1
|
Huang X, Du Z. Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs. PLoS One 2024; 19:e0307541. [PMID: 39038036 PMCID: PMC11262651 DOI: 10.1371/journal.pone.0307541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL, United States of America
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, United States of America
| |
Collapse
|
2
|
Huang X, Du Z. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. J Biomol Struct Dyn 2023:1-13. [PMID: 38095458 PMCID: PMC11176267 DOI: 10.1080/07391102.2023.2292296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Pseudoknots assume various functions including stimulation of -1 programmed ribosomal frameshifting (PRF) or stop codon readthrough (SCR) in RNA viruses. These pseudoknots vary greatly in sizes and structural complexities. Recent biochemical and structural studies confirm the three-stemmed pseudoknots as the -1 PRF stimulators in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses. We reexamined previously reported -1 PRF or SCR stimulating pseudoknots, especially those containing a relatively long connecting loop between the two pseudoknot-forming stems, for their ability to form elaborated structures. Many potential elaborated pseudoknots were identified that contain one or more of the following extra structural elements: stem-loop, embedded pseudoknot, kissing hairpins, and additional loop-loop interactions. The elaborated pseudoknots are found in several different virus families that utilize either the -1 PRF or SCR recoding mechanisms. Model-building studies were performed to not only establish the structural feasibility of the elaborated pseudoknots but also reveal potential additional structural features that cannot be readily inferred from the predicted secondary structures. Some of the structures, such as embedded double pseudoknots and compact loop-loop pseudoknots mediated by the previously established common pseudoknot motif-1 (CPK-1), represent the first of its kind in the literatures. By advancing discovery of new functional RNA structures, we significantly expand the repertoire of known elaborated pseudoknots that could potentially play a role in -1 PRF and SCR regulation. These results contribute to a better understanding of RNA structures in general, facilitating the design of engineering RNA molecules with certain desired functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL 62901, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Çakır U, Gabed N, Brunet M, Roucou X, Kryvoruchko I. Mosaic translation hypothesis: chimeric polypeptides produced via multiple ribosomal frameshifting as a basis for adaptability. FEBS J 2023; 290:370-378. [PMID: 34743413 DOI: 10.1111/febs.16269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
How many different proteins can be produced from a single spliced transcript? Genome annotation projects overlook the coding potential of reading frames other than that of the reference open reading frames (refORFs). Recently, alternative open reading frames (altORFs) and their translational products, alternative proteins, have been shown to carry out important functions in various organisms. AltORFs overlapping refORFs or other altORFs in a different reading frame may be involved in one fundamental mechanism so far overlooked. A few years ago, it was proposed that altORFs may act as building blocks for chimeric (mosaic) polypeptides, which are produced via multiple ribosomal frameshifting events from a single mature transcript. We adopt terminology from that earlier discussion and call this mechanism mosaic translation. This way of extracting and combining genetic information may significantly increase proteome diversity. Thus, we hypothesize that this mechanism may have contributed to the flexibility and adaptability of organisms to a variety of environmental conditions. Specialized ribosomes acting as sensors probably played a central role in this process. Importantly, mosaic translation may be the main source of protein diversity in genomes that lack alternative splicing. The idea of mosaic translation is a testable hypothesis, although its direct demonstration is challenging. Should mosaic translation occur, we would currently highly underestimate the complexity of translation mechanisms and thus the proteome.
Collapse
Affiliation(s)
- Umut Çakır
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| | - Noujoud Gabed
- Cellular and Molecular Biology Department, Oran High School of Biological Sciences (ESSBO), Oran, Algeria
| | - Marie Brunet
- Department of Pediatrics, Medical Genetics Service, Université de Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), QC, Canada
| | - Xavier Roucou
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), QC, Canada.,Department of Biochemistry and Functional Genomics, Université de Sherbrooke, QC, Canada
| | - Igor Kryvoruchko
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
4
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
5
|
Transcript Regulation of the Recoded Archaeal α-l-Fucosidase In Vivo. Molecules 2021; 26:molecules26071861. [PMID: 33806142 PMCID: PMC8037382 DOI: 10.3390/molecules26071861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.
Collapse
|
6
|
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. Translational adaptation of human viruses to the tissues they infect. Cell Rep 2021; 34:108872. [PMID: 33730572 PMCID: PMC7962955 DOI: 10.1016/j.celrep.2021.108872] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Hannah Benisty
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin H Schaefer
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, Milan 20139, Italy.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
7
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform 2020; 21:1151-1163. [PMID: 31204430 PMCID: PMC7109810 DOI: 10.1093/bib/bbz054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Rajput B, Pruitt KD, Murphy TD. RefSeq curation and annotation of stop codon recoding in vertebrates. Nucleic Acids Res 2019; 47:594-606. [PMID: 30535227 PMCID: PMC6344875 DOI: 10.1093/nar/gky1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Recoding of stop codons as amino acid-specifying codons is a co-translational event that enables C-terminal extension of a protein. Synthesis of selenoproteins requires recoding of internal UGA stop codons to the 21st non-standard amino acid selenocysteine (Sec) and plays a vital role in human health and disease. Separately, canonical stop codons can be recoded to specify standard amino acids in a process known as stop codon readthrough (SCR), producing extended protein isoforms with potential novel functions. Conventional computational tools cannot distinguish between the dual functionality of stop codons as stop signals and sense codons, resulting in misannotation of selenoprotein gene products and failure to predict SCR. Manual curation is therefore required to correctly represent recoded gene products and their functions. Our goal was to provide accurately curated and annotated datasets of selenoprotein and SCR transcript and protein records to serve as annotation standards and to promote basic and biomedical research. Gene annotations were curated in nine vertebrate model organisms and integrated into NCBI's Reference Sequence (RefSeq) dataset, resulting in 247 selenoprotein genes encoding 322 selenoproteins, and 93 genes exhibiting SCR encoding 94 SCR isoforms.
Collapse
Affiliation(s)
- Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
The genomics of selenium: Its past, present and future. Biochim Biophys Acta Gen Subj 2018; 1862:2427-2432. [DOI: 10.1016/j.bbagen.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
|
11
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Abstract
The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity.
Collapse
|
13
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Moomau C, Musalgaonkar S, Khan YA, Jones JE, Dinman JD. Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements. J Biol Chem 2016; 291:15788-95. [PMID: 27226636 DOI: 10.1074/jbc.m116.735613] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) is a prototypical emerging virus for which no effective therapeutics currently exist. WNV uses programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the NS1' protein, a C terminally extended version of its non-structural protein 1, the expression of which enhances neuro-invasiveness and viral RNA abundance. Here, the NS1' frameshift signals derived from four WNV strains were investigated to better understand -1 PRF in this quasispecies. Sequences previously predicted to promote -1 PRF strongly promote this activity, but frameshifting was significantly more efficient upon inclusion of additional 3' sequence information. The observation of different rates of -1 PRF, and by inference differences in the expression of NS1', may account for the greater degrees of pathogenesis associated with specific WNV strains. Chemical modification and mutational analyses of the longer and shorter forms of the -1 PRF signals suggests dynamic structural rearrangements between tandem stem-loop and mRNA pseudoknot structures in two of the strains. A model is suggested in which this is employed as a molecular switch to fine tune the relative expression of structural to non-structural proteins during different phases of the viral replication cycle.
Collapse
Affiliation(s)
- Christine Moomau
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Sharmishtha Musalgaonkar
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Yousuf A Khan
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - John E Jones
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
15
|
Yerlikaya S, Meusburger M, Kumari R, Huber A, Anrather D, Costanzo M, Boone C, Ammerer G, Baranov PV, Loewith R. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 2015; 27:397-409. [PMID: 26582391 PMCID: PMC4713140 DOI: 10.1091/mbc.e15-08-0594] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/09/2015] [Indexed: 11/14/2022] Open
Abstract
Phosphorylation of the S6 protein of the 40S subunit of the eukaryote ribosome downstream of anabolic signals has long been assumed to promote protein synthesis. Both target of rapamycin complexes regulate this modification in yeast, but the use of ribosome profiling shows no role for Rps6 phosphorylation in mRNA translation. Nutrient-sensitive phosphorylation of the S6 protein of the 40S subunit of the eukaryote ribosome is highly conserved. However, despite four decades of research, the functional consequences of this modification remain unknown. Revisiting this enigma in Saccharomyces cerevisiae, we found that the regulation of Rps6 phosphorylation on Ser-232 and Ser-233 is mediated by both TOR complex 1 (TORC1) and TORC2. TORC1 regulates phosphorylation of both sites via the poorly characterized AGC-family kinase Ypk3 and the PP1 phosphatase Glc7, whereas TORC2 regulates phosphorylation of only the N-terminal phosphosite via Ypk1. Cells expressing a nonphosphorylatable variant of Rps6 display a reduced growth rate and a 40S biogenesis defect, but these phenotypes are not observed in cells in which Rps6 kinase activity is compromised. Furthermore, using polysome profiling and ribosome profiling, we failed to uncover a role of Rps6 phosphorylation in either global translation or translation of individual mRNAs. Taking the results together, this work depicts the signaling cascades orchestrating Rps6 phosphorylation in budding yeast, challenges the notion that Rps6 phosphorylation plays a role in translation, and demonstrates that observations made with Rps6 knock-ins must be interpreted cautiously.
Collapse
Affiliation(s)
- Seda Yerlikaya
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva, University of Geneva, CH-1211 Geneva, Switzerland
| | - Madeleine Meusburger
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva, University of Geneva, CH-1211 Geneva, Switzerland
| | - Romika Kumari
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alexandre Huber
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, A1030 Vienna, Austria
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Gustav Ammerer
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, A1030 Vienna, Austria
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva, University of Geneva, CH-1211 Geneva, Switzerland Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Belew AT, Dinman JD. Cell cycle control (and more) by programmed -1 ribosomal frameshifting: implications for disease and therapeutics. Cell Cycle 2015; 14:172-8. [PMID: 25584829 PMCID: PMC4615106 DOI: 10.4161/15384101.2014.989123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like most basic molecular mechanisms, programmed –1 ribosomal frameshifting (−1 PRF) was first identified in viruses. Early observations that global dysregulation of −1 PRF had deleterious effects on yeast cell growth suggested that −1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral −1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify −1 PRF signals in free living organisms. The unexpected observation that almost all −1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that −1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in −1 PRF. The recent discovery of −1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
Collapse
Affiliation(s)
- Ashton T Belew
- a Department of Cell Biology and Molecular Genetics ; University of Maryland ; College Park , MD USA
| | | |
Collapse
|
17
|
Rajput B, Murphy TD, Pruitt KD. RefSeq curation and annotation of antizyme and antizyme inhibitor genes in vertebrates. Nucleic Acids Res 2015; 43:7270-9. [PMID: 26170238 PMCID: PMC4551939 DOI: 10.1093/nar/gkv713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022] Open
Abstract
Polyamines are ubiquitous cations that are involved in regulating fundamental cellular processes such as cell growth and proliferation; hence, their intracellular concentration is tightly regulated. Antizyme and antizyme inhibitor have a central role in maintaining cellular polyamine levels. Antizyme is unique in that it is expressed via a novel programmed ribosomal frameshifting mechanism. Conventional computational tools are unable to predict a programmed frameshift, resulting in misannotation of antizyme transcripts and proteins on transcript and genomic sequences. Correct annotation of a programmed frameshifting event requires manual evaluation. Our goal was to provide an accurately curated and annotated Reference Sequence (RefSeq) data set of antizyme transcript and protein records across a broad taxonomic scope that would serve as standards for accurate representation of these gene products. As antizyme and antizyme inhibitor proteins are functionally connected, we also curated antizyme inhibitor genes to more fully represent the elegant biology of polyamine regulation. Manual review of genes for three members of the antizyme family and two members of the antizyme inhibitor family in 91 vertebrate organisms resulted in a total of 461 curated RefSeq records.
Collapse
Affiliation(s)
- Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
18
|
Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element. Proc Natl Acad Sci U S A 2015; 112:4104-9. [PMID: 25787256 DOI: 10.1073/pnas.1501574112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.
Collapse
|
19
|
Sharma V, Prère MF, Canal I, Firth AE, Atkins JF, Baranov PV, Fayet O. Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli. Nucleic Acids Res 2014; 42:7210-25. [PMID: 24875478 PMCID: PMC4066793 DOI: 10.1093/nar/gku386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (where ZZZ and XXX are three identical nucleotides) allowing cognate or near-cognate repairing to the -1 frame of the A site or A and P sites tRNAs. Depending on the signal, the frameshifting frequency can vary over a wide range, from less than 1% to more than 50%. The present study combines experimental and bioinformatics approaches to carry out (i) a systematic analysis of the frameshift propensity of all possible motifs (16 Z_ZZN tetramers and 64 X_XXZ_ZZN heptamers) in Escherichia coli and (ii) the identification of genes potentially using this mode of expression amongst 36 Enterobacteriaceae genomes. While motif efficiency varies widely, a major distinctive rule of bacterial -1 frameshifting is that the most efficient motifs are those allowing cognate re-pairing of the A site tRNA from ZZN to ZZZ. The outcome of the genomic search is a set of 69 gene clusters, 59 of which constitute new candidates for functional utilization of -1 frameshifting.
Collapse
Affiliation(s)
- Virag Sharma
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Marie-Françoise Prère
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| | - Isabelle Canal
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John F Atkins
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, 15N 2030E, Rm7410, Salt Lake City, UT 84112-5330, USA
| | - Pavel V Baranov
- School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Olivier Fayet
- Laboratoire de Microbiologie et Génétique moléculaire, UMR5100, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse 31062-cedex, France
| |
Collapse
|
20
|
Huang X, Yang Y, Wang G, Cheng Q, Du Z. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2014; 20:587-93. [PMID: 24671765 PMCID: PMC3988561 DOI: 10.1261/rna.042457.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
-1 programmed ribosomal frameshifting (PRF) is utilized by many viruses to synthesize their enzymatic (Pol) and structural (Gag) proteins at a defined ratio. For efficient -1 PRF, two cis-acting elements are required: a heptanucleotide frameshift site and a downstream stimulator such as a pseudoknot. We have analyzed the gag-pol junction sequences from 4254 HIV-1 strains. Approximately ninety-five percent of the sequences can form four pseudoknots PK1-PK4 (∼ 97% contain PK1, PK3, and PK4), covering ∼ 72 nt including the frameshift site. Some pseudoknots are mutually excluded due to sequence overlap. PK1 and PK3 arrange tandemly. Their stems form a quasi-continuous helix of ∼ 22 bp. We propose a novel mechanism for possible roles of these pseudoknots. Multiple alternative structures may exist at the gag-pol junction. In most strains, the PK1-PK3 tandem pseudoknots may dominate the structurally heterogeneous pool of RNA due to their greater overall stability. The tandem pseudoknots may function as a breaking system to slow down the ribosome. The ribosome unwinds PK1 and stem 1 of PK3 before it can reach the frameshift site. Then, PK4 can form rapidly because the intact stem 2 of PK3 makes up a large part of the stem 1 of PK4. The newly formed PK4 jams the entrance of the mRNA tunnel. The process then proceeds as in a typical case of -1 PRF. This mechanism incorporates several exquisite new features while still being consistent with the current paradigm of pseudoknot-dependent -1 PRF.
Collapse
Affiliation(s)
| | - Yang Yang
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
| | - Guan Wang
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
| | | | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
- Corresponding authorE-mail
| |
Collapse
|
21
|
A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses. BIOMED RESEARCH INTERNATIONAL 2013; 2013:984028. [PMID: 24298557 PMCID: PMC3835772 DOI: 10.1155/2013/984028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/21/2013] [Indexed: 02/01/2023]
Abstract
Programmed −1 ribosomal frameshifting (PRF) and stop codon readthrough are two translational recoding mechanisms utilized by some RNA viruses to express their structural and enzymatic proteins at a defined ratio. Efficient recoding usually requires an RNA pseudoknot located several nucleotides downstream from the recoding site. To assess the strategic importance of the recoding pseudoknots, we have carried out a large scale genome-wide analysis in which we used an in-house developed program to detect all possible H-type pseudoknots within the genomic mRNAs of 81 animal viruses. Pseudoknots are detected downstream from ~85% of the recoding sites, including many previously unknown pseudoknots. ~78% of the recoding pseudoknots are the most stable pseudoknot within the viral genomes. However, they are not as strong as some designed pseudoknots that exhibit roadblocking effect on the translating ribosome. Strong roadblocking pseudoknots are not detected within the viral genomes. These results indicate that the decoding pseudoknots have evolved to possess optimal stability for efficient recoding. We also found that the sequence at the gag-pol frameshift junction of HIV1 harbors potential elaborated pseudoknots encompassing the frameshift site. A novel mechanism is proposed for possible involvement of the elaborated pseudoknots in the HIV1 PRF event.
Collapse
|
22
|
Yu CH, Teulade-Fichou MP, Olsthoorn RCL. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res 2013; 42:1887-92. [PMID: 24178029 PMCID: PMC3919603 DOI: 10.1093/nar/gkt1022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich sequences can fold into four-stranded structures of stacked guanine-tetrads, so-called G-quadruplexes (G4). These unique motifs have been extensively studied on the DNA level; however, exploration of the biological roles of G4s at the RNA level is just emerging. Here we show that G4 RNA when introduced within coding regions are capable of stimulating -1 ribosomal frameshifting (-1 FS) in vitro and in cultured cells. Systematic manipulation of the loop length between each G-tract revealed that the -1 FS efficiency positively correlates with G4 stability. Addition of a G4-stabilizing ligand, PhenDC3, resulted in higher -1 FS. Further, we demonstrated that the G4s can stimulate +1 FS and stop codon readthrough as well. These results suggest a potentially novel translational gene regulation mechanism mediated by G4 RNA.
Collapse
Affiliation(s)
- Chien-Hung Yu
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, The Netherlands and Institut Curie, UMR 176-CNRS, Bât 110, Université Paris-Sud, 91405 Orsay, France
| | | | | |
Collapse
|
23
|
Antonov I, Coakley A, Atkins JF, Baranov PV, Borodovsky M. Identification of the nature of reading frame transitions observed in prokaryotic genomes. Nucleic Acids Res 2013; 41:6514-30. [PMID: 23649834 PMCID: PMC3711429 DOI: 10.1093/nar/gkt274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to identify evolutionary conserved frame transitions in protein coding regions and to uncover an underlying functional role of these structural aberrations. We used the ab initio frameshift prediction program, GeneTack, to detect reading frame transitions in 206 991 genes (fs-genes) from 1106 complete prokaryotic genomes. We grouped 102 731 fs-genes into 19 430 clusters based on sequence similarity between protein products (fs-proteins) as well as conservation of predicted position of the frameshift and its direction. We identified 4010 pseudogene clusters and 146 clusters of fs-genes apparently using recoding (local deviation from using standard genetic code) due to possessing specific sequence motifs near frameshift positions. Particularly interesting was finding of a novel type of organization of the dnaX gene, where recoding is required for synthesis of the longer subunit, τ. We selected 20 clusters of predicted recoding candidates and designed a series of genetic constructs with a reporter gene or affinity tag whose expression would require a frameshift event. Expression of the constructs in Escherichia coli demonstrated enrichment of the set of candidates with sequences that trigger genuine programmed ribosomal frameshifting; we have experimentally confirmed four new families of programmed frameshifts.
Collapse
Affiliation(s)
- Ivan Antonov
- School of Computational Science and Engineering at Georgia Tech, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Frameshifting results from two main mechanisms: genomic insertions or deletions (indels) or programmed ribosomal frameshifting. Whereas indels can disrupt normal protein function, programmed ribosomal frameshifting can result in dual-coding genes, each of which can produce multiple functional products. Here, I summarize technical advances that have made it possible to identify programmed ribosomal frameshifting events in a systematic way. The results of these studies suggest that such frameshifting occurs in all genomes, and I will discuss methods that could help characterize the resulting alternative proteomes.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, Translational Research Resource Centre, University College London London, UK
| |
Collapse
|
25
|
Antonov I, Baranov P, Borodovsky M. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences. Nucleic Acids Res 2012; 41:D152-6. [PMID: 23161689 PMCID: PMC3531167 DOI: 10.1093/nar/gks1062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (−1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).
Collapse
Affiliation(s)
- Ivan Antonov
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
26
|
Chen XS, Brown CM. Computational identification of new structured cis-regulatory elements in the 3'-untranslated region of human protein coding genes. Nucleic Acids Res 2012; 40:8862-73. [PMID: 22821558 PMCID: PMC3467077 DOI: 10.1093/nar/gks684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 01/14/2023] Open
Abstract
Messenger ribonucleic acids (RNAs) contain a large number of cis-regulatory RNA elements that function in many types of post-transcriptional regulation. These cis-regulatory elements are often characterized by conserved structures and/or sequences. Although some classes are well known, given the wide range of RNA-interacting proteins in eukaryotes, it is likely that many new classes of cis-regulatory elements are yet to be discovered. An approach to this is to use computational methods that have the advantage of analysing genomic data, particularly comparative data on a large scale. In this study, a set of structural discovery algorithms was applied followed by support vector machine (SVM) classification. We trained a new classification model (CisRNA-SVM) on a set of known structured cis-regulatory elements from 3'-untranslated regions (UTRs) and successfully distinguished these and groups of cis-regulatory elements not been strained on from control genomic and shuffled sequences. The new method outperformed previous methods in classification of cis-regulatory RNA elements. This model was then used to predict new elements from cross-species conserved regions of human 3'-UTRs. Clustering of these elements identified new classes of potential cis-regulatory elements. The model, training and testing sets and novel human predictions are available at: http://mRNA.otago.ac.nz/CisRNA-SVM.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Department of Biochemistry and Genetics Otago, University of Otago, Dunedin 9054, New Zealand.
| | | |
Collapse
|
27
|
Michel AM, Choudhury KR, Firth AE, Ingolia NT, Atkins JF, Baranov PV. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res 2012; 22:2219-29. [PMID: 22593554 PMCID: PMC3483551 DOI: 10.1101/gr.133249.111] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recently developed ribosome profiling technique (Ribo-Seq) allows mapping of the locations of translating ribosomes on mRNAs with subcodon precision. When ribosome protected fragments (RPFs) are aligned to mRNA, a characteristic triplet periodicity pattern is revealed. We utilized the triplet periodicity of RPFs to develop a computational method for detecting transitions between reading frames that occur during programmed ribosomal frameshifting or in dual coding regions where the same nucleotide sequence codes for multiple proteins in different reading frames. Application of this method to ribosome profiling data obtained for human cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame (from different transcripts as well as from the same mRNA) and revealed the translation of hitherto unpredicted coding open reading frames.
Collapse
|
28
|
Galagan J, Lyubetskaya A, Gomes A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol 2012; 363:43-68. [PMID: 22983621 DOI: 10.1007/82_2012_257] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.
Collapse
Affiliation(s)
- James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
29
|
Jungreis I, Lin MF, Spokony R, Chan CS, Negre N, Victorsen A, White KP, Kellis M. Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res 2011; 21:2096-113. [PMID: 21994247 DOI: 10.1101/gr.119974.110] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While translational stop codon readthrough is often used by viral genomes, it has been observed for only a handful of eukaryotic genes. We previously used comparative genomics evidence to recognize protein-coding regions in 12 species of Drosophila and showed that for 149 genes, the open reading frame following the stop codon has a protein-coding conservation signature, hinting that stop codon readthrough might be common in Drosophila. We return to this observation armed with deep RNA sequence data from the modENCODE project, an improved higher-resolution comparative genomics metric for detecting protein-coding regions, comparative sequence information from additional species, and directed experimental evidence. We report an expanded set of 283 readthrough candidates, including 16 double-readthrough candidates; these were manually curated to rule out alternatives such as A-to-I editing, alternative splicing, dicistronic translation, and selenocysteine incorporation. We report experimental evidence of translation using GFP tagging and mass spectrometry for several readthrough regions. We find that the set of readthrough candidates differs from other genes in length, composition, conservation, stop codon context, and in some cases, conserved stem-loops, providing clues about readthrough regulation and potential mechanisms. Lastly, we expand our studies beyond Drosophila and find evidence of abundant readthrough in several other insect species and one crustacean, and several readthrough candidates in nematode and human, suggesting that functionally important translational stop codon readthrough is significantly more prevalent in Metazoa than previously recognized.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Perez-Leal O, Merali S. Regulation of polyamine metabolism by translational control. Amino Acids 2011; 42:611-7. [PMID: 21811825 DOI: 10.1007/s00726-011-1036-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/25/2011] [Indexed: 12/18/2022]
Abstract
Polyamines are low molecular weight, positively charged compounds that are ubiquitous in all living cells. They play a crucial role in many biochemical processes including regulation of transcription and translation, modulation of enzyme activities, regulation of ion channels and apoptosis. A strict balance between synthesis, catabolism and excretion tightly controls the cellular concentration of polyamines. The concentrations of rate-limiting enzymes in the polyamine synthesis and degradation pathways are regulated at different levels, including transcription, translation and degradation. Polyamines can modulate the translation of most of the enzymes required for their synthesis and catabolism through feedback mechanisms that are unique for each enzyme. Translational control is associated with cis-acting and trans-acting factors that can be influenced by the concentration of polyamines through mechanisms that are not completely understood. In this review, we present an overview of the translational control mechanisms of the proteins in the polyamine pathway, including ornithine decarboxylase (ODC), ODC antizyme, S-adenosylmethionine decarboxylase and spermidine/spermine N(1) acetyltransferase, highlighting the areas where more research is needed. A better understanding of the translational control of these enzymes would offer the possibility of a novel pharmacological intervention against cancer and other diseases.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- AHB/552, Department of Biochemistry, Temple University of School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
31
|
Baranov PV, Wills NM, Barriscale KA, Firth AE, Jud MC, Letsou A, Manning G, Atkins JF. Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC). RNA Biol 2011; 8:637-47. [PMID: 21593603 DOI: 10.4161/rna.8.4.15395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A programmed ribosomal frameshift (PRF) in the decoding of APC (adenomatous polyposis coli) mRNA has been identified and characterized in Caenorhabditis worms, Drosophila and mosquitoes. The frameshift product lacks the C-terminal approximately one-third of the product of standard decoding and instead has a short sequence encoded by the -1 frame which is just 13 residues in C. elegans, but is 125 in D. melanogaster. The frameshift site is A_AA.A_AA.C in Caenorhabditids, fruit flies and the mosquitoes studied while a variant A_AA.A_AA.A is found in some other nematodes. The predicted secondary RNA structure of the downstream stimulators varies considerably in the species studied. In the twelve sequenced Drosophila genomes, it is a long stem with a four-way junction in its loop. In the five sequenced Caenorhabditis species, it is a short RNA pseudoknot with an additional stem in loop 1. The efficiency of frameshifting varies significantly, depending on the particular stimulator within the frameshift cassette, when tested with reporter constructs in rabbit reticulocyte lysates. Phylogenetic analysis of the distribution of APC programmed ribosomal frameshifting cassettes suggests it has an ancient origin and raises questions about a possibility of synthesis of alternative protein products during expression of APC in other organisms such as humans. The origin of APC as a PRF candidate emerged from a prior study of evolutionary signatures derived from comparative analysis of the 12 fly genomes. Three other proposed PRF candidates (Xbp1, CG32736, CG14047) with switches in conservation of reading frames are likely explained by mechanisms other than PRF.
Collapse
Affiliation(s)
- Pavel V Baranov
- Biochemistry Department, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. RESULTS As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. CONCLUSION Improved localization prediction accuracy is not simply a matter of developing better computational algorithms. It also entails gathering key knowledge regarding the host architecture and translocation machinery and associated substrate recognition via experimentation and integration of diverse computational analyses from many proteins and, where possible, that are derived from different species within the same genus.
Collapse
Affiliation(s)
- Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
33
|
Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV. A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 2011; 28:3195-211. [PMID: 21673094 DOI: 10.1093/molbev/msr155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial genome annotations contain a number of coding sequences (CDSs) that, in spite of reading frame disruptions, encode a single continuous polypeptide. Such disruptions have different origins: sequencing errors, frameshift, or stop codon mutations, as well as instances of utilization of nontriplet decoding. We have extracted over 1,000 CDSs with annotated disruptions and found that about 75% of them can be clustered into 64 groups based on sequence similarity. Analysis of the clusters revealed deep phylogenetic conservation of open reading frame organization as well as the presence of conserved sequence patterns that indicate likely utilization of the nonstandard decoding mechanisms: programmed ribosomal frameshifting (PRF) and programmed transcriptional realignment (PTR). Further enrichment of these clusters with additional homologous nucleotide sequences revealed over 6,000 candidate genes utilizing PRF or PTR. Analysis of the patterns of conservation apparently associated with nontriplet decoding revealed the presence of both previously characterized frameshift-prone sequences and a few novel ones. Since the starting point of our analysis was a set of genes with already annotated disruptions, it is highly plausible that in this study, we have identified only a fraction of all bacterial genes that utilize PRF or PTR. In addition to the identification of a large number of recoded genes, a surprising observation is that nearly half of them are expressed via PTR-a mechanism that, in contrast to PRF, has not yet received substantial attention.
Collapse
Affiliation(s)
- Virag Sharma
- Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 2011; 39:4220-34. [PMID: 21266472 PMCID: PMC3105428 DOI: 10.1093/nar/gkr007] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | | | | | | | |
Collapse
|
36
|
Ahmed F, Benedito VA, Zhao PX. Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives. FRONTIERS IN PLANT SCIENCE 2011; 2:84. [PMID: 22639614 PMCID: PMC3355573 DOI: 10.3389/fpls.2011.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/03/2011] [Indexed: 05/03/2023]
Abstract
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Collapse
Affiliation(s)
- Firoz Ahmed
- Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Vagner A. Benedito
- Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia UniversityMorgantown, WV, USA
| | - Patrick Xuechun Zhao
- Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Patrick Xuechun Zhao, Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA e-mail:
| |
Collapse
|
37
|
NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 2009; 84:1641-7. [PMID: 19906906 DOI: 10.1128/jvi.01979-09] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavivirus NS1 is a nonstructural protein involved in virus replication and regulation of the innate immune response. Interestingly, a larger NS1-related protein, NS1', is often detected during infection with the members of the Japanese encephalitis virus serogroup of flaviviruses. However, how NS1' is made and what role it performs in the viral life cycle have not been determined. Here we provide experimental evidence that NS1' is the product of a -1 ribosomal frameshift event that occurs at a conserved slippery heptanucleotide motif located near the beginning of the NS2A gene and is stimulated by a downstream RNA pseudoknot structure. Using site-directed mutagenesis of these sequence elements in an infectious clone of the Kunjin subtype of West Nile virus, we demonstrate that NS1' plays a role in viral neuroinvasiveness.
Collapse
|