by the ribonucleotide excision repair (RER) pathway, which is initiated by RNase H2 cleavage. However, rNTPs are susceptible to spontaneous depurination generating abasic ribonucleotides (rAPs), which are unable to be processed by RNase H2. Additionally, rAPs have been found in nascent RNA and coupled to R-loops. Recent work identified that base excision repair (BER) protein AP-Endonuclease 1 (APE1) is responsible for the initial processing of rAPs embedded in DNA and in R-loops. APE1 is a well characterized AP endonuclease that cleaves 5' of abasic sites, but its ability to cleave at rAPs remains poorly understood. Here, we utilize enzyme kinetics, X-ray crystallography, and molecular dynamics simulations to provide insight into rAP processing by APE1. Enzyme kinetics were used to determine pre-steady-state rates of APE1 cleavage on DNA substrates containing rAP, revealing a decrease in activity compared to cleavage at a canonical deoxy-AP substrate. Using X-ray crystallography, we identified novel contacts between the rAP and the APE1 active site. We demonstrate that the rAP sugar pucker is accommodated in the active site in a C3'-endo conformation, influencing its position and contributing to a decrease in activity compared to the deoxy-AP site. Together, this work provides molecular level insights into rAP processing by APE1 and advances our understanding of ribonucleotide processing within genomic DNA.
Collapse
|
23
|
Malfatti MC, Antoniali G, Codrich M, Tell G. Coping with RNA damage with a focus on APE1, a BER enzyme at the crossroad between DNA damage repair and RNA processing/decay. DNA Repair (Amst) 2021; 104:103133. [PMID: 34049077 DOI: 10.1016/j.dnarep.2021.103133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Interest in RNA damage as a novel threat associated with several human pathologies is rapidly increasing. Knowledge on damaged RNA recognition, repair, processing and decay is still scanty. Interestingly, in the last few years, more and more evidence put a bridge between DNA damage repair enzymes and the RNA world. The Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) was firstly identified as a crucial enzyme of the base excision repair (BER) pathway preserving genome stability toward non-distorting DNA lesion-induced damages. Later, an unsuspected role of APE1 in controlling gene expression was discovered and its pivotal involvement in several human pathologies, ranging from tumor progression to neurodegenerative diseases, has emerged. Recent novel findings indicate a role of APE1 in RNA metabolism, particularly in processing activities of damaged (abasic and oxidized) RNA and in the regulation of oncogenic microRNAs (miRNAs). Even though the role of miRNAs in human pathologies is well-known, the mechanisms underlying their quality control are still totally unexplored. A detailed knowledge of damaged RNA decay processes in human cells is crucial in order to understand the molecular processes involved in multiple pathologies. This cutting-edge perspective article will highlight these emerging aspects of damaged RNA processing and decay, focusing the attention on the involvement of APE1 in RNA world.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
24
|
Tanaka M, Chock PB. Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Front Mol Biosci 2021; 8:685331. [PMID: 34055897 PMCID: PMC8149912 DOI: 10.3389/fmolb.2021.685331] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients. Subsequently, several diseases and pathological conditions were reported to be associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking and unique strand breaks are generated by RNA oxidation. With a premise that dysfunctional RNA mediated by oxidation is the pathogenetic molecular mechanism, intensive investigations have revealed the mechanism for translation errors, including premature termination, which gives rise to aberrant polypeptides. To this end, we and others revealed that mRNA oxidation could compromise its translational activity and fidelity. Under certain conditions, oxidized RNA can also induce several signaling pathways, to mediate inflammatory response and induce apoptosis. In this review, we focus on the oxidative modification of RNA and its resulting effect on protein synthesis as well as cell signaling. In addition, we will also discuss the potential roles of enzymatic oxidative modification of RNA in mediating cellular effects.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - P Boon Chock
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Kuznetsova AA, Gavrilova AA, Novopashina DS, Fedorova OS, Kuznetsov NA. Mutational and Kinetic Analysis of APE1 Endoribonuclease Activity. Mol Biol 2021; 55:211-224. [PMID: 33948042 PMCID: PMC8083922 DOI: 10.1134/s0026893321020102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) participates in the DNA repair system. It is believed that the main biological function of APE1 is Mg2+-dependent hydrolysis of AP-sites in DNA. On the base of structural data, kinetic studies, and mutation analysis, the key stages of APE1 interaction with damaged DNA were established. It has been shown recently that APE1 can act as an endoribonuclease that catalyzes mRNA hydrolysis at certain pyrimidine–purine sites and thus controls the level of certain transcripts. In addition, the presence of Mg2+ ions was shown to be not required for the endoribonuclease activity of APE1, in contrast to the AP-endonuclease activity. This indicates differences in mechanisms of APE1 catalysis on RNA and DNA substrates, but the reasons for these differences remain unclear. Here, the analysis of endoribonuclease hydrolysis of model RNA substrates with wild type APE1 enzyme and its mutant forms Y171F, R177F, R181A, D210N, N212A, T268D, M270A, and D308A, was performed. It was shown that mutation of Asn212, Asp210, and Tyr171 residues leads to the decrease of AP-endonuclease activity while endoribonuclease activity is retained. Also, T268D and M270A APE1 mutants lose specificity to pyrimidine–purine sequences. R177F and R181A did not show a significant decrease in enzyme activity, whereas D308A demonstrated a decrease of endoribonuclease activity.
Collapse
Affiliation(s)
- A A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - A A Gavrilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - O S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - N A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
26
|
Davletgildeeva AT, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. The Enigma of Substrate Recognition and Catalytic Efficiency of APE1-Like Enzymes. Front Cell Dev Biol 2021; 9:617161. [PMID: 33842455 PMCID: PMC8033172 DOI: 10.3389/fcell.2021.617161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Despite significant achievements in the elucidation of the nature of protein-DNA contacts that control the specificity of nucleotide incision repair (NIR) by apurinic/apyrimidinic (AP) endonucleases, the question on how a given nucleotide is accommodated by the active site of the enzyme remains unanswered. Therefore, the main purpose of our study was to compare kinetics of conformational changes of three homologous APE1-like endonucleases (insect Drosophila melanogaster Rrp1, amphibian Xenopus laevis xAPE1, and fish Danio rerio zAPE1) during their interaction with various damaged DNA substrates, i.e., DNA containing an F-site (an uncleavable by DNA-glycosylases analog of an AP-site), 1,N6-ethenoadenosine (εA), 5,6-dihydrouridine (DHU), uridine (U), or the α-anomer of adenosine (αA). Pre-steady-state analysis of fluorescence time courses obtained for the interaction of the APE1-like enzymes with DNA substrates containing various lesions allowed us to outline a model of substrate recognition by this class of enzymes. It was found that the differences in rates of DNA substrates’ binding do not lead to significant differences in the cleavage efficiency of DNA containing a damaged base. The results suggest that the formation of enzyme–substrate complexes is not the key factor that limits enzyme turnover; the mechanisms of damage recognition and cleavage efficacy are related to fine conformational tuning inside the active site.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander A Ishchenko
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Murat Saparbaev
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
Davletgildeeva AT, Kuznetsova AA, Fedorova OS, Kuznetsov NA. Activity of Human Apurinic/Apyrimidinic Endonuclease APE1 Toward Damaged DNA and Native RNA With Non-canonical Structures. Front Cell Dev Biol 2020; 8:590848. [PMID: 33195255 PMCID: PMC7662432 DOI: 10.3389/fcell.2020.590848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
The primary role of apurinic/apyrimidinic (AP) endonuclease APE1 in human cells is the cleavage of the sugar phosphate backbone 5' to an AP site in DNA to produce a single-strand break with a 5'-deoxyribose phosphate and 3'-hydroxyl end groups. APE1 can also recognize and incise some damaged or modified nucleotides and possesses some minor activities: 3'-5' exonuclease, 3'-phosphodiesterase, 3'-phosphatase, and RNase H. A molecular explanation for the discrimination of structurally different substrates by the single active site of the enzyme remains elusive. Here, we report a mechanism of target nucleotide recognition by APE1 as revealed by the results of an analysis of the APE1 process involving damaged DNA and native RNA substrates with non-canonical structures. The mechanism responsible for substrate specificity proved to be directly related to the ability of a target nucleotide to get into the active site of APE1 in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Anastasia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| |
Collapse
|
28
|
The role of active-site amino acid residues in the cleavage of DNA and RNA substrates by human apurinic/apyrimidinic endonuclease APE1. Biochim Biophys Acta Gen Subj 2020; 1864:129718. [PMID: 32858086 DOI: 10.1016/j.bbagen.2020.129718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human apurinic/apyrimidinic endonuclease APE1 is one of participants of the DNA base excision repair pathway. APE1 processes AP-sites and many other types of DNA damage via hydrolysis of the phosphodiester bond on the 5' side of the lesion. APE1 also acts as an endoribonuclease, i.e., can cleave undamaged RNA. METHODS Using pre-steady-state kinetic analysis we examined the role of certain catalytically important amino acids in APE1 enzymatic pathway and described their involvement in the mechanism of the target nucleotide recognition. RESULTS Comparative analysis of the cleavage efficiency of damaged DNAs containing an abasic site, 5,6-dihydrouridine, or α-anomer of adenosine as well as 3'-5'-exonuclease degradation of undamaged DNA and endonuclease hydrolysis of RNA substrates by mutant APE1 enzymes containing a substitution of an active-site amino acid residue (D210N, N212A, T268D, M270A, or D308A) was performed. Detailed pre-steady-state kinetics of conformational changes of the enzyme and of DNA substrate molecules during recognition and cleavage of the abasic site were studied. CONCLUSIONS It was revealed that substitution T268D significantly disturbed initial DNA binding, whereas Asn212 is critical for the DNA-bending stage and catalysis. Substitution D210N increased the binding efficacy and blocked the catalytic reaction, but D308A decreased the binding efficacy owing to disruption of Mg2+ coordination. Finally, the substitution of Met270 also destabilized the enzyme-substrate complex but did not affect the catalytic reaction. SIGNIFICANCE It was found that the tested substitutions of the active-site amino acid residues affected different stages of the complex formation process as well as the catalytic reaction.
Collapse
|
29
|
Kuznetsova AA, Novopashina DS, Fedorova OS, Kuznetsov NA. Effect of the Substrate Structure and Metal Ions on the Hydrolysis of Undamaged RNA by Human AP Endonuclease APE1. Acta Naturae 2020; 12:74-85. [PMID: 32742730 PMCID: PMC7385091 DOI: 10.32607/actanaturae.10864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/20/2020] [Indexed: 11/20/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 is one of the participants in the DNA base excision repair. The main biological function of APE1 is to hydrolyze the phosphodiester bond on the 5'-side of the AP sites. It has been shown recently that APE1 acts as an endoribonuclease and can cleave mRNA, thereby controlling the level of some transcripts. The sequences of CA, UA, and UG dinucleotides are the cleavage sites in RNA. In the present work, we performed a comparative analysis of the cleavage efficiency of model RNA substrates with short hairpin structures in which the loop size and the location of the pyrimidine-purine dinucleotide sequence were varied. The effect of various divalent metal ions and pH on the efficiency of the endoribonuclease reaction was analyzed. It was shown that site-specific hydrolysis of model RNA substrates depends on the spatial structure of the substrate. In addition, RNA cleavage occured in the absence of divalent metal ions, which proves that hydrolysis of DNA- and RNA substrates occurs via different catalytic mechanisms.
Collapse
Affiliation(s)
- A. A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - N. A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
30
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|
31
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
32
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Sun Y, Feng Y, Zhang G, Xu Y. The endonuclease APE1 processes miR-92b formation, thereby regulating expression of the tumor suppressor LDLR in cervical cancer cells. Ther Adv Med Oncol 2019; 11:1758835919855859. [PMID: 31320936 PMCID: PMC6624912 DOI: 10.1177/1758835919855859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Background The molecular mechanisms underlying cervical cancer require elucidation to identify novel therapeutic targets. Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is a multifunctional apurinic/apyrimidinic (AP) endonuclease that influences the transcription of many cancer-related genes via microRNome regulation. Herein, we examine the role of miR-92b-3p (hereinafter miR-92b), whose processing may be regulated by APE1, in cervical cancer progression. Methods APE1's processing of miR-92b from its pri-miR form was measured by a quantitative reverse transcription polymerase chain reaction (qRT-PCR)-based ratio. APE1's endonuclease activity was measured with AP-site incision assays. APE1-DROSHA interaction was studied with immunofluorescence, confocal and proximity ligation analyses. The miR-92b's targeting of low-density lipoprotein receptor (LDLR) was investigated with luciferase reporter assays. The miR-92b mimics and shRNA-based miR-92b silencing, as well as LDLR overexpression and short interfering RNA (siRNA)-based LDLR silencing, were employed in CaSki and SiHa cervical cancer cells. Cell proliferation and chemosensitivity to paclitaxel and cisplatin were assayed. Cell-cycle progression and apoptosis were assessed by flow cytometry. Tumor growth was studied in a murine xenograft model. Results APE1's endonuclease activity, via association with the DROSHA-processing complex, is necessary for processing mature miR-92b, thereby regulating expression of miR-92b's direct target LDLR. The miR-92b promotes cell proliferation in vitro and in vivo, promotes cell-cycle progression, and reduces apoptosis and chemosensitivity. LDLR silencing recapitulated miR-92b's transformative effects, while LDLR overexpression rescued these effects. Conclusions APE1 enhances miR-92b processing, thereby suppressing LDLR expression and enhancing cervical carcinoma progression. Our identification of the novel APE1-miR-92b-LDLR axis improves our understanding of the complex pathogenesis of cervical carcinoma and reveals a novel therapeutic strategy for combating this disease.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Laboratory Medicine, the First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Kunming, Yunnan Province, China
| | - Yun Feng
- Department of Reproductive Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guiqian Zhang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Ya Xu
- Department of Clinical Laboratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| |
Collapse
|
34
|
Wang WW, Zhou H, Xie JJ, Yi GS, He JH, Wang FP, Xiao X, Liu XP. Thermococcus Eurythermalis Endonuclease IV Can Cleave Various Apurinic/Apyrimidinic Site Analogues in ssDNA and dsDNA. Int J Mol Sci 2018; 20:ijms20010069. [PMID: 30586940 PMCID: PMC6341776 DOI: 10.3390/ijms20010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5' of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3'-exonuclease activity for removing 3'-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3'-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5' to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5'-terminus. The 3'-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3'-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
35
|
Abstract
Before a deleterious DNA lesion can be replaced with its undamaged counterpart, the lesion must first be removed from the genome. This process of removing and replacing DNA lesions is accomplished by the careful coordination of several protein factors during DNA repair. One such factor is the multifunctional enzyme human apurinic/apyrimidinic endonuclease 1 (APE1), known best for its DNA backbone cleavage activity at AP sites during base excision repair (BER). APE1 preforms AP site incision with surgical precision and skill, by sculpting the DNA to place the cleavage site in an optimal position for nucleophilic attack within its compact protein active site. APE1, however, has demonstrated broad surgical expertise, and applies its DNA cleavage activity to a wide variety of DNA and RNA substrates. Here, we discuss what is known and unknown about APE1 cleavage mechanisms, focusing on structural and mechanistic considerations. Importantly, disruptions in the biological functions associated with APE1 are linked to numerous human maladies, including cancer and neurodegenerative diseases. The continued elucidation of APE1 mechanisms is required for rational drug design towards novel and strategic ways to target its associated repair pathways.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
36
|
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Kinetic Features of 3'-5' Exonuclease Activity of Human AP-Endonuclease APE1. Molecules 2018; 23:molecules23092101. [PMID: 30134601 PMCID: PMC6225374 DOI: 10.3390/molecules23092101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Human apurinic/apyrimidinic (AP)-endonuclease APE1 is one of the key enzymes taking part in the repair of damage to DNA. The primary role of APE1 is the initiation of the repair of AP-sites by catalyzing the hydrolytic incision of the phosphodiester bond immediately 5' to the damage. In addition to the AP-endonuclease activity, APE1 possesses 3'-5' exonuclease activity, which presumably is responsible for cleaning up nonconventional 3' ends that were generated as a result of DNA damage or as transition intermediates in DNA repair pathways. In this study, the kinetic mechanism of 3'-end nucleotide removal in the 3'-5' exonuclease process catalyzed by APE1 was investigated under pre-steady-state conditions. DNA substrates were duplexes of deoxyribonucleotides with one 5' dangling end and it contained a fluorescent 2-aminopurine residue at the 1st, 2nd, 4th, or 6th position from the 3' end of the short oligonucleotide. The impact of the 3'-end nucleotide, which contained mismatched, undamaged bases or modified bases as well as an abasic site or phosphate group, on the efficiency of 3'-5' exonuclease activity was determined. Kinetic data revealed that the rate-limiting step of 3' nucleotide removal by APE1 in the 3'-5' exonuclease process is the release of the detached nucleotide from the enzyme's active site.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
37
|
Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. PLoS One 2018; 13:e0202232. [PMID: 30110394 PMCID: PMC6093668 DOI: 10.1371/journal.pone.0202232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3’-repair phosphodiesterase, and 3’-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth’s AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7–8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3’-blocking sugar-phosphate, and 3’-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 μM–1·min–1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease—deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.
Collapse
|
38
|
Ilina ES, Khodyreva SN, Lavrik OI. Unusual interaction of human apurinic/apyrimidinic endonuclease 1 (APE1) with abasic sites via the Schiff-base-dependent mechanism. Biochimie 2018; 150:88-99. [PMID: 29730300 DOI: 10.1016/j.biochi.2018.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Clustered apurinic/apyrimidinic (AP) sites are more cytotoxic than isolated AP lesions because double strand breaks (DSB) can be formed during repair of closely positioned bistranded AP sites. Formation of DSB due to simultaneous cleavage of bistranded AP sites may be regulated by proteins specifically interacting with this complex lesion. A set of AP DNA duplexes containing AP sites in both strands in different mutual orientation (BS-AP DNAs) was used for search in the extracts of human cells proteins specifically recognizing clustered AP sites. A protein, which formed the Schiff-base-dependent covalent products having an apparent molecular mass of 50 kDa with the subset of BS-AP DNAs, was identified by mass spectrometry as apurinic/apyrimidinic endonuclease 1 (APE1). The identity of trapped protein was confirmed by Western blot analysis with anti-APE1 antibodies. Purified recombinant human APE1 is also capable of forming the 50 kDa-adducts with efficiency of BS-AP DNAs cross-linking to APE1 being dependent on the mutual orientation of AP sites. In spite of formation of the Schiff-base-dependent intermediate, which is prerequisite for the β-elimination mechanism, APE1 is unable to cleave AP sites. APE1 lacking the first 34 amino acids at the N-terminus, unlike wild type enzyme, is unable to form cross-links with BS-AP DNAs that testifies to the involvement of disordered N-terminal extension, which is enriched in lysine residues, in the interaction with AP sites. The yield of APE1-AP DNA cross-links was found to correlate with the enzyme amount in the extracts estimated by the immunochemical approach; therefore the BS-AP DNA-probes can be useful for comparative analysis of APE1 content in cell extracts.
Collapse
Affiliation(s)
- Ekaterina S Ilina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana N Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
39
|
Batebi H, Dragelj J, Imhof P. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. Proteins 2018; 86:439-453. [PMID: 29344998 DOI: 10.1002/prot.25460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule.
Collapse
Affiliation(s)
- Hossein Batebi
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Jovan Dragelj
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36A, Berlin, 14195, Germany
| | - Petra Imhof
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
40
|
Whitaker AM, Flynn TS, Freudenthal BD. Molecular snapshots of APE1 proofreading mismatches and removing DNA damage. Nat Commun 2018; 9:399. [PMID: 29374164 PMCID: PMC5785985 DOI: 10.1038/s41467-017-02175-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair enzyme which uses a single active site to process DNA damage via two distinct activities: (1) AP-endonuclease and (2) 3′ to 5′ exonuclease. The AP-endonuclease activity cleaves at AP-sites, while the exonuclease activity excises bulkier 3′ mismatches and DNA damage to generate clean DNA ends suitable for downstream repair. Molecular details of the exonuclease reaction and how one active site can accommodate various toxic DNA repair intermediates remains elusive despite being biologically important. Here, we report multiple high-resolution APE1–DNA structural snapshots revealing how APE1 removes 3′ mismatches and DNA damage by placing the 3′ group within the intra-helical DNA cavity via a non-base flipping mechanism. This process is facilitated by a DNA nick, instability of a mismatched/damaged base, and bending of the DNA. These results illustrate how APE1 cleanses DNA dirty-ends to generate suitable substrates for downstream repair enzymes. The essential DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) has both endonuclease and exonuclease activities. Here, the authors present DNA bound human APE1 crystal structures which give insights into its exonuclease mechanism.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
41
|
Scott DD, Trahan C, Zindy PJ, Aguilar LC, Delubac MY, Van Nostrand EL, Adivarahan S, Wei KE, Yeo GW, Zenklusen D, Oeffinger M. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res 2017; 45:12509-12528. [PMID: 29069457 PMCID: PMC5716212 DOI: 10.1093/nar/gkx963] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance. Nol12 is found in different subcellular compartments-nucleoli, where it associates with ribosomal RNA and is required for efficient separation of large and small subunit precursors at site 2; the nucleoplasm, where it co-localizes with the RNA/DNA helicase Dhx9 and paraspeckles; as well as GW/P-bodies in the cytoplasm. Loss of Nol12 results in the inability of cells to recover from DNA stress and a rapid p53-independent ATR-Chk1-mediated apoptotic response. Nol12 co-localizes with DNA repair proteins in vivo including Dhx9, as well as with TOPBP1 at sites of replication stalls, suggesting a role for Nol12 in the resolution of DNA stress and maintenance of genome integrity. Identification of a complex Nol12 interactome, which includes NONO, Dhx9, DNA-PK and Stau1, further supports the protein's diverse functions in RNA metabolism and DNA maintenance, establishing Nol12 as a multifunctional RBP essential for genome integrity.
Collapse
Affiliation(s)
- Daniel D. Scott
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pierre J. Zindy
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Lisbeth C. Aguilar
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Marc Y. Delubac
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Srivathsan Adivarahan
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Karen E. Wei
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Molecular Engineering Laboratory, A*STAR, Singapore
| | - Daniel Zenklusen
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
42
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
43
|
Antoniali G, Serra F, Lirussi L, Tanaka M, D'Ambrosio C, Zhang S, Radovic S, Dalla E, Ciani Y, Scaloni A, Li M, Piazza S, Tell G. Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat Commun 2017; 8:797. [PMID: 28986522 PMCID: PMC5630600 DOI: 10.1038/s41467-017-00842-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/28/2017] [Indexed: 01/31/2023] Open
Abstract
Mammalian apurinic/apyrimidinic endonuclease 1 is a DNA repair enzyme involved in genome stability and expression of genes involved in oxidative stress responses, tumor progression and chemoresistance. However, the molecular mechanisms underlying the role of apurinic/apyrimidinic endonuclease 1 in these processes are still unclear. Recent findings point to a novel role of apurinic/apyrimidinic endonuclease 1 in RNA metabolism. Through the characterization of the interactomes of apurinic/apyrimidinic endonuclease 1 with RNA and other proteins, we demonstrate here a role for apurinic/apyrimidinic endonuclease 1 in pri-miRNA processing and stability via association with the DROSHA-processing complex during genotoxic stress. We also show that endonuclease activity of apurinic/apyrimidinic endonuclease 1 is required for the processing of miR-221/222 in regulating expression of the tumor suppressor PTEN. Analysis of a cohort of different cancers supports the relevance of our findings for tumor biology. We also show that apurinic/apyrimidinic endonuclease 1 participates in RNA-interactomes and protein-interactomes involved in cancer development, thus indicating an unsuspected post-transcriptional effect on cancer genes. APE1 plays an important role in the cellular response to oxidative stress, and mutations are linked to tumor progression and chemoresistance. Here, the authors characterize the interactions of APE1 with RNA and demonstrate a role in microRNA processing.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy
| | - Fabrizio Serra
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.,Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., via Franco Gallini 2, Aviano (PN), 33081, Italy
| | - Lisa Lirussi
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.,Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Sykehusveien 27, Nordbyhagen, 1474, Norway
| | - Mikiei Tanaka
- Laboratory of Biochemistry, National Heart Lung and Blood Institute, National Institutes of Health, 50 South Drive, MSC-8012, Bethesda, MD, 20892-8012, USA
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM) National Research Council (CNR) of Italy, via Argine 1085, Naples, 80147, Italy
| | - Shiheng Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | | | - Emiliano Dalla
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy
| | - Yari Ciani
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM) National Research Council (CNR) of Italy, via Argine 1085, Naples, 80147, Italy
| | - Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Silvano Piazza
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, 34149, Italy. .,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 18, Povo, Trento, TN, 38123, Italy.
| | - Gianluca Tell
- Department of Medicine, Laboratory of Molecular Biology and DNA repair, University of Udine, p.le M. Kolbe 4, Udine, 33100, Italy.
| |
Collapse
|
44
|
DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1. DNA Repair (Amst) 2017; 59:44-56. [PMID: 28946035 DOI: 10.1016/j.dnarep.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far.
Collapse
|
45
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA. Biochimie 2016; 128-129:20-33. [PMID: 27343627 DOI: 10.1016/j.biochi.2016.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.
Collapse
|
47
|
Simms CL, Zaher HS. Quality control of chemically damaged RNA. Cell Mol Life Sci 2016; 73:3639-53. [PMID: 27155660 DOI: 10.1007/s00018-016-2261-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 01/10/2023]
Abstract
The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA.
| |
Collapse
|
48
|
Vohhodina J, Harkin DP, Savage KI. Dual roles of DNA repair enzymes in RNA biology/post-transcriptional control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:604-19. [PMID: 27126972 DOI: 10.1002/wrna.1353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
49
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Capturing snapshots of APE1 processing DNA damage. Nat Struct Mol Biol 2015; 22:924-31. [PMID: 26458045 PMCID: PMC4654669 DOI: 10.1038/nsmb.3105] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/06/2015] [Indexed: 12/22/2022]
Abstract
DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. We report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylated CpG dinucleotides. These structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. These snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.
Collapse
|