1
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
i-Motif folding intermediates with zero-nucleotide loops are trapped by 2'-fluoroarabinocytidine via F···H and O···H hydrogen bonds. Commun Chem 2023; 6:31. [PMID: 36797370 PMCID: PMC9935537 DOI: 10.1038/s42004-023-00831-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.
Collapse
|
3
|
Greco F, Marzano M, Falanga AP, Terracciano M, Piccialli G, Roviello GN, D'Errico S, Borbone N, Oliviero G. Cytosine-rich oligonucleotides incorporating a non-nucleotide loop: A further step towards the obtainment of physiologically stable i-motif DNA. Int J Biol Macromol 2022; 219:626-636. [PMID: 35952813 DOI: 10.1016/j.ijbiomac.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
i-Motifs, also known as i-tetraplexes, are secondary structures of DNA occurring in cytosine-rich oligonucleotides (CROs) that recall increasing interest in the scientific community for their relevance in various biological processes and DNA nanotechnology. This study reports the design of new structurally modified CROs, named Double-Ended-Linker-CROs (DEL-CROs), capable of forming stable i-motif structures. Here, two C-rich strands having sequences d(AC4A) and d(C6) have been attached, in a parallel fashion, to the two linker's edges by their 3' or 5' ends. The resulting DEL-CROs have been investigated for their capability to form i-motif structures by circular dichroism, poly-acrylamide gel electrophoresis, HPLC-size-exclusion chromatography, and NMR studies. This investigation established that DEL-CROs could form more stable i-motif structures than the corresponding unmodified CROs. In particular, the i-motif formed by DEL-5'-d(C6)2 resulted stable enough to be detected even at near physiological conditions (37 °C, pH 7.0). The results open the way to developing pH-switchable nanocarriers and aptamers based on suitably functionalized DEL-CROs.
Collapse
Affiliation(s)
- Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Giovanni Nicola Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; Istituto di Scienze Applicate e Sistemi Intelligenti - Unità di Napoli, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy.
| | - Giorgia Oliviero
- ISBE Italy, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
4
|
Tsvetkov VB, Zatsepin TS, Turaev AV, Farzan VM, Pozmogova GE, Aralov AV, Varizhuk AM. DNA i-Motifs With Guanidino- i-Clamp Residues: The Counterplay Between Kinetics and Thermodynamics and Implications for the Design of pH Sensors. Comput Struct Biotechnol J 2019; 17:527-536. [PMID: 31049164 PMCID: PMC6479070 DOI: 10.1016/j.csbj.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 11/12/2022] Open
Abstract
I-motif structures, adopted by cytosine-rich DNA strands, have attracted considerable interest as possible regulatory elements in genomes. Applied science exploits the advantages of i-motif stabilization under acidic conditions: i-motif-based pH sensors and other biocompatible nanodevices are being developed. Two key characteristics of i-motifs as core elements of nanodevices, i.e., their stability under physiological conditions and folding/unfolding rates, still need to be improved. We have previously reported a phenoxazine derivative (i-clamp) that enhances the thermal stability of the i-motif and shifts the pH transition point closer to physiological values. Here, we performed i-clamp guanidinylation to further explore the prospects of clamp-like modifications in i-motif fine-tuning. Based on molecular modeling data, we concluded that clamp guanidinylation facilitated interstrand interactions in an i-motif core and ultimately stabilized the i-motif structure. We tested the effects of guanidino-i-clamp insertions on the thermal stabilities of genomic and model i-motifs. We also investigated the folding/unfolding kinetics of native and modified i-motifs under moderate, physiologically relevant pH alterations. We demonstrated fast folding/unfolding of native genomic and model i-motifs in response to pH stimuli. This finding supports the concept of i-motifs as possible genomic regulatory elements and encourages the future design of rapid-response pH probes based on such structures. Incorporation of guanidino-i-clamp residues at/near the 5′-terminus of i-motifs dramatically decreased the apparent unfolding rates and increased the thermal stabilities of the structures. This counterplay between the effects of modifications on i-motif stability and their effects on kinetics should be taken into account in the design of pH sensors.
Collapse
Affiliation(s)
- Vladimir B Tsvetkov
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia.,Research Institute of Influenza, Professora Popova str., 15/17, Sankt-Peterburg 197376, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia.,Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Anton V Turaev
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny 141700, Russia
| | - Valentina M Farzan
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia
| | - Galina E Pozmogova
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, Moscow 119071, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Anna M Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| |
Collapse
|
5
|
Yang S, Yang C, Huang D, Song L, Chen J, Yang Q. Recent Progress in Fluorescence Signal Design for DNA-Based Logic Circuits. Chemistry 2019; 25:5389-5405. [PMID: 30328639 DOI: 10.1002/chem.201804420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Indexed: 01/06/2023]
Abstract
DNA-based logic circuits, encoding algorithms in DNA and processing information, are pushing the frontiers of molecular computers forward, owing to DNA's advantages of stability, accessibility, manipulability, and especially inherent biological significance and potential medical application. In recent years, numerous logic functions, from arithmetic to nonarithmetic, have been realized based on DNA. However, DNA can barely provide a detectable signal by itself, so that the DNA-based circuits depend on extrinsic signal actuators. The signal strategy of carrying out a response is becoming one of the design focuses in DNA-based logic circuit construction. Although work on sequence and structure design for DNA-based circuits has been well reviewed, the strategy on signal production lacks comprehensive summary. In this review, we focused on the latest designs of fluorescent output for DNA-based logic circuits. Several basic strategies are summarized and a few designs for developing multi-output systems are provided. Finally, some current difficulties and possible opportunities were also discussed.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunrong Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Dan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jianchi Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qianfan Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
7
|
Ghoshdastidar D, Bansal M. Dynamics of physiologically relevant noncanonical DNA structures: an overview from experimental and theoretical studies. Brief Funct Genomics 2018; 18:192-204. [DOI: 10.1093/bfgp/ely026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Abstract
DNA is a complex molecule with phenomenal inherent plasticity and the ability to form different hydrogen bonding patterns of varying stabilities. These properties enable DNA to attain a variety of structural and conformational polymorphic forms. Structurally, DNA can exist in single-stranded form or as higher-order structures, which include the canonical double helix as well as the noncanonical duplex, triplex and quadruplex species. Each of these structural forms in turn encompasses an ensemble of dynamically heterogeneous conformers depending on the sequence composition and environmental context. In vivo, the widely populated canonical B-DNA attains these noncanonical polymorphs during important cellular processes. While several investigations have focused on the structure of these noncanonical DNA, studying their dynamics has remained nontrivial. Here, we outline findings from some recent advanced experimental and molecular simulation techniques that have significantly contributed toward understanding the complex dynamics of physiologically relevant noncanonical forms of DNA.
Collapse
Affiliation(s)
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Tanaka S, Yukami S, Fukushima K, Wakabayashi K, Ohya Y, Kuzuya A. Bulk pH-Responsive DNA Quadruplex Hydrogels Prepared by Liquid-Phase, Large-Scale DNA Synthesis. ACS Macro Lett 2018; 7:295-299. [PMID: 35632920 DOI: 10.1021/acsmacrolett.8b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new pH-responsive hydrogel biomaterial, that is composed of solely two popular biocompatible materials, oligodeoxynucleotides (ODN) and polyethylene glycol (PEG) have been prepared. Merely five deoxycytidine residues were elongated to the ends of linear or 4-arm PEG in ×1000 larger scale than conventional systems by using liquid-phase DNA synthesis technique, and applied them as a macromonomer for the preparation of hydrogels. The syntheses of the conjugates are simply elongating ODN onto the ends of PEG as a semisolid phase substrate using standard phosphoramidite chemistry. The resulting dC5-PEG conjugates gave quite stable and stiff hydrogels triggered by the formation of a unique DNA quadruplex, i-motif. Introduction of only one chemical linkage between two linear conjugates resulted in unexpectedly high thermal stabilities for the melting temperatures of i-motifs themselves. Nonlinearly improved rheological properties compared to the original linear conjugates were also observed, probably because of topological entanglement between macromonomers of fused circles.
Collapse
|
9
|
Nguyen T, Fraire C, Sheardy RD. Linking pH, Temperature, and K+ Concentration for DNA i-Motif Formation. J Phys Chem B 2017; 121:7872-7877. [DOI: 10.1021/acs.jpcb.7b06317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tra Nguyen
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| | - Claudette Fraire
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| | - Richard D. Sheardy
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| |
Collapse
|
10
|
Cao Y, Gao S, Yan Y, Bruist MF, Wang B, Guo X. Assembly of supramolecular DNA complexes containing both G-quadruplexes and i-motifs by enhancing the G-repeat-bearing capacity of i-motifs. Nucleic Acids Res 2016; 45:26-38. [PMID: 27899568 PMCID: PMC5224476 DOI: 10.1093/nar/gkw1049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by certain terminal residues: a five-cytosine tetrameric i-motif can bear ten-base flanking residues. However, things become complex when different lengths of guanine-repeats are added at the 3′ or 5′ ends of the cytosine-repeats. Here, a series of oligomers d(XGiXC5X) and d(XC5XGiX) (X = A, T or none; i < 5) are designed to study the impact of G-repeats on the formation of tetrameric i-motifs. Our data demonstrate that tetramolecular i-motif structure can tolerate specific flanking G-repeats. Assemblies of these oligonucleotides are polymorphic, but may be controlled by solution pH and counter ion species. Importantly, we find that the sequences d(TGiAC5) can form the tetrameric i-motif in large quantities. This leads to the design of two oligonucleotides d(TG4AC7) and d(TGBrGGBrGAC7) that self-assemble to form quadruplex supramolecules under certain conditions. d(TG4AC7) forms supramolecules under acidic conditions in the presence of K+ that are mainly V-shaped or ring-like containing parallel G4s and antiparallel i-motifs. d(TGBrGGBrGAC7) forms long linear quadruplex wires under acidic conditions in the presence of Na+ that consist of both antiparallel G4s and i-motifs.
Collapse
Affiliation(s)
- Yanwei Cao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shang Gao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuting Yan
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Michael F Bruist
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Bing Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xinhua Guo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Cao Y, Gao S, Li C, Yan Y, Wang B, Guo X. Structural varieties of selectively mixed G- and C-rich short DNA sequences studied with electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:931-937. [PMID: 27378414 DOI: 10.1002/jms.3804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 05/09/2023]
Abstract
Short guanine(G)-repeat and cytosine(C)-repeat DNA strands can self-assemble to form four-stranded G-quadruplexes and i-motifs, respectively. Herein, G-rich and C-rich strands with non-G or non-C terminal bases and different lengths of G- or C-repeats are mixed selectively in pH 4.5 and 6.7 ammonium acetate buffer solutions and studied by electrospray ionization mass spectrometry (ESI-MS). Various strand associations corresponding to bi-, tri- and tetramolecular ions are observed in mass spectra, indicating that the formation of quadruplex structures is a random strand by strand association process. However, with increasing incubation time for the mixtures, initially associated hybrid tetramers will transform into self-assembled conformations, which is mainly driven by the structural stability. The melting temperature values of self-assembled quadruplexes suggest that the length of G-repeats or C-repeats shows more significant effect on the stability of quadruplex structures than that of terminal residues. Accordingly, we can obtain the self-associated tetrameric species generated from the mixtures of various homologous G- or C-strands efficiently by altering the length of G- or C-repeats. Our studies demonstrate that ESI-MS is a very direct, fast and sensitive tool to provide significant information on DNA strand associations and stoichiometric transitions, particularly for complex mixtures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanwei Cao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shang Gao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Caijin Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yuting Yan
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Bing Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
12
|
McKim M, Buxton A, Johnson C, Metz A, Sheardy RD. Loop Sequence Context Influences the Formation and Stability of the i-Motif for DNA Oligomers of Sequence (CCCXXX)4, where X = A and/or T, under Slightly Acidic Conditions. J Phys Chem B 2016; 120:7652-61. [DOI: 10.1021/acs.jpcb.6b04561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mikeal McKim
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Alexander Buxton
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Courtney Johnson
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Amanda Metz
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| | - Richard D. Sheardy
- Department of Chemistry and
Biochemistry, Texas Woman’s University, P.O. Box 425859, Denton, Texas 76204, United States
| |
Collapse
|
13
|
Alba JJ, Sadurní A, Gargallo R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit Rev Anal Chem 2016; 46:443-54. [DOI: 10.1080/10408347.2016.1143347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joan Josep Alba
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Sadurní
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Day HA, Wright EP, MacDonald CJ, Gates AJ, Waller ZAE. Reversible DNA i-motif to hairpin switching induced by copper(II) cations. Chem Commun (Camb) 2016; 51:14099-102. [PMID: 26252811 PMCID: PMC4563791 DOI: 10.1039/c5cc05111h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.
Collapse
Affiliation(s)
- Henry Albert Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | | | | | |
Collapse
|
15
|
A pH-responsive activatable aptamer probe for targeted cancer imaging based on i-motif-driven conformation alteration. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5575-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Reilly SM, Lyons DF, Wingate SE, Wright RT, Correia JJ, Jameson DM, Wadkins RM. Folding and hydrodynamics of a DNA i-motif from the c-MYC promoter determined by fluorescent cytidine analogs. Biophys J 2015; 107:1703-11. [PMID: 25296324 DOI: 10.1016/j.bpj.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022] Open
Abstract
The four-stranded i-motif (iM) conformation of cytosine-rich DNA has importance to a wide variety of biochemical systems that range from their use in nanomaterials to potential roles in oncogene regulation. The iM structure is formed at slightly acidic pH, where hemiprotonation of cytosine results in a stable C-C(+) basepair. Here, we performed fundamental studies to examine iM formation from a C-rich strand from the promoter of the human c-MYC gene. We used a number of biophysical techniques to characterize both the hydrodynamic properties and folding kinetics of a folded iM. Our hydrodynamic studies using fluorescence anisotropy decay and analytical ultracentrifugation show that the iM structure has a compact size in solution and displays the rigidity of a double strand. By studying the rates of circular dichroism spectral changes and quenching of fluorescent cytidine analogs, we also established a mechanism for the folding of a random coil oligo into the iM. In the course of determining this folding pathway, we established that the fluorescent dC analogs tC° and PdC can be used to monitor individual residues of an iM structure and to determine the pKa of an iM. We established that the C-C(+) hydrogen bonding of certain bases initiates the folding of the iM structure. We also showed that substitutions in the loop regions of iMs give a distinctly different kinetic signature during folding compared with bases that are intercalated. Our data reveal that the iM passes through a distinct intermediate form between the unfolded and folded forms. Taken together, our results lay the foundation for using fluorescent dC analogs to follow structural changes during iM formation. Our technique may also be useful for examining folding and structural changes in more complex iMs.
Collapse
Affiliation(s)
- Samantha M Reilly
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Daniel F Lyons
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara E Wingate
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi
| | - Robert T Wright
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - John J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - David M Jameson
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Randy M Wadkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi.
| |
Collapse
|
17
|
Cao Y, Qin Y, Bruist M, Gao S, Wang B, Wang H, Guo X. Formation and Dissociation of the Interstrand i-Motif by the Sequences d(XnC 4Y m) Monitored with Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:994-1003. [PMID: 25862186 DOI: 10.1007/s13361-015-1093-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Formation and dissociation of the interstrand i-motifs by DNA with the sequence d(X(n)C(4)Y(m)) (X and Y represent thymine, adenine, or guanine, and n, m range from 0 to 2) are studied with electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and UV spectrophotometry. The ion complexes detected in the gas phase and the melting temperatures (Tm) obtained in solution show that a non-C base residue located at 5' end favors formation of the four-stranded structures, with T > A > G for imparting stability. Comparatively, no rule is found when a non-C base is located at the 3' end. Detection of penta- and hexa-stranded ions indicates the formation of i-motifs with more than four strands. In addition, the i-motifs seen in our mass spectra are accompanied by single-, double-, and triple-stranded ions, and the trimeric ions were always less abundant during annealing and heat-induced dissociation process of the DNA strands in solution (pH = 4.5). This provides a direct evidence of a strand-by-strand formation and dissociation pathway of the interstrand i-motif and formation of the triple strands is the rate-limiting step. In contrast, the trimeric ions are abundant when the tetramolecular ions are subjected to collision-induced dissociation (CID) in the gas phase, suggesting different dissociation behaviors of the interstrand i-motif in the gas phase and in solution. Furthermore, hysteretic UV absorption melting and cooling curves reveal an irreversible dissociation and association kinetic process of the interstrand i-motif in solution.
Collapse
Affiliation(s)
- Yanwei Cao
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Hünniger T, Fischer C, Wessels H, Hoffmann A, Paschke-Kratzin A, Haase I, Fischer M. Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2189-2197. [PMID: 25639310 DOI: 10.1021/jf505996m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The quality of the beverage industry's products has to be constantly monitored to fulfill consumers' high expectations. The thermo-acidophilic Gram-positive Alicyclobacillus spp. are not pathogenic, but their heat-resistant endospores can survive juice-processing conditions and have become a major economic concern for the fruit juice industry. Current detection methods rely on cultivation, isolation, and organism identification, which can take up to a week, resulting in economic loss. This work presents the selection and identification of DNA aptamers targeting Alicyclobacillus spores by spore-SELEX (systematic evolution of ligands by exponential enrichment) in orange-juice-simulating buffer. The selection process was verified by various techniques, including flow cytometric binding assays, radioactive binding assays, and agarose gel electrophoresis. The subsequent aptamer characterization included the determination of dissociations constants and selectivity by different techniques, such as surface plasmon resonance spectroscopy and fluorescence microscopy. In summary, 10 different aptamers with an affinity to Alicyclobacillus spp. have been developed, analyzed, and characterized in terms of affinity and specificity.
Collapse
Affiliation(s)
- Tim Hünniger
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg , Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Largy E, Mergny JL. Shape matters: size-exclusion HPLC for the study of nucleic acid structural polymorphism. Nucleic Acids Res 2014; 42:e149. [PMID: 25143531 PMCID: PMC4231728 DOI: 10.1093/nar/gku751] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, an increasing number of reports have been focused on the structure and biological role of non-canonical nucleic acid secondary structures. Many of these studies involve the use of oligonucleotides that can often adopt a variety of structures depending on the experimental conditions, and hence change the outcome of an assay. The knowledge of the structure(s) formed by oligonucleotides is thus critical to correctly interpret the results, and gain insight into the biological role of these particular sequences. Herein we demonstrate that size-exclusion HPLC (SE-HPLC) is a simple yet surprisingly powerful tool to quickly and effortlessly assess the secondary structure(s) formed by oligonucleotides. For the first time, an extensive calibration and validation of the use of SE-HPLC to confidently detect the presence of different species displaying various structure and/or molecularity, involving >110 oligonucleotides forming a variety of secondary structures (antiparallel, parallel, A-tract bent and mismatched duplexes, triplexes, G-quadruplexes and i-motifs, RNA stem loops), is performed. Moreover, we introduce simple metrics that allow the use of SE-HPLC without the need for a tedious calibration work. We show that the remarkable versatility of the method allows to quickly establish the influence of a number of experimental parameters on nucleic acid structuration and to operate on a wide range of oligonucleotide concentrations. Case studies are provided to clearly illustrate the all-terrain capabilities of SE-HPLC for oligonucleotide secondary structure analysis. Finally, this manuscript features a number of important observations contributing to a better understanding of nucleic acid structural polymorphism.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, University of Bordeaux, Bordeaux 33000, France INSERM, U869, IECB, Pessac 33600, France
| | - Jean-Louis Mergny
- ARNA Laboratory, University of Bordeaux, Bordeaux 33000, France INSERM, U869, IECB, Pessac 33600, France
| |
Collapse
|
20
|
Chen YW, Jhan CR, Neidle S, Hou MH. Structural Basis for the Identification of an i-Motif Tetraplex Core with a Parallel-Duplex Junction as a Structural Motif in CCG Triplet Repeats. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Chen YW, Jhan CR, Neidle S, Hou MH. Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats. Angew Chem Int Ed Engl 2014; 53:10682-6. [PMID: 25139267 DOI: 10.1002/anie.201405637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 11/12/2022]
Abstract
CCG triplet repeats can fold into tetraplex structures, which are associated with the expansion of (CCG)n trinucleotide sequences in certain neurological diseases. These structures are stabilized by intertwining i-motifs. However, the structural basis for tetraplex i-motif formation in CCG triplet repeats remains largely unknown. We report the first crystal structure of a CCG-repeat sequence, which shows that two dT(CCG)3 A strands can associate to form a tetraplex structure with an i-motif core containing four C:C(+) pairs flanked by two G:G homopurine base pairs as a structural motif. The tetraplex core is attached to a short parallel-stranded duplex. Each hairpin itself contains a central CCG loop in which the nucleotides are flipped out and stabilized by stacking interactions. The helical twists between adjacent cytosine residues of this structure in the i-motif core have an average value of 30°, which is greater than those previously reported for i-motif structures.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Institute of Genomics and Bioinformatics and Institute of Biochemistry, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung (Taiwan)
| | | | | | | |
Collapse
|
22
|
Singh RP, Blossey R, Cleri F. Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation. Biophys J 2014; 105:2820-31. [PMID: 24359754 DOI: 10.1016/j.bpj.2013.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022] Open
Abstract
We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C(+) stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young's and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.
Collapse
Affiliation(s)
- Raghvendra Pratap Singh
- Institut d'Electronique Microelectronique et Nanotechnologie (IEMN UMR Cnrs 8520), University of Lille I, Villeneuve d'Ascq, France; Interdisciplinary Research Institute (IRI USR Cnrs 3078), University of Lille I, Villeneuve d'Ascq, France
| | - Ralf Blossey
- Interdisciplinary Research Institute (IRI USR Cnrs 3078), University of Lille I, Villeneuve d'Ascq, France
| | - Fabrizio Cleri
- Interdisciplinary Research Institute (IRI USR Cnrs 3078), University of Lille I, Villeneuve d'Ascq, France.
| |
Collapse
|
23
|
Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry 2014; 53:1586-94. [PMID: 24564458 PMCID: PMC3985701 DOI: 10.1021/bi401523b] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
sequences with the potential to form secondary structures such
as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters
of several oncogenes and, in some instances, are known to regulate
gene expression. Recently, iM-forming DNA strands have also been employed
as functional units in nanodevices, ranging from drug delivery systems
to nanocircuitry. To understand both the mechanism of gene regulation
by iMs and how to use them more efficiently in nanotechnological applications,
it is essential to have a thorough knowledge of factors that govern
their conformational states and stabilities. Most of the prior work
to characterize the conformational dynamics of iMs have been done
with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here,
we present a systematic study on the consequences of epigenetic modifications,
molecular crowding, and degree of hydration on the stabilities of
an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines
destabilized the iMs against thermal and pH-dependent melting; contrarily,
5-methylcytosine modification stabilized the iMs. Under molecular
crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs
increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM’s
stability at varying degrees of hydration in 1,2-dimethoxyethane,
2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents
indicated that the iMs are stabilized by dehydration because of the
release of water molecules when folded. Our results highlight the
importance of considering the effects of epigenetic modifications,
molecular crowding, and the degree of hydration on iM structural dynamics.
For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines
in iMs could be useful for fine-tuning the pH- or temperature-dependent
folding/unfolding of an iM. Variations in the degree of hydration
of iMs may also provide an additional control of the folded/unfolded
state of iMs without having to change the pH of the surrounding matrix.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
24
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
25
|
Chen X, Zhou X, Han T, Wu J, Zhang J, Guo S. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS NANO 2013; 7:531-537. [PMID: 23244198 DOI: 10.1021/nn304673a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA i-motif structures have been found in telomeric, centromeric DNA and many in the promoter region of oncogenes; thus they might be attractive targets for gene-regulation processes and anticancer therapeutics. We demonstrate in this work that i-motif structures can be stabilized by graphene quantum dots (GQDs) under acidic conditions, and more importantly GQDs can promote the formation of the i-motif structure under alkaline or physiological conditions. We illustrate that the GQDs stabilize the i-motif structure through end-stacking of the bases at its loop regions, thus reducing its solvent-accessible area. Under physiological or alkaline conditions, the end-stacking of GQDs on the unfolded structure shifts the equilibrium between the i-motif and unfolded structure toward the i-motif structure, thus promoting its formation. The possibility of fine-tuning the stability of the i-motif and inducing its formation would make GQDs useful in gene regulation and oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xin Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Chen C, Li M, Xing Y, Li Y, Joedecke CC, Jin J, Yang Z, Liu D. Study of pH-induced folding and unfolding kinetics of the DNA i-motif by stopped-flow circular dichroism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17743-17748. [PMID: 23148777 DOI: 10.1021/la303851a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using the stopped-flow circular dichroism (SFCD) technique, we investigate the kinetics of the pH-induced folding and unfolding process of the DNA i-motif. The results show that the molecule can fold or unfold on a time scale of 100 ms when the solution pH is changed. It is also found that the folding and unfolding rates strongly depend on the solution pH. On the basis of quantitative data, we propose theoretical models to decipher the folding and unfolding kinetics. Our models suggest that the cooperativity of protons is crucial for both the folding and unfolding process. In the unfolding process, the cooperative neutralization of two protons (out of the total six protons in the i-motif molecule) is the only rate-limiting step. In the folding process, there exists a critical step in which three protons bind cooperatively to the DNA strand. These results offer an in-depth understanding of the folding and unfolding kinetics of the DNA i-motif and may give precise guidance for constructing novel nanodevices based on the DNA i-motif.
Collapse
Affiliation(s)
- Chun Chen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The physicochemical properties of small molecules as well as macromolecules are modulated by solution pH, and DNA is no exception. Special sequences of DNA can adopt unusual conformations e.g., triplex, i-motif and A-motif, depending on solution pH. The specific range of pH for these unusual structures is dictated by the pKa of protonation of the relevant nucleobase involved in the resultant non-canonical base pairing that is required to stabilise the structure. The biological significance of these pH-dependent structures is not yet clear. However, these non-B-DNA structures have been used to design different devices to direct chemical reactions, generate mechanical force, sense pH, etc. The performance of these devices can be monitored by a photonic signal. They are autonomous and their ‘waste free’ operation cycles makes them highly processive. Applications of these devices help to increase understanding of the structural polymorphism of the motifs themselves. The design of these devices has continuously evolved to improve their performance efficiency in different contexts. In some examples, these devices have been shown to perform inside complex living systems with similar efficiencies, to report on the chemical environment there. The robust performance of these devices opens up exciting possibilities for pH-sensitive DNA devices in the study of various pH-regulated biological events.
Collapse
Affiliation(s)
- Sonali Saha
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| | - Yamuna Krishnan*
- National Centre for Biological Sciences TIFR, GKVK, Bellary Road, Bangalore 560065 India
| |
Collapse
|
28
|
Intramolecular folding in human ILPR fragment with three C-rich repeats. PLoS One 2012; 7:e39271. [PMID: 22761750 PMCID: PMC3382603 DOI: 10.1371/journal.pone.0039271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.
Collapse
|
29
|
Guittet E, Renciuk D, Leroy JL. Junctions between i-motif tetramers in supramolecular structures. Nucleic Acids Res 2012; 40:5162-70. [PMID: 22362739 PMCID: PMC3367196 DOI: 10.1093/nar/gks161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The symmetry of i-motif tetramers gives to cytidine-rich oligonucleotides the capacity to associate into supramolecular structures (sms). In order to determine how the tetramers are linked together in such structures, we have measured by gel filtration chromatography and NMR the formation and dissociation kinetics of sms built by oligonucleotides containing two short C stretches separated by a non-cytidine-base. We show that a stretch of only two cytidines either at the 3'- or 5'-end is long enough to link the tetramers into sms. The analysis of the properties of sms formed by oligonucleotides differing by the length of the oligo-C stretches, the sequence orientation and the nature of the non-C base provides a model of the junction connecting the tetramers in sms.
Collapse
Affiliation(s)
- Eric Guittet
- Laboratoire de Chimie et Biologie Structurales, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | | | |
Collapse
|
30
|
Dhakal S, Schonhoft JD, Koirala D, Yu Z, Basu S, Mao H. Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. J Am Chem Soc 2010; 132:8991-7. [PMID: 20545340 DOI: 10.1021/ja100944j] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigation of i-motif is of high importance to fully understand the biological functions of G quadruplexes in the context of double-stranded DNA. Whereas single-molecule approaches have profiled G quadruplexes from a perspective unavailable by bulk techniques, there is a lack of similar literature on the i-motif in the cytosine (C)-rich region complementary to G quadruplex-forming sequences. Here, we have used laser tweezers to investigate the structures formed in 5'-(TGTCCCCACACCCC)(2), a predominate variant in the insulin-linked polymorphic region (ILPR). We have observed two species with the change in contour length (DeltaL) of 10.4 (+/-0.1) and 5.1 (+/-0.5) nm, respectively. Since DeltaL of 10.4 nm is located within the expected range for an i-motif structure, we assign this species to the i-motif. The formation of the i-motif in the same sequence has been corroborated by bulk experiments such as Br(2) footprinting, circular dichroism, and thermal denaturation. The assignment of the i-motif is further confirmed by decreased formation of this structure (23% to 1.3%) with pH 5.5 --> 7.0, which is a well-established behavior for i-motifs. In contrast to that of the i-motif, the formation of the second species with DeltaL of 5.1 nm remains unchanged (6.1 +/- 1.6%) in the same pH range, implying that pH-sensitive C:CH(+) pairs may not contribute to the structure as significantly as those to the i-motif. Compared to the DeltaG(unfold) of an i-motif (16.0 +/- 0.8 kcal/mol), the decreased free energy in the partially folded structure (DeltaG(unfold) 10.4 +/- 0.7 kcal/mol) may reflect a weakened structure with reduced C:CH(+) pairs. Both DeltaL and DeltaG(unfold) argue for the intermediate nature of the partially folded structure in comparison to the i-motif. In line with this argument, we have directly observed the unfolding of an i-motif through the partially folded structure. The i-motif and the partially folded structure share similar rupture forces of 22-26 pN, which are higher than those that can stall transcription catalyzed by RNA polymerases. This suggests, from a mechanical perspective alone, that either of the structures can stop RNA transcription.
Collapse
Affiliation(s)
- Soma Dhakal
- Department of Chemistry, Kent State University, Kent, Ohio 44242, USA
| | | | | | | | | | | |
Collapse
|
31
|
Laisné A, Pompon D, Leroy JL. [C7GC4]4 association into supra molecular i-motif structures. Nucleic Acids Res 2010; 38:3817-26. [PMID: 20185569 PMCID: PMC2887966 DOI: 10.1093/nar/gkq102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The self-associative properties of cytidine-rich oligonucleotides into symmetrical i-motif tetramers give to these oligonucleotides the capacity of forming supramolecular structures (sms) that have potential applications in the nanotechnology domain. In order to facilitate sms formation, oligonucleotides containing two cytidine stretches of unequal length (CnXCm) separated by a non-cytidine spacer were synthesized. They were designed to associate into a tetramer including an i-motif core built by intercalation of the C·C+ pairs of the longer C stretch with the two dangling non-intercalated strands of the shorter C stretch at each end. Gel filtration chromatography shows that the non-intercalated C-rich ends give to this structure the capacity of forming extremely stable sms. Using C7GC4 as a model, we find that the sms formation rate varies as the oligonucleotide concentration and increases at high temperature. Competitively with the tetramer involved in sms elongation, CnXCm oligonucleotides form i-motif dimers that compete with sms elongation. The dimer stability is strongly reduced when the pH is moved away from the cytidine pK. This results in an equilibrium shift towards the tetramer and in the acceleration of the sms formation rate. The chromatograms of the sms formed by C7GC4 indicate a broad distribution. In a 1.5 mM solution incubated at 37°C, the equilibrium distribution is centered on a molecular weight corresponding to the assembly of nine tetramers and the upper limit corresponds to 80 tetramers. The lifetime of this structure is about 4 days at 40°C, pH 4.6.
Collapse
Affiliation(s)
- Aude Laisné
- Laboratoire d'Ingénerie des Proteines Membranaires, Centre de Génétique Moléculaire, CNRS FRE3144, Unité associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, 91190, France
| | | | | |
Collapse
|