1
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Catchpole RJ, Barbe V, Magdelenat G, Marguet E, Terns M, Oberto J, Forterre P, Da Cunha V. A self-transmissible plasmid from a hyperthermophile that facilitates genetic modification of diverse Archaea. Nat Microbiol 2023; 8:1339-1347. [PMID: 37277532 PMCID: PMC10788138 DOI: 10.1038/s41564-023-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Conjugative plasmids are self-transmissible mobile genetic elements that transfer DNA between host cells via type IV secretion systems (T4SS). While T4SS-mediated conjugation has been well-studied in bacteria, information is sparse in Archaea and known representatives exist only in the Sulfolobales order of Crenarchaeota. Here we present the first self-transmissible plasmid identified in a Euryarchaeon, Thermococcus sp. 33-3. The 103 kbp plasmid, pT33-3, is seen in CRISPR spacers throughout the Thermococcales order. We demonstrate that pT33-3 is a bona fide conjugative plasmid that requires cell-to-cell contact and is dependent on canonical, plasmid-encoded T4SS-like genes. Under laboratory conditions, pT33-3 transfers to various Thermococcales and transconjugants propagate at 100 °C. Using pT33-3, we developed a genetic toolkit that allows modification of phylogenetically diverse Archaeal genomes. We demonstrate pT33-3-mediated plasmid mobilization and subsequent targeted genome modification in previously untransformable Thermococcales species, and extend this process to interphylum transfer to a Crenarchaeon.
Collapse
Affiliation(s)
- Ryan J Catchpole
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie, Institut Pasteur, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette, Cedex, France.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Ghislaine Magdelenat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Evelyne Marguet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Michael Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jacques Oberto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Patrick Forterre
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie, Institut Pasteur, Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Violette Da Cunha
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie, Institut Pasteur, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette, Cedex, France.
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
| |
Collapse
|
3
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Abstract
Mobile genetic elements (MGEs) often encode integrases which catalyze the site-specific insertion of their genetic information into the host genome and the reverse reaction of excision. Hyperthermophilic archaea harbor integrases belonging to the SSV-family which carry the MGE recombination site within their open reading frame. Upon integration into the host genome, SSV integrases disrupt their own gene into two inactive pseudogenes and are termed suicidal for this reason. The evolutionary maintenance of suicidal integrases, concurring with the high prevalence and multiples recruitments of these recombinases by archaeal MGEs, is highly paradoxical. To elucidate this phenomenon, we analyzed the wide phylogenomic distribution of a prominent class of suicidal integrases which revealed a highly variable integration site specificity. Our results highlighted the remarkable hybrid nature of these enzymes encoded from the assembly of inactive pseudogenes of different origins. The characterization of the biological properties of one of these integrases, IntpT26-2 showed that this enzyme was active over a wide range of temperatures up to 99 °C and displayed a less-stringent site specificity requirement than comparable integrases. These observations concurred in explaining the pervasiveness of these suicidal integrases in the most hyperthermophilic organisms. The biochemical and phylogenomic data presented here revealed a target site switching system operating on highly thermostable integrases and suggested a new model for split gene reconstitution. By generating fast-evolving pseudogenes at high frequency, suicidal integrases constitute a powerful model to approach the molecular mechanisms involved in the generation of active genes variants by the recombination of proto-genes.
Collapse
Affiliation(s)
- Catherine Badel
- Microbiology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Violette Da Cunha
- Microbiology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Microbiology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.,Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Microbiology Department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|
5
|
Badel C, Da Cunha V, Catchpole R, Forterre P, Oberto J. WASPS: web-assisted symbolic plasmid synteny server. Bioinformatics 2020; 36:1629-1631. [PMID: 31589313 PMCID: PMC7703779 DOI: 10.1093/bioinformatics/btz745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 11/12/2022] Open
Abstract
Motivation Comparative plasmid genome analyses require complex tools, the manipulation of large numbers of sequences and constitute a daunting task for the wet bench experimentalist. Dedicated plasmid databases are sparse, only comprise bacterial plasmids and provide exclusively access to sequence similarity searches. Results We have developed Web-Assisted Symbolic Plasmid Synteny (WASPS), a web service granting protein and DNA sequence similarity searches against a database comprising all completely sequenced natural plasmids from bacterial, archaeal and eukaryal origin. This database pre-calculates orthologous protein clustering and enables WASPS to generate fully resolved plasmid synteny maps in real time using internal and user-provided DNA sequences. Availability and implementation WASPS queries befit all current browsers such as Firefox, Edge or Safari while the best functionality is achieved with Chrome. Internet Explorer is not supported. WASPS is freely accessible at https://archaea.i2bc.paris-saclay.fr/wasps/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Catherine Badel
- Microbiology Department, CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Violette Da Cunha
- Microbiology Department, CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Ryan Catchpole
- Microbiology Department, CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Patrick Forterre
- Microbiology Department, CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris 75015, France
| | - Jacques Oberto
- Microbiology Department, CEA, CNRS, Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
6
|
Sunny JS, Mukund N, Natarajan A, Saleena LM. Identifying heat shock response systems from the genomic assembly of Ureibacillus thermophilus LM102 using protein-protein interaction networks. Gene X 2020; 737:144449. [DOI: 10.1016/j.gene.2020.144449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
|
7
|
Badel C, Erauso G, Gomez AL, Catchpole R, Gonnet M, Oberto J, Forterre P, Da Cunha V. The global distribution and evolutionary history of the pT26-2 archaeal plasmid family. Environ Microbiol 2019; 21:4685-4705. [PMID: 31503394 PMCID: PMC6972569 DOI: 10.1111/1462-2920.14800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
Although plasmids play an important role in biological evolution, the number of plasmid families well‐characterized in terms of geographical distribution and evolution remains limited, especially in archaea. Here, we describe the first systematic study of an archaeal plasmid family, the pT26‐2 plasmid family. The in‐depth analysis of the distribution, biogeography and host–plasmid co‐evolution patterns of 26 integrated and 3 extrachromosomal plasmids of this plasmid family shows that they are widespread in Thermococcales and Methanococcales isolated from around the globe but are restricted to these two orders. All members of the family share seven core genes but employ different integration and replication strategies. Phylogenetic analysis of the core genes and CRISPR spacer distribution suggests that plasmids of the pT26‐2 family evolved with their hosts independently in Thermococcales and Methanococcales, despite these hosts exhibiting similar geographic distribution. Remarkably, core genes are conserved even in integrated plasmids that have lost replication genes and/or replication origins suggesting that they may be beneficial for their hosts. We hypothesize that the core proteins encode for a novel type of DNA/protein transfer mechanism, explaining the widespread oceanic distribution of the pT26‐2 plasmid family.
Collapse
Affiliation(s)
- Catherine Badel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Gaël Erauso
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France.,Aix-Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Annika L Gomez
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Ryan Catchpole
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Mathieu Gonnet
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France
| | - Jacques Oberto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Violette Da Cunha
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| |
Collapse
|
8
|
Increase of positive supercoiling in a hyperthermophilic archaeon after UV irradiation. Extremophiles 2018; 23:141-149. [PMID: 30467661 DOI: 10.1007/s00792-018-1068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Diverse DNA repair mechanisms are essential to all living organisms. Some of the most widespread repair systems allow recovery of genome integrity in the face of UV radiation. Here, we show that the hyperthermophilic archaeon Thermococcus nautili possesses a remarkable ability to recovery from extreme chromosomal damage. Immediately following UV irradiation, chromosomal DNA of T. nautili is fragmented beyond recognition. However, the extensive UV-induced double-stranded breaks (DSB) are repaired over the course of several hours, allowing restoration of growth. DSBs also disrupted plasmid DNA in this species. Similar to the chromosome, plasmid integrity was restored during an outgrowth period. Intriguingly, the topology of recovered pTN1 plasmids differed from control strain by being more positively supercoiled. As reverse gyrase (RG) is the only enzyme capable of inducing positive supercoiling, our results suggest the activation of RG activity by UV-induced stress. We suggest simple UV stress could be used to study archaeal DNA repair and responses to DSB.
Collapse
|
9
|
Kazlauskas D, Sezonov G, Charpin N, Venclovas Č, Forterre P, Krupovic M. Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea. J Mol Biol 2017; 430:737-750. [PMID: 29198957 PMCID: PMC5862659 DOI: 10.1016/j.jmb.2017.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/15/2022]
Abstract
Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages. Primases of the archaeo-eukaryotic primase (AEP) superfamily are widespread in bacteria. We describe five new AEP families in bacteria belonging to 12 diverse phyla. The new AEP families display a conserved signature motif likely involved in nucleotide binding. The primase domains are fused to diverse functional domains, revealing new families of putative helicases. The novel primases are encoded within highly diverse integrated mobile genetic elements.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Guennadi Sezonov
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7138 Evolution Paris Seine-Institut de Biologie Paris Seine, Paris 75005, France
| | - Nicole Charpin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania.
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
10
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
11
|
Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, Stewart FJ, Sullivan MB. Putative archaeal viruses from the mesopelagic ocean. PeerJ 2017; 5:e3428. [PMID: 28630803 PMCID: PMC5474096 DOI: 10.7717/peerj.3428] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023] Open
Abstract
Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce "MArVD", for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in metagenomic datasets. MArVD is made publicly available through the online iVirus analytical platform. Benchmarking analysis of MArVD showed it to be >99% accurate and 100% sensitive in identifying the 127 known archaeal viruses among the 12,499 viruses in the VirSorter curated dataset. Application of MArVD to 10 viral metagenomes from two depth profiles in the Eastern Tropical North Pacific (ETNP) oxygen minimum zone revealed 43 new putative archaeal virus genomes and large genome fragments ranging in size from 10 to 31 kb. Network-based classifications, which were consistent with marker gene phylogenies where available, suggested that these putative archaeal virus contigs represented six novel candidate genera. Ecological analyses, via fragment recruitment and ordination, revealed that the diversity and relative abundances of these putative archaeal viruses were correlated with oxygen concentration and temperature along two OMZ-spanning depth profiles, presumably due to structuring of the host Archaea community. Peak viral diversity and abundances were found in surface waters, where Thermoplasmata 16S rRNA genes are prevalent, suggesting these archaea as hosts in the surface habitats. Together these findings provide a baseline for identifying archaeal viruses in sequence datasets, and an initial picture of the ecology of such viruses in non-extreme environments.
Collapse
Affiliation(s)
- Dean R. Vik
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Simon Roux
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Jennifer R. Brum
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Ben Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Joanne B. Emerson
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Cory C. Padilla
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Frank J. Stewart
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
12
|
Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers. Proc Natl Acad Sci U S A 2017; 114:E2310-E2318. [PMID: 28265063 DOI: 10.1073/pnas.1700280114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.
Collapse
|
13
|
Michoud G, Jebbar M. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii. Sci Rep 2016; 6:27289. [PMID: 27250364 PMCID: PMC4890121 DOI: 10.1038/srep27289] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/14/2016] [Indexed: 02/06/2023] Open
Abstract
Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.
Collapse
Affiliation(s)
- Grégoire Michoud
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), rue Dumont d'Urville, 29 280 Plouzané, France
| |
Collapse
|
14
|
Abstract
Many plasmids have been described in Euryarchaeota, one of the three major archaeal phyla, most of them in salt-loving haloarchaea and hyperthermophilic Thermococcales. These plasmids resemble bacterial plasmids in terms of size (from small plasmids encoding only one gene up to large megaplasmids) and replication mechanisms (rolling circle or theta). Some of them are related to viral genomes and form a more or less continuous sequence space including many integrated elements. Plasmids from Euryarchaeota have been useful for designing efficient genetic tools for these microorganisms. In addition, they have also been used to probe the topological state of plasmids in species with or without DNA gyrase and/or reverse gyrase. Plasmids from Euryarchaeota encode both DNA replication proteins recruited from their hosts and novel families of DNA replication proteins. Euryarchaeota form an interesting playground to test evolutionary hypotheses on the origin and evolution of viruses and plasmids, since a robust phylogeny is available for this phylum. Preliminary studies have shown that for different plasmid families, plasmids share a common gene pool and coevolve with their hosts. They are involved in gene transfer, mostly between plasmids and viruses present in closely related species, but rarely between cells from distantly related archaeal lineages. With few exceptions (e.g., plasmids carrying gas vesicle genes), most archaeal plasmids seem to be cryptic. Interestingly, plasmids and viral genomes have been detected in extracellular membrane vesicles produced by Thermococcales, suggesting that these vesicles could be involved in the transfer of viruses and plasmids between cells.
Collapse
|
15
|
Lossouarn J, Dupont S, Gorlas A, Mercier C, Bienvenu N, Marguet E, Forterre P, Geslin C. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents. Res Microbiol 2015; 166:742-52. [DOI: 10.1016/j.resmic.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
|
16
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
17
|
Abstract
Biologists used to draw schematic “universal” trees of life as metaphors illustrating the history of life. It is indeed a priori possible to construct an organismal tree connecting the three major domains of ribosome encoding organisms: Archaea, Bacteria and Eukarya, since they originated by cell division from LUCA. Several universal trees based on ribosomal RNA sequence comparisons proposed at the end of the last century are still widely used, although some of their main features have been challenged by subsequent analyses. Several authors have proposed to replace the traditional universal tree with a ring of life, whereas others have proposed more recently to include viruses as new domains. These proposals are misleading, suggesting that endosymbiosis can modify the shape of a tree or that viruses originated from the last universal common ancestor (LUCA). I propose here an updated version of Woese’s universal tree that includes several rootings for each domain and internal branching within domains that are supported by recent phylogenomic analyses of domain specific proteins. The tree is rooted between Bacteria and Arkarya, a new name proposed for the clade grouping Archaea and Eukarya. A consensus version, in which each of the three domains is unrooted, and a version in which eukaryotes emerged within archaea are also presented. This last scenario assumes the transformation of a modern domain into another, a controversial evolutionary pathway. Viruses are not indicated in these trees but are intrinsically present because they infect the tree from its roots to its leaves. Finally, I present a detailed tree of the domain Archaea, proposing the sub-phylum neo-Euryarchaeota for the monophyletic group of euryarchaeota containing DNA gyrase. These trees, that will be easily updated as new data become available, could be useful to discuss controversial scenarios regarding early life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur , Paris, France ; Institut de Biologie Intégrative de la cellule, Université Paris-Saclay , Paris, France
| |
Collapse
|
18
|
FAN JING, XI XUEDONG, HUANG YAN, CUI ZHONGLI. Isolation of a minireplicon of the plasmid pG6303 of Lactobacillus plantarum G63 and characterization of the plasmid-encoded Rep replication protein. J Genet 2015; 94:177-86. [DOI: 10.1007/s12041-015-0500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Béguin P, Gill S, Charpin N, Forterre P. Synergistic template-free synthesis of dsDNA by Thermococcus nautili primase PolpTN2, DNA polymerase PolB, and pTN2 helicase. Extremophiles 2014; 19:69-76. [PMID: 25420601 DOI: 10.1007/s00792-014-0706-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022]
Abstract
A combination of three enzymes from the hyperthermophilic archaeon Thermococcus nautili, DNA primase PolpTN2, DNA polymerase PolB, and pTN2 DNA helicase, was found to synthesize up to 300-400 ng/µl dsDNA from deoxynucleotide triphosphates in less than 30 min in the absence of added template DNA and oligonucleotide primer. The reaction did not occur below 64 °C. No synthesis was observed if PolpTN2 or PolB were left out; helicase was not essential but accelerated the reaction. The DNA synthesized consisted of highly reiterated palindromic sequences reaching up to more that 10 kb. Sequence analysis of three independent reaction products synthesized at different temperatures showed that the palindromes shared a common pentanucleotide core, suggesting that random nucleic acid fragments were not responsible for priming the reaction. When enzymes were added sequentially, preincubation with primase plus helicase followed by PolB led to a shorter delay before the onset of the reaction as compared to preincubation with PolB plus helicase followed by primase. This suggests that the primase generates seeds that are subsequently amplified and elongated in synergy with PolB by a mechanism involving hairpin formation and slippage synthesis.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 25-28, rue du Dr Roux, 75724, Paris Cedex 15, France,
| | | | | | | |
Collapse
|
20
|
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus. Biochem Soc Trans 2014; 41:1416-21. [PMID: 24256230 DOI: 10.1042/bst20130056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5' tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA-Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR-Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR-Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR-Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR-Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.
Collapse
|
21
|
Raymann K, Forterre P, Brochier-Armanet C, Gribaldo S. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea. Genome Biol Evol 2014; 6:192-212. [PMID: 24398374 PMCID: PMC3914693 DOI: 10.1093/gbe/evu004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The archaeal machinery responsible for DNA replication is largely homologous to that of eukaryotes and is clearly distinct from its bacterial counterpart. Moreover, it shows high diversity in the various archaeal lineages, including different sets of components, heterogeneous taxonomic distribution, and a large number of additional copies that are sometimes highly divergent. This has made the evolutionary history of this cellular system particularly challenging to dissect. Here, we have carried out an exhaustive identification of homologs of all major replication components in over 140 complete archaeal genomes. Phylogenomic analysis allowed assigning them to either a conserved and probably essential core of replication components that were mainly vertically inherited, or to a variable and highly divergent shell of extra copies that have likely arisen from integrative elements. This suggests that replication proteins are frequently exchanged between extrachromosomal elements and cellular genomes. Our study allowed clarifying the history that shaped this key cellular process (ancestral components, horizontal gene transfers, and gene losses), providing important evolutionary and functional information. Finally, our precise identification of core components permitted to show that the phylogenetic signal carried by DNA replication is highly consistent with that harbored by two other key informational machineries (translation and transcription), strengthening the existence of a robust organismal tree for the Archaea.
Collapse
Affiliation(s)
- Kasie Raymann
- Département de Microbiologie, Institut Pasteur, Unité Biologie Moléculaire du Gene chez les Extrêmophiles, Paris, France
| | | | | | | |
Collapse
|
22
|
Gadelle D, Krupovic M, Raymann K, Mayer C, Forterre P. DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria. Nucleic Acids Res 2014; 42:8578-91. [PMID: 24990376 PMCID: PMC4117785 DOI: 10.1093/nar/gku568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/14/2022] Open
Abstract
Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.
Collapse
Affiliation(s)
- Danièle Gadelle
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France
| | - Mart Krupovic
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Kasie Raymann
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Claudine Mayer
- Institut Pasteur, Unité de Microbiologie structurale, Département de Biologie structurale et Chimie, F-75015 Paris, France CNRS, UMR3528, F-75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr Roux 75015 Paris, France
| | - Patrick Forterre
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| |
Collapse
|
23
|
The SF1 helicase encoded by the archaeal plasmid pTN2 of Thermococcus nautili. Extremophiles 2014; 18:779-87. [PMID: 24889120 DOI: 10.1007/s00792-014-0658-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/18/2014] [Indexed: 12/28/2022]
Abstract
We expressed, purified, and characterized the helicase encoded by ORF1 of the Thermococcus nautili pTN2 plasmid (Soler et al. Nucl Acids Res 38, 5088-5104, 2010). The enzyme, which belongs to the SF1 family of helicases, possesses NTPase activity, with a strong preference for ATP and GTP as compared to CTP and TTP; dATP was also a substrate. Triphosphatase activity was strongly stimulated by single-stranded DNA and, to a lesser extent, by double-stranded DNA. Unwinding of duplexes comprising a fluorescent oligonucleotide was monitored by fluorescence polarization spectroscopy and by polyacrylamide gel electrophoresis. As observed for enzymes of the same family, pTN2 helicase displays a strong preference for duplexes comprising a 3' single-stranded extension and proceeds from the 3' to the 5' end of the loading strand. Under the conditions of the in vitro assay, pTN2 helicase did not appear to be recycled, but stayed bound to single-stranded DNA, which explains why high concentrations of enzyme are required to unwind long stretches of duplex DNA. The helicase enhances the synthesis of double-stranded DNA by pTN2 primase and by T. nautili PolB polymerase primed by pTN2 primase but it did not enhance synthesis by Taq DNA polymerase.
Collapse
|
24
|
Gorlas A, Croce O, Oberto J, Gauliard E, Forterre P, Marguet E. Thermococcus
nautili sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal deep-sea vent. Int J Syst Evol Microbiol 2014; 64:1802-1810. [DOI: 10.1099/ijs.0.060376-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermococcus nautili, strain 30-1T (formerly reported as Thermococcus nautilus), was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at a depth of 2633 m on the ‘La chainette PP57’ area. Cells were motile, irregular cocci with a polar tuft of flagella (0.8–1.5 µm) and divided by constriction. The micro-organism grew optimally at 87.5 °C (range 55–95 °C), at pH 7 (range pH 4–9) and with 2 % NaCl (range 1–4 %). Doubling time was 64 min in Zillig’s broth medium under optimal conditions. Growth was strictly anaerobic. It grew preferentially in the presence of elemental sulfur or cystine, which are reduced to H2S, on complex organic substrates such as yeast extract, tryptone, peptone, Casamino acids and casein. Slow growth was observed on starch and pyruvate. Strain 30-1T was resistant to chloramphenicol and tetracyclin (at 100 µg ml−1) but sensitive to kanamycin and rifampicin. The G+C content of the genomic DNA was 54 mol%. Strain 30-1T harboured three plasmids named pTN1, pTN2 and pTN3 and produced membrane vesicles that incorporate pTN1 and pTN3. As determined by 16S rRNA gene sequence analysis, strain 30-1T is related most closely to Thermococcus sp. AM4 (99.3 % similarity) and
Thermococcus gammatolerans
DSM 15229T (99.2 %). DNA–DNA hybridization values (in silico) with these two closest relatives were below the threshold value of 70 % (33 % with Thermococcus sp. AM4 and 32 % with
T. gammatolerans
DSM 15229T) and confirmed that strain 30-1 represents a novel species. On the basis of the data presented, strain 30-1T is considered to represent a novel species of the genus
Thermococcus
, for which the name Thermococcus nautili sp. nov. is proposed. The type strain is 30-1T ( = CNCM 4275 = JCM 19601).
Collapse
Affiliation(s)
- Aurore Gorlas
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621, 91405 Orsay Cedex, France
| | - Olivier Croce
- Université Aix-Marseille, Faculté de médecine, CNRS UMR7278, Marseille, France
| | - Jacques Oberto
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621, 91405 Orsay Cedex, France
| | - Emilie Gauliard
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621, 91405 Orsay Cedex, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621, 91405 Orsay Cedex, France
| | - Evelyne Marguet
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621, 91405 Orsay Cedex, France
| |
Collapse
|
25
|
Genome Sequence of a Hyperthermophilic Archaeon, Thermococcus nautili 30-1, That Produces Viral Vesicles. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00243-14. [PMID: 24675865 PMCID: PMC3968343 DOI: 10.1128/genomea.00243-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.
Collapse
|
26
|
Gill S, Krupovic M, Desnoues N, Béguin P, Sezonov G, Forterre P. A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2. Nucleic Acids Res 2014; 42:3707-19. [PMID: 24445805 PMCID: PMC3973330 DOI: 10.1093/nar/gkt1385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report the characterization of a DNA primase/polymerase protein (PolpTN2) encoded by the pTN2 plasmid from Thermococcus nautilus. Sequence analysis revealed that this protein corresponds to a fusion between an N-terminal domain homologous to the small catalytic subunit PriS of heterodimeric archaeal and eukaryotic primases (AEP) and a C-terminal domain related to their large regulatory subunit PriL. This unique domain configuration is not found in other virus- and plasmid-encoded primases in which PriS-like domains are typically fused to different types of helicases. PolpTN2 exhibited primase, polymerase and nucleotidyl transferase activities and specifically incorporates dNTPs, to the exclusion of rNTPs. PolpTN2 could efficiently prime DNA synthesis by the T. nautilus PolB DNA polymerase, suggesting that it is used in vivo as a primase for pTN2 plasmid replication. The N-terminal PriS-like domain of PolpTN2 exhibited all activities of the full-length enzyme but was much less efficient in priming cellular DNA polymerases. Surprisingly, the N-terminal domain possesses reverse transcriptase activity. We speculate that this activity could reflect an ancestral function of AEP proteins in the transition from the RNA to the DNA world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institut Pasteur Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France, CNRS UMR 7138 Systématique, Adaptation, Evolution, Université Paris 6 quai Saint-Bernard, 75252 Paris Cedex 05, France and Univ Paris-Sud Institut de Génétique et Microbiologie, CNRS UMR 8621, Orsay 91406, France
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
28
|
Gorlas A, Alain K, Bienvenu N, Geslin C. Thermococcus
prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2013; 63:2920-2926. [DOI: 10.1099/ijs.0.026419-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel hyperthermophilic, anaerobic archaeon, strain Bio-pl-0405IT2T, was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at 2700 m depth in the ‘Sarah Spring’ area (7° 25′ 24″ S 107° 47′ 66″ W). Cells were irregular, motile cocci (0.8–1.5 µm in diameter) and divided by constriction. Growth was observed at temperatures between 60 °C and 95 °C with an optimum at 80 °C. The pH range for growth was between pH 4.0 and pH 8.0 with an optimum around pH 7.0. Strain Bio-pl-0405IT2T grew at salt concentrations of 1–5 % (w/v) NaCl with an optimum at 2 %. The novel isolate grew by fermentation or sulphur respiration on a variety of organic compounds. It was a chemoorganoheterotrophic archaeon growing preferentially with yeast extract, peptone and tryptone as carbon and energy sources and sulphur and organic compounds as electron acceptors; it also grew on maltose and starch. Sulphur or l-cystine were required for growth and were reduced to hydrogen sulfide. The strain was resistant to rifampicin, chloramphenicol, vancomycin and kanamycin (all at 100 µg ml−1) but was sensitive to tetracycline. The G+C content of its genomic DNA was 53.6 mol%. Phylogenetic analysis of the almost complete 16S rRNA gene sequence (1450 bp) of strain Bio-pl-0405IT2T showed that the novel isolate belonged to the genus
Thermococcus
. DNA–DNA hybridization values with the two closest relatives
Thermococcus hydrothermalis
AL662T and
Thermococcus celer
JCM 8558T were below the threshold value of 70 %. On the basis of the physiological and genotypic distinctness, we propose a novel species,
Thermococcus
prieurii sp. nov. The type strain is Bio-pl-0405IT2T ( = CSUR P577T = JCM 16307T).
Collapse
Affiliation(s)
- Aurore Gorlas
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Karine Alain
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Nadège Bienvenu
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Claire Geslin
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| |
Collapse
|
29
|
Living side by side with a virus: characterization of two novel plasmids from Thermococcus prieurii, a host for the spindle-shaped virus TPV1. Appl Environ Microbiol 2013; 79:3822-8. [PMID: 23584787 DOI: 10.1128/aem.00525-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial cells often serve as an evolutionary battlefield for different types of mobile genetic elements, such as viruses and plasmids. Here, we describe the isolation and characterization of two new archaeal plasmids which share the host with the spindle-shaped Thermococcus prieurii virus 1 (TPV1). The two plasmids, pTP1 and pTP2, were isolated from the hyperthermophilic archaeon Thermococcus prieurii (phylum Euryarchaeota), a resident of a deep-sea hydrothermal vent located at the East Pacific Rise at 2,700-m depth (7°25'24 S, 107°47'66 W). pTP1 (3.1 kb) and pTP2 (2.0 kb) are among the smallest known plasmids of hyperthermophilic archaea, and both are predicted to replicate via the rolling-circle mechanism. The two plasmids and the virus TPV1 do not have a single gene in common and stably propagate in infected cells without any apparent antagonistic effect on each other. The compatibility of the three genetic elements and the high copy number of pTP1 and pTP2 plasmids (50 copies/cell) might be useful for developing new genetic tools for studying hyperthermophilic euryarchaea and their viruses.
Collapse
|
30
|
Norais C, Moisan A, Gaspin C, Clouet-d'Orval B. Diversity of CRISPR systems in the euryarchaeal Pyrococcales. RNA Biol 2013; 10:659-70. [PMID: 23422322 DOI: 10.4161/rna.23927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pyrococcales are members of the order Thermococcales, a group of hyperthermophilic euryarchaea that are frequently found in deep sea hydrothermal vents. Infectious genetic elements, such as plasmids and viruses, remain a threat even in this remote environment and these microorganisms have developed several ways to fight their genetic invaders. Among these are the recently discovered CRISPR systems. In this review, we have combined and condensed available information on genetic elements infecting the Thermococcales and on the multiple CRISPR systems found in the Pyrococcales to fight them. Their organization and mode of action will be presented with emphasis on the Type III-B system that is the only CRISPR system known to target RNA molecules in a process reminiscent of RNA interference. The intriguing case of Pyrococcus abyssi, which is among the rare strains to present a CRISPR system devoid of the universal cas1 and cas2 genes, is also discussed.
Collapse
Affiliation(s)
- Cédric Norais
- Laboratoire de Biochimie, UMR CNRS 7654, Département de Biologie, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
31
|
Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. PLoS One 2013; 8:e49044. [PMID: 23326305 PMCID: PMC3543421 DOI: 10.1371/journal.pone.0049044] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/03/2012] [Indexed: 12/04/2022] Open
Abstract
Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1), with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA) systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.
Collapse
|
32
|
Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis. Extremophiles 2012; 17:153-60. [PMID: 23224520 DOI: 10.1007/s00792-012-0504-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Four virus-like integrated elements (TKV1, TKV2, TKV3, and TKV4) have been found in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis, but virus particle formation has not been observed in the culture of T. kodakarensis. As the result of growth property analyses, mutants lacking each of the four virus-like regions exhibited decrease in the cell concentration and/or less growth rates compared to growth of parental strain (KU216), when the T. kodakarensis strains were grown at 85 °C in nutrient-rich medium. These results indicated that the genes in virus-like regions stimulated the cell growth under the observed growth condition. As the result of transcriptome analyses, genes involved in amino acid, energy or nucleotide metabolisms, and transport systems were up- or down-regulated in the cells of mutant strains. Interestingly, a decrease in transcriptional levels of glutamine synthetase (TK1796) gene (Tk-glnA) was observed in the cells of four mutant strains. Growths of TKV1 disrupted strain and TKV4 disrupted strain have shown no difference compared with that of KU216 by the addition of glutamate or glutamine, and the result suggested that TKV1 and TKV4 contributed to supply of amino acids to the cell.
Collapse
|
33
|
Forterre P. Darwin's goldmine is still open: variation and selection run the world. Front Cell Infect Microbiol 2012; 2:106. [PMID: 22919695 PMCID: PMC3417645 DOI: 10.3389/fcimb.2012.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/21/2012] [Indexed: 01/02/2023] Open
Abstract
The scientific contribution of Darwin, still agonized in many religious circles, has now been recognized and celebrated by scientists from various disciplines. However, in recent years, several evolutionists have criticized Darwin as outdated, arguing that "Darwinism," assimilated to the "tree of life," cannot explain microbial evolution, or else was not operating in early life evolution. These critics either confuse "Darwinism" and old versions of "neo-Darwinism" or misunderstand the role of gene transfers in evolution. The core of Darwin explanation of evolution (variation/selection) remains necessary and sufficient to decipher the history of life. The enormous diversity of mechanisms underlying variations has been successfully interpreted by evolutionists in this framework and has considerably enriched the corpus of evolutionary biology without the necessity to kill the father. However, it remains for evolutionists to acknowledge interactions between cells and viruses (unknown for Darwin) as a major driving force in life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut PasteurParis, France
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621Orsay Cedex, France
| |
Collapse
|
34
|
Ishino Y, Ishino S. Rapid progress of DNA replication studies in Archaea, the third domain of life. SCIENCE CHINA-LIFE SCIENCES 2012; 55:386-403. [PMID: 22645083 DOI: 10.1007/s11427-012-4324-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/04/2023]
Abstract
Archaea, the third domain of life, are interesting organisms to study from the aspects of molecular and evolutionary biology. Archaeal cells have a unicellular ultrastructure without a nucleus, resembling bacterial cells, but the proteins involved in genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of Eukaryota. Therefore, archaea provide useful model systems to understand the more complex mechanisms of genetic information processing in eukaryotic cells. Moreover, the hyperthermophilic archaea provide very stable proteins, which are especially useful for the isolation of replisomal multicomplexes, to analyze their structures and functions. This review focuses on the history, current status, and future directions of archaeal DNA replication studies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
35
|
Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 2011; 14:503-16. [PMID: 22151304 DOI: 10.1111/j.1462-2920.2011.02662.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a novel virus, TPV1 (Thermococcus prieurii virus 1), which was discovered in a hyperthermophilic euryarchaeote isolated from a deep-sea hydrothermal chimney sample collected at a depth of 2700 m at the East Pacific Rise. TPV1 is the first virus isolated and characterized from the hyperthermophilic euryarchaeal genus Thermococcus. TPV1 particles have a lemon-shaped morphology (140 nm × 80 nm) similar to the structures previously reported for Fuselloviruses and for the unclassified virus-like particle PAV1 (Pyrococcus abyssi virus 1). The infection with TPV1 does not cause host lysis and viral replication can be induced by UV irradiation. TPV1 contains a double-stranded circular DNA of 21.5 kb, which is also present in high copy number in a free form in the host cell. The TPV1 genome encompasses 28 predicted genes; the protein sequences encoded in 16 of these genes show no significant similarity to proteins in public databases. Proteins predicted to be involved in genome replication were identified as well as transcriptional regulators. TPV1 encodes also a predicted integrase of the tyrosine recombinase family. The only two genes that are homologous between TPV1 and PAV1 are TPV1-22 and TPV1-23, which encode proteins containing a concanavalin A-like lectin/glucanase domain that might be involved in virus-host recognition.
Collapse
Affiliation(s)
- Aurore Gorlas
- Laboratory of Microbiology of Extreme Environments, UMR 6197/CNRS/UBO IUEM, Place Nicolas Copernic, Technopôle Brest Iroise Plouzane, France
| | | | | | | | | |
Collapse
|
36
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
37
|
Mochizuki T, Sako Y, Prangishvili D. Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J Bacteriol 2011; 193:5412-9. [PMID: 21784945 PMCID: PMC3187419 DOI: 10.1128/jb.05101-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023] Open
Abstract
By in silico analysis, we have identified two putative proviruses in the genome of the hyperthermophilic archaeon Aeropyrum pernix, and under special conditions of A. pernix growth, we were able to induce their replication. Both viruses were isolated and characterized. Negatively stained virions of one virus appeared as pleomorphic spindle-shaped particles, 180 to 210 nm by 40 to 55 nm, with tails of heterogeneous lengths in the range of 0 to 300 nm. This virus was named Aeropyrum pernix spindle-shaped virus 1 (APSV1). Negatively stained virions of the other virus appeared as slightly irregular oval particles with one pointed end, while in cryo-electron micrographs, the virions had a regular oval shape and uniform size (70 by 55 nm). The virus was named Aeropyrum pernix ovoid virus 1 (APOV1). Both viruses have circular, double-stranded DNA genomes of 38,049 bp for APSV1 and 13,769 bp for APOV1. Similarities to proteins of other archaeal viruses were limited to the integrase and Dna1-like protein. We propose to classify APOV1 into the family Guttaviridae.
Collapse
Affiliation(s)
- Tomohiro Mochizuki
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
38
|
Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K, Schuster SC, Rampp M, Oesterhelt D. Haloquadratum walsbyi: limited diversity in a global pond. PLoS One 2011; 6:e20968. [PMID: 21701686 PMCID: PMC3119063 DOI: 10.1371/journal.pone.0020968] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. Principal Findings Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4–20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23T but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23T carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. Conclusions Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species.
Collapse
Affiliation(s)
- Mike L Dyall-Smith
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ, Gaspin C, Clouet-d'Orval B. Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genomics 2011; 12:312. [PMID: 21668986 PMCID: PMC3124441 DOI: 10.1186/1471-2164-12-312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/13/2011] [Indexed: 01/28/2023] Open
Abstract
Background Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs. Results Using a combination of in silico and experimental approaches, we identified and characterized novel P. abyssi ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel P. abyssi ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four P. abyssi CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized. Conclusions This work proposes a revised annotation of CRISPR loci in P. abyssi and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.
Collapse
Affiliation(s)
- Kounthéa Phok
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique et Université de Toulouse III, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Since their discovery in the early 1980s, viruses that infect the third domain of life, the Archaea, have captivated our attention because of their virions' unusual morphologies and proteins, which lack homologues in extant databases. Moreover, the life cycles of these viruses have unusual features, as revealed by the recent discovery of a novel virus egress mechanism that involves the formation of specific pyramidal structures on the host cell surface. The available data elucidate the particular nature of the archaeal virosphere and shed light on questions concerning the origin and evolution of viruses and cells. In this review, we summarize the current knowledge of archeoviruses, their interaction with hosts and plasmids and their role in the evolution of life.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | | | | |
Collapse
|
41
|
Abstract
Several families of plasmids and viruses (PVs) have now been described in hyperthermophilic archaea of the order Thermococcales. One family of plasmids replicates by the rolling circle mechanism, whereas most other PVs probably replicate by the θ mode. PVs from Thermococcales encode novel families of DNA replication proteins that have only detectable homologues in other archaeal PVs. PVs from different families share a common gene pool and co-evolve with their hosts. Most Thermococcales also produce virus-like membrane vesicles similar to eukaryotic microparticles (ectosomes). Some membrane vesicles of Thermococcus nautilus harbour the plasmid pTN1, suggesting that vesicles can be involved in plasmid transfer between species.
Collapse
|
42
|
Zhang S, Flores-Cruz Z, Zhou L, Kang BH, Fleites LA, Gooch MD, Wulff NA, Davis MJ, Duan YP, Gabriel DW. 'Ca. Liberibacter asiaticus' carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:458-68. [PMID: 21190436 DOI: 10.1094/mpmi-11-10-0256] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening, is a lethal disease of citrus caused by several species of 'Candidatus Liberibacter', a psyllid-transmitted, phloem-limited, alpha proteobacteria. 'Ca. Liberibacter asiaticus' is widespread in Florida citrus. The recently published 'Ca. L. asiaticus' psy62 genome, derived from a psyllid, revealed a prophage-like region of DNA in the genome, but phage have not been associated with 'Ca. L. asiaticus' to date. In the present study, shotgun sequencing and a fosmid DNA library of curated 'Ca. L. asiaticus' UF506, originally derived from citrus symptomatic for HLB, revealed two largely homologous, circular phage genomes, SC1 and SC2. SC2 encoded putative adhesin and peroxidase genes that had not previously been identified in 'Ca. L. asiaticus' and which may be involved in lysogenic conversion. SC2 also appeared to lack lytic cycle genes and replicated as a prophage excision plasmid, in addition to being found integrated in tandem with SC1 in the UF506 chromosome. By contrast, SC1 carried suspected lytic cycle genes and was found in nonintegrated, lytic cycle forms only in planta. Phage particles associated with 'Ca. L. asiaticus' were found in the phloem of infected periwinkles by transmission electron microscopy. In psyllids, both SC1 and SC2 were found only as prophage.
Collapse
Affiliation(s)
- Shujian Zhang
- Plant Pathology Dept., University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gonnet M, Erauso G, Prieur D, Le Romancer M. pAMT11, a novel plasmid isolated from a Thermococcus sp. strain closely related to the virus-like integrated element TKV1 of the Thermococcus kodakaraensis genome. Res Microbiol 2010; 162:132-43. [PMID: 21144896 DOI: 10.1016/j.resmic.2010.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
A novel extrachromosomal element that we called pAMT11 was discovered in a deep-sea vent isolate belonging to the hyperthermophilic euryarchaeal order Thermococcales. It consists of a double-stranded DNA of 20,534bp which encodes 30 putative open reading frames (ORFs) of which six could be assigned to a putative function on the basis of sequence similarity to known genes or to protein domain families. Most of the ORFs of pAMT1 showed homology and synteny with a genomic island of Thermococcus kodakaraensis KOD1. This region, named TKV1, was previously described as a "virus-like integrated element" and assumed to integrate into the host chromosome by a site-specific recombination mechanism similar to that of Sulfolobus solfataricus virus 1. While most of the genes shared by pAMT11 and TKV1 encode putative membrane proteins presumably involved in virus particle formation, attempts to induce production of virus particles by mitomycin treatment of AMT11 cultures failed, suggesting that pAMT11 may represent the genome of a defective virus or a plasmid. Genomes of mobile elements usually contain two regions: a core of conserved genes mainly involved in replication, maintenance or spreading of the genetic element, and a variable set of accessory genes. Surprisingly, genes presumably implied in the replication process are quite divergent between TKV1 and pAMT11. Indeed, TKV1 possesses a MCM-like protein that may function as a replication initiator, while pAMT11 encodes a putative non-conventional protein distantly related to the Rep protein previously described in a small plasmid of Pyrococcus sp. strain JT1, assumed to replicate by a rolling-circle (RC) mechanism. However, in the case of pAMT11, this mode of plasmid replication could not be experimentally proven and is questionable given the lack of significant similarities with any other members of the RC-Rep superfamily and its unusual large size compared to other RC plasmids.
Collapse
Affiliation(s)
- Mathieu Gonnet
- Unité d'Epidémiologie Animale, UR356, INRA centre de Clermont-Ferrand Theix, Route de Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | |
Collapse
|