1
|
Chakrabortty A, Mondal S, Bandyopadhyay S. Conformational Properties of Poly(A)-Binding Protein Complexed with Poly(A) RNA. J Phys Chem B 2024; 128:6449-6462. [PMID: 38941243 DOI: 10.1021/acs.jpcb.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| |
Collapse
|
2
|
Rihon J, Mattelaer CA, Montalvão RW, Froeyen M, Pinheiro VB, Lescrinier E. Structural insights into the morpholino nucleic acid/RNA duplex using the new XNA builder Ducque in a molecular modeling pipeline. Nucleic Acids Res 2024; 52:2836-2847. [PMID: 38412249 PMCID: PMC11014352 DOI: 10.1093/nar/gkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.
Collapse
Affiliation(s)
- Jérôme Rihon
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Charles-Alexandre Mattelaer
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Quantum Chemistry and Physical Chemistry, Celestijnenlaan 200f, Box 2404, B-3001, Leuven, Belgium
| | - Rinaldo Wander Montalvão
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
- Gain Therapeutics sucursal en España, Barcelona Science Park, Baldiri Reixac 4-10, 08028 Barcelona, Spain
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Vitor Bernardes Pinheiro
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, Box 1030, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Taghavi A, Baisden JT, Childs-Disney JL, Yildirim I, Disney M. Conformational dynamics of RNA G4C2 and G2C4 repeat expansions causing ALS/FTD using NMR and molecular dynamics studies. Nucleic Acids Res 2023; 51:5325-5340. [PMID: 37216594 PMCID: PMC10287959 DOI: 10.1093/nar/gkad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
G4C2 and G2C4 repeat expansions in chromosome 9 open reading frame 72 (C9orf72) are the most common cause of genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), or c9ALS/FTD. The gene is bidirectionally transcribed, producing G4C2 repeats [r(G4C2)exp] and G2C4 repeats [r(G2C4)exp]. The c9ALS/FTD repeat expansions are highly structured, and structural studies showed that r(G4C2)exp predominantly folds into a hairpin with a periodic array of 1 × 1 G/G internal loops and a G-quadruplex. A small molecule probe revealed that r(G4C2)exp also adopts a hairpin structure with 2 × 2 GG/GG internal loops. We studied the conformational dynamics adopted by 2 × 2 GG/GG loops using temperature replica exchange molecular dynamics (T-REMD) and further characterized the structure and underlying dynamics using traditional 2D NMR techniques. These studies showed that the loop's closing base pairs influence both structure and dynamics, particularly the configuration adopted around the glycosidic bond. Interestingly, r(G2C4) repeats, which fold into an array of 2 × 2 CC/CC internal loops, are not as dynamic. Collectively, these studies emphasize the unique sensitivity of r(G4C2)exp to small changes in stacking interactions, which is not observed in r(G2C4)exp, providing important considerations for further principles in structure-based drug design.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jared T Baisden
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research and The Herbert Wertheim UF-Scripps Institute for Biomedical Research & Innovation, 130 Scripps Way, 3A1 Jupiter, FL 33458, USA
| |
Collapse
|
4
|
Taghavi A, Riveros I, Wales DJ, Yildirim I. Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. J Chem Theory Comput 2022; 18:3637-3653. [PMID: 35652685 DOI: 10.1021/acs.jctc.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.,Department of Chemistry, Scripps Research Institute Florida, Jupiter, Florida 33458, United States
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
5
|
Giassa IC, Vavrinská A, Zelinka J, Šebera J, Sychrovský V, Boelens R, Fiala R, Trantírek L. HERMES - A Software Tool for the Prediction and Analysis of Magnetic-Field-Induced Residual Dipolar Couplings in Nucleic Acids. Chempluschem 2020; 85:2177-2185. [PMID: 32986260 DOI: 10.1002/cplu.202000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Abstract
Field-Induced Residual Dipolar Couplings (fiRDC) are a valuable source of long-range information on structure of nucleic acids (NA) in solution. A web application (HERMES) was developed for structure-based prediction and analysis of the (fiRDCs) in NA. fiRDC prediction is based on input 3D model structure(s) of NA and a built-in library of nucleobase-specific magnetic susceptibility tensors and reference geometries. HERMES allows three basic applications: (i) the prediction of fiRDCs for a given structural model of NAs, (ii) the validation of experimental or modeled NA structures using experimentally derived fiRDCs, and (iii) assessment of the oligomeric state of the NA fragment and/or the identification of a molecular NA model that is consistent with experimentally derived fiRDC data. Additionally, the program's built-in routine for rigid body modeling allows the evaluation of relative orientation of domains within NA that is in agreement with experimental fiRDCs.
Collapse
Affiliation(s)
| | - Andrea Vavrinská
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Jiří Zelinka
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Jakub Šebera
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Rolf Boelens
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Brno
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Brno
| |
Collapse
|
6
|
The Electronic Property Differences between dA::dG and dA::dG oxo. A Theoretical Approach. Molecules 2020; 25:molecules25173828. [PMID: 32842464 PMCID: PMC7503971 DOI: 10.3390/molecules25173828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022] Open
Abstract
The dA::dGoxo pair appearing in nucleic ds-DNA can lead to a mutation in the genetic information. Depending on the dGoxo source, an AT→GC and GC→AC transversion might be observed. As a result, glycosylases are developed during the evolution, i.e., OGG1 and MutY. While the former effectively removes Goxo from the genome, the second one removes adenine from the dA::dGoxo and dA:dG pair. However, dA::dGoxo is recognized by MutY as ~6–10 times faster than dA:dG. In this article, the structural and electronic properties of simple nucleoside pairs dA:dG, dC:::dGoxo, dC:::dG, dA::dGoxo in the aqueous phase have been taken into theoretical consideration. The influence of solvent relaxation on the above is also discussed. It can be concluded that the dA::dGoxo nucleoside pair shows a lower ionization potential and higher electron affinity than the dA:dG pair in both a vertical and adiabatic mode. Therefore, it could be predicted, under electronic properties, that the electron ejected, for instance by a MutY 4[Fe-S]2+ cluster, is predisposed to trapping by the ds-DNA part containing the dA::dGoxo pair rather than by dA::dG.
Collapse
|
7
|
Abstract
Base pairing plays a pivotal role in DNA functions and replication fidelity. But while the complementarity between Watson-Crick matched bases is generally believed to arise from the different number of hydrogen bonds in G|C pairs versus A|T, the energetics of these interactions are heavily renormalized by the aqueous solvent. Employing large-scale Monte Carlo simulations, we have extracted the solvent contribution to the free energy for canonical and some noncanonical and stacked base pairs. For all of them, the solvent's contribution to the base pairing free energy is exclusively destabilizing. While the direct hydrogen bonding interactions in the G|C pair is much stronger than A|T, the thermodynamic resistance produced by the solvent also pushes back much stronger against G|C compared to A|T, generating an only ∼1 kcal/mol free energy difference between them. We have profiled the density of water molecules in the solvent adjacent to the bases and observed a "freezing" behavior where waters are recruited into the gap between the bases to compensate for the unsatisfied hydrogen bonds between them. A very small number of water molecules that are associated with the Watson-Crick donor/acceptor atoms turn out to be responsible for the majority of the solvent's thermodynamic resistance to base pairing. The absence or presence of these near-field waters can be used to enhance fidelity during DNA replication.
Collapse
|
8
|
Omotuyi OI, Nash O, Safronetz D, Ojo AA, Ogunwa TH, Adelakun NS. T-705-modified ssRNA in complex with Lassa virus nucleoprotein exhibits nucleotide splaying and increased water influx into the RNA-binding pocket. Chem Biol Drug Des 2019; 93:544-555. [PMID: 30536557 DOI: 10.1111/cbdd.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 12/28/2022]
Abstract
Lassa virus infection is clinically characterized by multiorgan failure in humans. Without an FDA-approved vaccine, ribavirin is the frontline drug for the treatment but with attendant toxicities. 6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is an emerging alternative drug with proven anti-Lassa virus activity in experimental model. One of the mechanisms of action is its incorporation into nascent single-strand RNA (ssRNA) which forms complex with Lassa nucleoprotein (LASV-NP). Here, using molecular dynamics simulation, the structural and electrostatics changes associated with LASV-NP-ssRNA complex have been studied when none, one, or four of its bases has been substituted with T-705. The results demonstrated that glycosidic torsion angle χ (O4'-C1'-N1-C2) rotated from high-anti- (-110° and -60°) to the syn- conformation (+30) with increased T-705 substitution. Similarly, increased T-705 substitution resulted in increased splaying (55°-70°), loss of ssRNA-LASV-NP H-bond interaction, increased water influx into the ssRNA-binding pocket, and decreased electrostatic potentials of ssRNA pocket. Furthermore, strong positively correlated motion observed between α6 residues (aa: 128-145) and its contact ssRNA bases (5-7) is weakened in Apo biosystem and transitioned into anticorrelated motions in ssRNA-bound LASV-NP biosystem. Finally, LASV genome may become more accessible to cellular ribonuclease access with T-705 incorporation due to loss of NP interaction.
Collapse
Affiliation(s)
- Olaposi I Omotuyi
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, NABDA/FMST, Abuja, Nigeria
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ayodeji A Ojo
- Department of Public and Community Health, Liberty University, Lynchburg, Virginia
| | - Tomisin H Ogunwa
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Niyi S Adelakun
- Center for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
9
|
Šebera J, Dubankova A, Sychrovský V, Ruzek D, Boura E, Nencka R. The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Sci Rep 2018; 8:11132. [PMID: 30042483 PMCID: PMC6057956 DOI: 10.1038/s41598-018-29459-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus is a global health threat due to significantly elevated risk of fetus malformations in infected pregnant women. Currently, neither an effective therapy nor a prophylactic vaccination is available for clinical use, desperately necessitating novel therapeutics and approaches to obtain them. Here, we present a structural model of the Zika virus RNA-dependent RNA polymerase (ZIKV RdRp) in complex with template and nascent RNAs, Mg2+ ions and accessing nucleoside triphosphate. The model allowed for docking studies aimed at effective pre-screening of potential inhibitors of ZIKV RdRp. Applicability of the structural model for docking studies was illustrated with the NITD008 artificial nucleotide that is known to effectively inhibit the function of the ZIKV RdRp. The ZIKV RdRp – RNA structural model is provided for all possible variations of the nascent RNA bases pairs to enhance its general utility in docking and modelling experiments. The developed model makes the rational design of novel nucleosides and nucleotide analogues feasible and thus provides a solid platform for the development of advanced antiviral therapy.
Collapse
Affiliation(s)
- Jakub Šebera
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Anna Dubankova
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Daniel Ruzek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic.
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic.
| |
Collapse
|
10
|
Šebera J, Hattori Y, Sato D, Reha D, Nencka R, Kohno T, Kojima C, Tanaka Y, Sychrovský V. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res 2017; 45:5231-5242. [PMID: 28334993 PMCID: PMC5435939 DOI: 10.1093/nar/gkx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme–substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2−(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Collapse
Affiliation(s)
- Jakub Šebera
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Yoshikazu Hattori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan
| | - Daichi Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Radim Nencka
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 0045, Japan
| | - Chojiro Kojima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240 8501, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - Vladimír Sychrovský
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha, Czech Republic.,Department of Electrotechnology, Electrical Engineering Czech Technical University, Technická 2, 166 27 Praha, Czech Republic
| |
Collapse
|
11
|
Plumridge A, Meisburger SP, Pollack L. Visualizing single-stranded nucleic acids in solution. Nucleic Acids Res 2017; 45:e66. [PMID: 28034955 PMCID: PMC5435967 DOI: 10.1093/nar/gkw1297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Single-stranded nucleic acids (ssNAs) are ubiquitous in many key cellular functions. Their flexibility limits both the number of high-resolution structures available, leaving only a small number of protein-ssNA crystal structures, while forcing solution investigations to report ensemble averages. A description of the conformational distributions of ssNAs is essential to more fully characterize biologically relevant interactions. We combine small angle X-ray scattering (SAXS) with ensemble-optimization methods (EOM) to dynamically build and refine sets of ssNA structures. By constructing candidate chains in representative dinucleotide steps and refining the models against SAXS data, a broad array of structures can be obtained to match varying solution conditions and strand sequences. In addition to the distribution of large scale structural parameters, this approach reveals, for the first time, intricate details of the phosphate backbone and underlying strand conformations. Such information on unperturbed strands will critically inform a detailed understanding of an array of problems including protein-ssNA binding, RNA folding and the polymer nature of NAs. In addition, this scheme, which couples EOM selection with an iteratively refining pool to give confidence in the underlying structures, is likely extendable to the study of other flexible systems.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Mondal S, Chakraborty K, Bandyopadhyay S. Microscopic understanding of the conformational features of a protein–DNA complex. Phys Chem Chem Phys 2017; 19:32459-32472. [DOI: 10.1039/c7cp05161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein–DNA interactions play crucial roles in different stages of genetic activities, such as replication of genome, initiation of transcription,etc.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kaushik Chakraborty
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
13
|
Chakraborty K, Khatua P, Bandyopadhyay S. Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies. Phys Chem Chem Phys 2016; 18:15899-910. [PMID: 27241311 DOI: 10.1039/c6cp00663a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One crucial issue in DNA hydration is the effect of salts on its conformational features. This has relevance in biology as cations present in the cellular environment shield the negative charges on the DNA backbone, thereby reducing the repulsive force between them. By screening the negative charges along the backbone, cations stabilize the folded structure of DNA. To study the effect of the added salt on single-stranded DNA (ss-DNA) conformations, we have performed room temperature molecular dynamics simulations of an aqueous solution containing the ss-DNA dodecamer with the 5'-CGCGAATTCGCG-3' sequence in the presence of 0.2, 0.5, and 0.8 M NaCl. Our calculations reveal that in the presence of the salt, the DNA molecule forms more collapsed coil-like conformations due to the screening of negative charges along the backbone. Additionally, we demonstrated that the formation of an octahedral inner-sphere complex by the strongly bound ion plays an important role in the stabilization of such folded conformation of DNA. Importantly, it is found that ion-DNA interactions can also explain the formation of non-sequential base stackings with longer lifetimes. Such non-sequential base stackings further stabilize the collapsed coil-like folded form of the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | |
Collapse
|
14
|
Dračínský M, Šála M, Klepetářová B, Šebera J, Fukal J, Holečková V, Tanaka Y, Nencka R, Sychrovský V. Benchmark Theoretical and Experimental Study on 15N NMR Shifts of Oxidatively Damaged Guanine. J Phys Chem B 2016; 120:915-25. [DOI: 10.1021/acs.jpcb.5b11428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Michal Šála
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Jakub Šebera
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
- Institute
of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance
2, CZ-182 21 Prague
8, Czech Republic
| | - Jiří Fukal
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Veronika Holečková
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Yoshiyuki Tanaka
- Faculty
of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashirocho, Tokushima, Tokushima 980-8578, Japan
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| |
Collapse
|
15
|
Savelyev A, MacKerell AD. Balancing the interactions of ions, water, and DNA in the Drude polarizable force field. J Phys Chem B 2014; 118:6742-57. [PMID: 24874104 PMCID: PMC4064693 DOI: 10.1021/jp503469s] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Recently we presented a first-generation
all-atom Drude polarizable
force field for DNA based on the classical Drude oscillator model,
focusing on optimization of key dihedral angles followed by extensive
validation of the force field parameters. Presently, we describe the
procedure for balancing the electrostatic interactions between ions,
water, and DNA as required for development of the Drude force field
for DNA. The proper balance of these interactions is shown to impact
DNA stability and subtler conformational properties, including the
conformational equilibrium between the BI and BII states, and the
A and B forms of DNA. The parametrization efforts were simultaneously
guided by gas-phase quantum mechanics (QM) data on small model compounds
and condensed-phase experimental data on the hydration and osmotic
properties of biologically relevant ions and their solutions, as well
as theoretical predictions for ionic distribution around DNA oligomer.
In addition, fine-tuning of the internal base parameters was performed
to obtain the final DNA model. Notably, the Drude model is shown to
more accurately reproduce counterion condensation theory predictions
of DNA charge neutralization by the condensed ions as compared to
the CHARMM36 additive DNA force field, indicating an improved physical
description of the forces dictating the ionic solvation of DNA due
to the explicit treatment of electronic polarizability. In combination
with the polarizable DNA force field, the availability of Drude polarizable
parameters for proteins, lipids, and carbohydrates will allow for
simulation studies of heterogeneous biological systems.
Collapse
Affiliation(s)
- Alexey Savelyev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | | |
Collapse
|
16
|
Berntsen KRM, Vriend G. Anomalies in the refinement of isoleucine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1037-49. [PMID: 24699648 PMCID: PMC3975889 DOI: 10.1107/s139900471400087x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 01/14/2014] [Indexed: 11/11/2022]
Abstract
A study of isoleucines in protein structures solved using X-ray crystallography revealed a series of systematic trends for the two side-chain torsion angles χ1 and χ2 dependent on the resolution, secondary structure and refinement software used. The average torsion angles for the nine rotamers were similar in high-resolution structures solved using either the REFMAC, CNS or PHENIX software. However, at low resolution these programs often refine towards somewhat different χ1 and χ2 values. Small systematic differences can be observed between refinement software that uses molecular dynamics-type energy terms (for example CNS) and software that does not use these terms (for example REFMAC). Detailing the standard torsion angles used in refinement software can improve the refinement of protein structures. The target values in the molecular dynamics-type energy functions can also be improved.
Collapse
Affiliation(s)
- Karen R. M. Berntsen
- CMBI, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gert Vriend
- CMBI, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
17
|
Šebera J, Trantírek L, Tanaka Y, Nencka R, Fukal J, Sychrovský V. The activation of N-glycosidic bond cleavage performed by base-excision repair enzyme hOGG1; theoretical study of the role of Lys 249 residue in activation of G, OxoG and FapyG. RSC Adv 2014. [DOI: 10.1039/c4ra08278h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NLMOs of lone-pair electrons at N9 nitrogen and Fukui indexesf2of N9.
Collapse
Affiliation(s)
- Jakub Šebera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology – Masaryk University
- 625 00 Brno, Czech Republic
| | - Yoshiyuki Tanaka
- Division of Pharmaceutical Chemistry
- Tohoku University
- Sendai, Japan
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Jiří Fukal
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| |
Collapse
|
18
|
McDonald AR, Denning EJ, MacKerell AD. Impact of geometry optimization on base-base stacking interaction energies in the canonical A- and B-forms of DNA. J Phys Chem A 2013; 117:1560-8. [PMID: 23343365 DOI: 10.1021/jp308364d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Base stacking is known to make an important contribution to the stability of DNA and RNA, and accordingly, significant efforts are ongoing to calculate stacking energies using ab initio quantum mechanical methods. To date, impressive improvements have been made in the model chemistries used to perform stacking energy calculations, including extensions that include robust treatments of electron correlation with extended basis sets, as required to treat interactions where dispersion makes a significant contribution. However, those efforts typically use rigid monomer geometries when calculating the interaction energies. To overcome this, in the present work, we describe a novel internal coordinate definition that allows the relative, intermolecular orientation of stacked base monomers to be constrained during geometry optimizations while allowing full optimization of the intramolecular degrees of freedom. Use of the novel reference frame to calculate the impact of full geometry optimization versus constraining the bases to be planar on base monomer stacking energies, combined with density-fitted, spin-component scaling MP2 treatment of electron correlation, shows that full optimization makes the average stacking energy more favorable by -3.4 and -1.5 kcal/mol for the canonical A and B conformations of the 16 5' to 3' base stacked monomers. Thus, treatment of geometry optimization impacts the stacking energies to an extent similar to or greater than the impact of current state of the art increases in the rigor of the model chemistry itself used to treat base stacking. Results also indicate that stacking favors the B-form of DNA, though the average difference versus the A-form decreases from -2.6 to -0.6 kcal/mol when the intramolecular geometry is allowed to fully relax. However, stacking involving cytosine is shown to favor the A-form of DNA, with that contribution generally larger in the fully optimized bases. The present results show the importance of allowing geometry optimization, as well as properly treating the appropriate model chemistry, in studies of nucleic acid base stacking.
Collapse
Affiliation(s)
- Ashley Ringer McDonald
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
19
|
Sahakyan AB, Vendruscolo M. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases. J Phys Chem B 2013; 117:1989-98. [PMID: 23398371 DOI: 10.1021/jp3057306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
20
|
Šebera J, Trantírek L, Tanaka Y, Sychrovský V. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein. J Phys Chem B 2012; 116:12535-44. [PMID: 22989268 DOI: 10.1021/jp309098d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mechanistic pathway for cleavage of the N-glycosidic bond of 8-oxo-2'-deoxyguanosine (oxoG) catalyzed with the human 8-oxoguanine glycosylase 1 DNA repair protein (hOGG1) is proposed in this theoretical study. The reaction scheme suggests direct proton addition to the glycosidic nitrogen N9 of oxoG from the Nε-ammonium of Lys249 residue of hOGG1 that is enabled owing to the N9 pyramidal geometry. The N9-pyramidalization of oxoG is induced within hOGG1 active site. The coordination of N9 nitrogen to the Nε-ammonium of Lys249 unveiled by available crystal structures enables concerted, synchronous substitution of the N9-C1' bond by the N9-H bond. The reaction is compared with other pathways already proposed by means of calculated activation energies. The ΔG(#) energy for the newly proposed reaction mechanism calculated with the B3LYP/6-31G(d,p) method 17.0 kcal mol(-1) is significantly lower than ΔG(#) energies for other reactions employing attack of the Nε-amino group to the anomeric carbon C1' of oxoG and attack of the Nε-ammonium to the N3 nitrogen of oxoG base. Moreover, activation energy for the oxoG cleavage proceeding via N9-pyramidalization is lower than energy calculated for normal G because the electronic state of the five-membered aromatic ring of oxoG is better suited for the reaction. The modification of aromatic character introduced by oxidation to the nucleobase thus seems to be the factor that is checked by hOGG1 to achieve base-specific cleavage.
Collapse
Affiliation(s)
- Jakub Šebera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo náměstí 2, CZ, 16610 Praha, Czech Republic
| | | | | | | |
Collapse
|
21
|
Sychrovský V, Sochorová Vokáčová Z, Trantírek L. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J Phys Chem A 2012; 116:4144-51. [PMID: 22471881 DOI: 10.1021/jp2110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of base pairing and solvation on pyramidalization of the glycosidic nitrogen found in the residues of parallel G-quadruplex with NDB ID UDF062 is analyzed and explained with theoretical calculations. The extent of the pyramidalization depends on the local geometry of the 2'-deoxyguanosine residues, namely on their glycosidic torsion and sugar pucker, which are predetermined by the 3D-architecture of G-quadruplex. Pyramidal inversion of the glycosidic nitrogen found in 2'-deoxyguanosines of G-quadruplex is induced owing to site-specifically coordinated solvent. Different adiabatic structural constraints used for fixing the base-to-sugar orientation of 2'-deoxyguanosine in geometry optimizations result in different extents of pyramidalization and induce pyramidal inversion of the glycosidic nitrogen. These model geometry constraints helped us analyze the effect of real constraints represented by explicit molecular environment of selected residues of the G-quadruplex. The maximal extent of the glycosidic nitrogen pyramidalization found in the high-resolution crystal structure corresponds to the calculation to deformation energy of only 1 kcal mol(-1). The out-of-plane deformations of nucleobases thus provide a way for compensating the site-specific external environmental stress on the G-quadruplex.
Collapse
Affiliation(s)
- Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic.
| | | | | |
Collapse
|
22
|
Theoretical study on the structures, isomerization, and stability of [Si, C, N, S] isomers. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Vokáčová Z, Trantírek L, Sychrovský V. Evaluating the Effects of the Nonplanarity of Nucleic Acid Bases on NMR, IR, and Vibrational Circular Dichroism Spectra: A Density Functional Theory Computational Study. J Phys Chem A 2010; 114:10202-8. [DOI: 10.1021/jp102329t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zuzana Vokáčová
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic, and Biology Centre, v.v.i., Academy of Sciences of the Czech Republic, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Lukáš Trantírek
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic, and Biology Centre, v.v.i., Academy of Sciences of the Czech Republic, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic, and Biology Centre, v.v.i., Academy of Sciences of the Czech Republic, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|