1
|
Nagakubo T, Nishiyama T, Yamamoto T, Nomura N, Toyofuku M. Contractile injection systems facilitate sporogenic differentiation of Streptomyces davawensis through the action of a phage tapemeasure protein-related effector. Nat Commun 2024; 15:4442. [PMID: 38789435 PMCID: PMC11126660 DOI: 10.1038/s41467-024-48834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.
Collapse
Affiliation(s)
- Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| | - Tatsuya Nishiyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Chiyoda, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Studying the Interaction of Neutrophils and Glaesserella Parasuis Indicates a Serotype Independent Benefit from Degradation of NETs. Pathogens 2022; 11:pathogens11080880. [PMID: 36015001 PMCID: PMC9415231 DOI: 10.3390/pathogens11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Glaesserella (G.) parasuis is one of the most important porcine pathogens causing Glaesser’s disease. Neutrophil granulocytes are the major counteracting cell type of the innate immune system, which contribute to the host defense by phagocytosis or the formation of neutrophil extracellular traps (NETs). Recently, NET-formation has been shown to facilitate the survival of bacteria from the Pasteurellaceae family. However, the interaction of NETs and G. parasuis is unclear so far. In this study, we investigated the interplay of three G. parasuis serotypes with porcine neutrophils. The production of reactive oxygen species by neutrophils after G. parasuis infection varied slightly among the serotypes but was generally low and not significantly influenced by the serotypes. Interestingly, we detected that independent of the serotype of G. parasuis, NET formation in neutrophils was induced to a small but significant extent. This phenomenon occurred despite the ability of G. parasuis to release nucleases, which can degrade NETs. Furthermore, the growth of Glaesserella was enhanced by external DNases and degraded NETs. This indicates that Glaesserella takes up degraded NET components, supplying them with nicotinamide adenine dinucleotide (NAD), as this benefit was diminished by inhibiting the 5′-nucleotidase, which metabolizes NAD. Our results indicate a serotype-independent interaction of Glaesserella with neutrophils by inducing NET-formation and benefiting from DNA degradation.
Collapse
|
3
|
Zang X, Dang G, Cai Z, Shao M, Tang Y, Cao J, Cui Z, Liu S. Extracellular DNase MAP3916c attacks the neutrophil extracellular traps and is needed for Mycobacterium avium subsp. paratuberculosis virulence. Vet Microbiol 2022; 273:109529. [PMID: 35944391 DOI: 10.1016/j.vetmic.2022.109529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Extracellular DNases/nucleases are important virulence factors in many bacteria. However, no DNase/nucleases have been reported in Mycobacterium avium subsp. paratuberculosis (MAP), which is a pathogen of paratuberculosis. Genome analyses of MAP K-10 revealed that the map3916c gene putatively encodes a nuclease. In this study, we show that MAP3916c is an extracellular nonspecific DNase requiring a divalent cation, especially Mg2+. The optimum DNase activity of MAP3916c was exhibited at 41 °C and pH 9.0. Site-directed mutagenesis studies indicated that 125-Histidine is necessary for MAP3916c DNase activity. In addition, MAP3916c DNase could destroy the neutrophil extracellular traps (NETs) induced by Phorbol 12-myristate 13-acetate in vitro and degrade the NETs induced by MAP K-10 upon infection. Furthermore, MAP3916c DNase promoted the colonization of MAP K-10, induced the formation of granulomas in the liver and small intestine and promoted the release of IL-1β, IL-6 and TNF-α inflammatory cytokines during the infection of mice. These results indicated that MAP3916c is relevant to NETs escape and the pathogenicity of MAP. It also provides a basis for further study of the function of nuclease activity on the MAP immune evasion.
Collapse
Affiliation(s)
- Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Mingzhu Shao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Yangyang Tang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Cao
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, China.
| |
Collapse
|
4
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
5
|
O'Connell LM, Kelleher P, van Rijswijck IMH, de Waal P, van Peij NNME, Mahony J, van Sinderen D. Natural Transformation in Gram-Positive Bacteria and Its Biotechnological Relevance to Lactic Acid Bacteria. Annu Rev Food Sci Technol 2022; 13:409-431. [PMID: 35333592 DOI: 10.1146/annurev-food-052720-011445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in Streptococcus pneumoniae and has since been demonstrated in numerous species, including Bacillus subtilis and Neisseria gonorrhoeae. Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including Lactobacillus spp., Streptococcus thermophilus, and Lactococcus spp. In this review, we collate current knowledge of the phenomenon of natural transformation in Gram-positive bacteria. Furthermore, we describe the mechanism of competence development and its regulation in model bacterial species. We highlight the importance and opportunities for the application of these findings in the context of bacterial starter cultures associated with food fermentations as well as current limitations in this area of research.
Collapse
Affiliation(s)
- Laura M O'Connell
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Philip Kelleher
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | | | - Paul de Waal
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jennifer Mahony
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
6
|
Di Giacomo S, Toussaint F, Ledesma-García L, Knoops A, Vande Capelle F, Fremaux C, Horvath P, Ladrière JM, Ait-Abderrahim H, Hols P, Mignolet J. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6543703. [PMID: 35254446 PMCID: PMC9300618 DOI: 10.1093/femsre/fuac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
Collapse
Affiliation(s)
- Stefano Di Giacomo
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Frédéric Toussaint
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Florence Vande Capelle
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Christophe Fremaux
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Philippe Horvath
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Jean-Marc Ladrière
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | | | - Pascal Hols
- Corresponding author: Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5 (box L7.07.06), B-1348 Louvain-La-Neuve, Belgium. Tel: +3210478896; Fax: +3210472825; E-mail:
| | | |
Collapse
|
7
|
Furuhata Y, Kato Y. Asymmetric Roles of Two Histidine Residues in Streptococcus pyogenes Cas9 Catalytic Domains upon Chemical Rescue. Biochemistry 2021; 60:194-200. [PMID: 33428390 DOI: 10.1021/acs.biochem.0c00766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CRISPR-Cas9 technology has been at the forefront of the field of biology. The Streptococcus pyogenes (SpyCas9) protein forms a complex with guide RNA and can recognize and cleave double-stranded DNA through hybridization based on 20 base pairings. SpyCas9 has two nuclease domains, HNH and RuvC, each of which cuts each DNA strand, and both contain critical histidine residues. Although previously reported crystal structures provide useful geometric information, the extent to which these residues functionally contribute to catalysis is unknown. Here, we mutated histidine residues on HNH and RuvC domains to alanine or glycine and attempted to rescue the enzymatic activity by adding the imidazole molecule, using an in vitro DNA cleavage assay. H840A and H840G exhibited rescued enzymatic activity on the HNH domain following imidazole addition, suggesting that H840 acts as a general base. We also tested various chemicals and found that the pKa of imidazole derivatives, and not their molecular shape, correlated with the rescue effect. In contrast, both H983A and H983G on the RuvC domain did not exhibit a rescue effect following imidazole addition. Our chemical rescue approach will provide crucial insight into understanding Cas9 catalysis, complementing structural analyses.
Collapse
Affiliation(s)
- Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
8
|
Tan A, Li WS, Verderosa AD, Blakeway LV, D Mubaiwa T, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep 2019; 9:2579. [PMID: 30796312 PMCID: PMC6384898 DOI: 10.1038/s41598-019-39374-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Abstract
Moraxella catarrhalis is a host-adapted bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. This study characterises the conserved M. catarrhalis extracellular nuclease, a member of the ββα metal finger family of nucleases, that we have named NucM. NucM shares conserved sequence motifs from the ββα nuclease family, including the DRGH catalytic core and Mg2+ co-ordination site, but otherwise shares little primary sequence identity with other family members, such as the Serratia Nuc and pneumococcal EndA nucleases. NucM is secreted from the cell and digests linear and circular nucleic acid. However, it appears that a proportion of NucM is also associated with the cell membrane and acts as an entry nuclease, facilitating transformation of M. catarrhalis cells. This is the first example of a ββα nuclease in a Gram negative bacteria that acts as an entry nuclease. In addition to its role in competence, NucM affects cell aggregation and biofilm formation by M. catarrhalis, with ΔnucM mutants having increased biofilm biomass. NucM is likely to increase the ability of cells to survive and persist in vivo, increasing the virulence of M. catarrhalis and potentially affecting the behaviour of other pathogens that co-colonise the otorhinolaryngological niche.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Wing-Sze Li
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Anthony D Verderosa
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Tsitsi D Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4006, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia.
| |
Collapse
|
9
|
Urban CF, Nett JE. Neutrophil extracellular traps in fungal infection. Semin Cell Dev Biol 2018; 89:47-57. [PMID: 29601861 DOI: 10.1016/j.semcdb.2018.03.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
Fungal infections are a continuously increasing problem in modern health care. Understanding the complex biology of the emerging pathogens and unraveling the mechanisms of host defense may form the basis for the development of more efficient diagnostic and therapeutic tools. Neutrophils play a pivotal role in the defense against fungal pathogens. These phagocytic hunters migrate towards invading fungal microorganisms and eradicate them by phagocytosis, oxidative burst and release of neutrophil extracellular traps (NETs). In the last decade, the process of NET formation has received unparalleled attention, with numerous studies revealing the relevance of this neutrophil function for control of various mycoses. Here, we describe NET formation and summarize its role as part of the innate immune defense against fungal pathogens. We highlight factors influencing the formation of these structures and molecular mechanisms employed by fungi to impair the formation of NETs or subvert their antifungal effects.
Collapse
Affiliation(s)
- Constantin F Urban
- Umeå University, Department of Clinical Microbiology, 90185 Umeå, Sweden; Umeå Centre for Microbial Research & Laboratory for Molecular Infection Medicine, Sweden.
| | - Jeniel E Nett
- University of Wisconsin-Madison, Departments of Medicine, Medical Microbiology and Immunology, 5203 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 2017; 45:11479-11494. [PMID: 29040665 PMCID: PMC5714182 DOI: 10.1093/nar/gkx924] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.
Collapse
Affiliation(s)
- Jagoda Jablonska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
11
|
The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLoS Pathog 2016; 12:e1005884. [PMID: 27622514 PMCID: PMC5021349 DOI: 10.1371/journal.ppat.1005884] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/21/2016] [Indexed: 12/31/2022] Open
Abstract
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.
Collapse
|
12
|
Hou N, Piao X, Cai P, Wu C, Liu S, Xiao Y, Chen Q. A novel Schistosoma japonicum endonuclease homologous to DNase II. BMC Genomics 2015; 16:126. [PMID: 25766859 PMCID: PMC4349608 DOI: 10.1186/s12864-015-1319-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/04/2015] [Indexed: 01/27/2023] Open
Abstract
Background Recent advances in studies of the Schistosoma japonicum genome have opened new avenues for the elucidation of parasite biology and the identification of novel targets for vaccines, drug development and early diagnostic tools. Results In this study, we surveyed the S. japonicum genome database for genes encoding nucleases. A total of 130 nucleases of 3 classes were found. Transcriptional analysis of these genes using a genomic DNA microarray revealed that the majority of the nucleases were differentially expressed in parasites of different developmental stages or different genders, whereas no obvious transcriptional variation was detected in parasites from different hosts. Further analysis of the putative DNases of S. japonicum revealed a novel DNase II homologue (Sjda) that contained a highly conserved catalytic domain. A recombinant Sjda-GST protein efficiently hydrolysed genomic DNA in the absence of divalent iron. Western-blot and immunofluorescence assays showed that Sjda was mainly expressed on the teguments of female adult parasites and induced early humoral immune responses in infected mice. Conclusions A novel DNase II homologue, Sjda, was identified in S. japonicum. Sjda was mainly distributed on the teguments of adult female parasites and possessed a typical divalent iron-independent DNA catalytic activity. This protein may play an important role in the host–parasite interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1319-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dong Dan San Tiao 9, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Xi An Da Lu 5333, Changchun, People's Republic of China.
| |
Collapse
|
13
|
de Buhr N, Stehr M, Neumann A, Naim HY, Valentin-Weigand P, von Köckritz-Blickwede M, Baums CG. Identification of a novel DNase of Streptococcus suis (EndAsuis) important for neutrophil extracellular trap degradation during exponential growth. MICROBIOLOGY-SGM 2015; 161:838-50. [PMID: 25667008 DOI: 10.1099/mic.0.000040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
The porcine and human pathogen Streptococcus suis induces and degrades neutrophil extracellular traps (NETs) in vitro. In this study, we investigated the working hypothesis that NET degradation is mediated not only by the known secreted S. suis nuclease A (SsnA) but also by a so-far undescribed putative endonuclease A of S. suis (designated EndAsuis) homologous to the pneumococcal endonuclease A (EndA). Comparative analysis was conducted to identify differences in localization, expression and function of EndAsuis and SsnA. In contrast to ssnA, endAsuis RNA expression was not substantially different during exponential and stationary growth. Modelling of the 3D structure confirmed a putative DRGH-motif-containing ββα-metal finger catalytic core in EndAsuis. Accordingly, nuclease activity of recombinant EndAsuis with a point-mutated H165 was rescued through imidazol treatment. In accordance with a putative membrane anchor, nuclease activity caused by endAsuis was not detectable in the supernatant. Importantly, endAsuis determined nuclease activity of S. suis prominently during exponential growth. This activity depended on the presence of Mg(2+) but, in contrast to SsnA activity, not on Ca(2+). A pH of 5.4 did not inhibit endAsuis-encoded nuclease activity during exponential growth. NET degradation of S. suis harvested during exponential growth was significantly attenuated in the endAsuis mutant. In contrast to SsnA, mutagenesis of endAsuis did not result in a significantly higher susceptibility against the antimicrobial effect mediated by NETs. As degradation of bacterial DNA caused by S. suis depended on ssnA and endAsuis, further functions of both factors in the host-pathogen interaction might be envisioned.
Collapse
Affiliation(s)
- Nicole de Buhr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany Institute for Bacteriology and Mycology, Centre for Infectious Diseases, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Moon AF, Gaudu P, Pedersen LC. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2937-49. [PMID: 25372684 PMCID: PMC4220975 DOI: 10.1107/s1399004714019725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/01/2014] [Indexed: 12/28/2022]
Abstract
The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.
Collapse
Affiliation(s)
- Andrea F. Moon
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Neumann A, Völlger L, Berends ETM, Molhoek EM, Stapels DAC, Midon M, Friães A, Pingoud A, Rooijakkers SHM, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases. J Innate Immun 2014; 6:860-8. [PMID: 25012862 DOI: 10.1159/000363699] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/19/2014] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to S. aureus nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
Affiliation(s)
- Ariane Neumann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Aleyd E, van Hout MWM, Ganzevles SH, Hoeben KA, Everts V, Bakema JE, van Egmond M. IgA Enhances NETosis and Release of Neutrophil Extracellular Traps by Polymorphonuclear Cells via Fcα Receptor I. THE JOURNAL OF IMMUNOLOGY 2014; 192:2374-83. [DOI: 10.4049/jimmunol.1300261] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
18
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
19
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
20
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
21
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
22
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
23
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
24
|
de Buhr N, Neumann A, Jerjomiceva N, von Köckritz-Blickwede M, Baums CG. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. MICROBIOLOGY-SGM 2013; 160:385-395. [PMID: 24222615 DOI: 10.1099/mic.0.072199-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Streptococcus suis is an important cause of different pathologies in pigs and humans, most importantly fibrinosuppurative meningitis. Tissue infected with this pathogen is substantially infiltrated with neutrophils, but the function of neutrophil extracellular traps (NETs) - a more recently discovered antimicrobial strategy of neutrophils - in host defence against Strep. suis has not been investigated. The objective of this work was to investigate the interaction of Strep. suis with NETs in vitro. Strep. suis induced NET formation in porcine neutrophils and was entrapped but not killed by those NETs. As the amount of NETs decreased over time, we hypothesized that a known extracellular DNase of Strep. suis degrades NETs. Though this nuclease was originally designated Strep. suis-secreted nuclease A (SsnA), this work demonstrated surface association in accordance with an LPXTG cell wall anchor motif and partial release into the supernatant. Confirming our hypothesis, an isogenic ssnA mutant was significantly attenuated in NET degradation and in protection against the antimicrobial activity of NETs as determined in assays with phorbol myristate acetate (PMA)-stimulated human neutrophils. Though assays with PMA-stimulated porcine neutrophils suggested that SsnA also degrades porcine NETs, phenotypic differences between wt and the isogenic ssnA mutant were less distinct. As SsnA expression was crucial for neither growth in vitro nor for survival in porcine or human blood, the results indicated that SsnA is the first specific NET evasion factor to be identified in Strep. suis.
Collapse
Affiliation(s)
- Nicole de Buhr
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Natalja Jerjomiceva
- Department of Physiological Chemistry, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
25
|
Bergé MJ, Kamgoué A, Martin B, Polard P, Campo N, Claverys JP. Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 2013; 9:e1003596. [PMID: 24039578 PMCID: PMC3764208 DOI: 10.1371/journal.ppat.1003596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 12/02/2022] Open
Abstract
Genetic transformation, in which cells internalize exogenous DNA and integrate it into their chromosome, is widespread in the bacterial kingdom. It involves a specialized membrane-associated machinery for binding double-stranded (ds) DNA and uptake of single-stranded (ss) fragments. In the human pathogen Streptococcus pneumoniae, this machinery is specifically assembled at competence. The EndA nuclease, a constitutively expressed virulence factor, is recruited during competence to play the key role of converting dsDNA into ssDNA for uptake. Here we use fluorescence microscopy to show that EndA is uniformly distributed in the membrane of noncompetent cells and relocalizes at midcell during competence. This recruitment requires the dsDNA receptor ComEA. We also show that under ‘static’ binding conditions, i.e., in cells impaired for uptake, EndA and ComEA colocalize at midcell, together with fluorescent end-labelled dsDNA (Cy3-dsDNA). We conclude that midcell clustering of EndA reflects its recruitment to the DNA uptake machinery rather than its sequestration away from this machinery to protect transforming DNA from extensive degradation. In contrast, a fraction of ComEA molecules were located at cell poles post-competence, suggesting the pole as the site of degradation of the dsDNA receptor. In uptake-proficient cells, we used Cy3-dsDNA molecules enabling expression of a GFP fusion upon chromosomal integration to identify transformed cells as GFP producers 60–70 min after initial contact between DNA and competent cells. Recording of images since initial cell-DNA contact allowed us to look back to the uptake period for these transformed cells. Cy3-DNA foci were thus detected at the cell surface 10–11 min post-initial contact, all exclusively found at midcell, strongly suggesting that active uptake of transforming DNA takes place at this position in pneumococci. We discuss how midcell uptake could influence homology search, and the likelihood that midcell uptake is characteristic of cocci and/or the growth phase-dependency of competence. Natural genetic transformation, a programmed mechanism for horizontal gene transfer, permits the passage of environmental double-stranded (ds) DNA through the bacterial membrane and its subsequent integration into the recipient chromosome by homology. In the human pathogen Streptococcus pneumoniae, it requires development of a physiological state termed competence, which develops transiently in nearly all cells of an exponentially growing culture. Expression of a specific set of genes then allows assembly of a large membrane-associated machinery for binding exogenous dsDNA and internalizing single-stranded (ss) DNA fragments. The key role of converting dsDNA into ssDNA is fulfilled by EndA, a membrane-located endonuclease which is also a pneumococcal virulence factor pre-existing in noncompetent cells. Here, we report that EndA is uniformly distributed in the membrane of noncompetent cells and relocates into clusters during competence. We show that this relocalization is dependent upon the dsDNA-receptor ComEA and that ComEA and EndA are preferentially located at midcell in cultures exhibiting maximal transformation proficiency. Finally, using fluorescence microscopy, we visualize the transformation process in living cells providing evidence that DNA binding and presumably uptake occur at midcell.
Collapse
Affiliation(s)
- Matthieu J. Bergé
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Alain Kamgoué
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- Centre National de la Recherche Scientifique, LBME-UMR5099, Toulouse, France
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail: (NC); (JPC)
| |
Collapse
|
26
|
Lu T, Kobayashi SD, Quinn MT, Deleo FR. A NET Outcome. Front Immunol 2012; 3:365. [PMID: 23227026 PMCID: PMC3514450 DOI: 10.3389/fimmu.2012.00365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | | | | | |
Collapse
|
27
|
Peterson EJR, Kireev D, Moon AF, Midon M, Janzen WP, Pingoud A, Pedersen LC, Singleton SF. Inhibitors of Streptococcus pneumoniae surface endonuclease EndA discovered by high-throughput screening using a PicoGreen fluorescence assay. ACTA ACUST UNITED AC 2012; 18:247-57. [PMID: 23015019 DOI: 10.1177/1087057112461153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human commensal pathogen Streptococcus pneumoniae expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA's role in DNA uptake during transformation contributes to gene transfer and genetic diversification. Moreover, EndA's nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'= 0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, six small molecules were confirmed as novel EndA inhibitors, some of which may have utility as research tools for understanding pneumococcal pathogenesis and for drug discovery.
Collapse
Affiliation(s)
- Eliza J R Peterson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bueren-Calabuig JA, Coderch C, Rico E, Jiménez-Ruiz A, Gago F. Mechanistic insight into the catalytic activity of ββα-metallonucleases from computer simulations: Vibrio vulnificus periplasmic nuclease as a test case. Chembiochem 2011; 12:2615-22. [PMID: 22114054 DOI: 10.1002/cbic.201100485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Indexed: 11/08/2022]
Abstract
Using information from wild-type and mutant Vibrio vulnificus nuclease (Vvn) and I-PpoI homing endonuclease co-crystallized with different oligodeoxynucleotides, we have built the complex of Vvn with a DNA octamer and carried out a series of simulations to dissect the catalytic mechanism of this metallonuclease in a stepwise fashion. The distinct roles played in the reaction by individual active site residues, the metal cation and water molecules have been clarified by using a combination of classical molecular dynamics simulations and quantum mechanical calculations. Our results strongly support the most parsimonious catalytic mechanism, namely one in which a single water molecule from bulk solvent is used to cleave the phosphodiester bond and protonate the 3'-hydroxylate leaving group.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Department of Pharmacology, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Korczynska JE, Turkenburg JP, Taylor EJ. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 2011; 40:928-38. [PMID: 21948797 PMCID: PMC3258162 DOI: 10.1093/nar/gkr789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathogenic bacterium Group A Streptococcus pyogenes produces several extracellular DNases that have been shown to facilitate invasive infection by evading the human host immune system. DNases degrade the chromatin in neutrophil extracellular traps, enabling the bacterium to evade neutrophil capture. Spd1 is a type I, nonspecific ββα/metal-dependent nuclease from Streptococcus pyogenes, which is encoded by the SF370.1 prophage and is likely to be expressed as a result of prophage induction. We present here the X-ray structure of this DNase in the wild-type and Asn145Ala mutant form. Through structural and sequence alignments as well as mutagenesis studies, we have identified the key residues His121, Asn145 and Glu164, which are crucial for Spd1 nucleolytic activity and shown the active site constellation. Our wild-type structure alludes to the possibility of a catalytically blocked dimeric form of the protein. We have investigated the multimeric nature of Spd1 using size-exclusion chromatography with multi-angle light scattering (SEC-MALLS) in the presence and absence of the divalent metal ion Mg(2+), which suggests that Spd1 exists in a monomeric form in solution.
Collapse
Affiliation(s)
- Justyna E Korczynska
- Department of Chemistry, Structural Biology Laboratory, The University of York, YO10 5YW, UK
| | | | | |
Collapse
|
30
|
Moon AF, Midon M, Meiss G, Pingoud A, London RE, Pedersen LC. Structural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae. Nucleic Acids Res 2010; 39:2943-53. [PMID: 21113026 PMCID: PMC3074123 DOI: 10.1093/nar/gkq1152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host's neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ββα-metal finger catalytic core augmented by an interesting ‘finger-loop’ interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.
Collapse
Affiliation(s)
- Andrea F Moon
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|