1
|
Inchingolo MA, Diman A, Adamczewski M, Humphreys T, Jaquier-Gubler P, Curran JA. TP53BP1, a dual-coding gene, uses promoter switching and translational reinitiation to express a smORF protein. iScience 2023; 26:106757. [PMID: 37216125 PMCID: PMC10193022 DOI: 10.1016/j.isci.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.
Collapse
Affiliation(s)
- Marta A. Inchingolo
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Diman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Adamczewski
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculté de Médecine et Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Tom Humphreys
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph A. Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Preinitiation Complex Loading onto mRNAs with Long versus Short 5' TLs. Int J Mol Sci 2022; 23:ijms232113369. [PMID: 36362157 PMCID: PMC9658832 DOI: 10.3390/ijms232113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The first step in translation initiation consists in the recruitment of the small ribosome onto the mRNA. This preinitiation complex (PIC) loads via interactions with eIF4F that has assembled on the 5' cap. It then scans the 5' TL (transcript leader) to locate a start site. The molecular architecture of the PIC-mRNA complex over the cap is beginning to be resolved. As part of this, we have been examining the role of the 5' TL length. We observed in vivo initiation events on AUG codons positioned within 3 nts of the 5' cap and robust initiation in vitro at start sites immediately downstream of the 5' end. Ribosomal toe-printing confirmed the positioning of these codons within the P site, indicating that the ribosome reads from the +1 position. To explore differences in the eIF4E-5' cap interaction in the context of long versus short TL, we followed the fate of the eIF4E-cap interaction using a novel solid phase in vitro expression assay. We observed that ribosome recruitment onto a short TL disrupts the eIF4E-cap contact releasing all the mRNA from the solid phase, whereas with a long the mRNA distributes between both phases. These results are discussed in the context of current recruitment models.
Collapse
|
3
|
Akulich KA, Sinitcyn PG, Makeeva DS, Andreev DE, Terenin IM, Anisimova AS, Shatsky IN, Dmitriev SE. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie 2018; 157:92-101. [PMID: 30419262 DOI: 10.1016/j.biochi.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023]
Abstract
Short upstream open reading frames (uORFs) are the most prevalent cis-acting regulatory elements in the mammalian transcriptome which can orchestrate mRNA translation. Apart from being "passive roadblocks" that decrease expression of the main coding regions, particular uORFs can serve as specific sensors for changing conditions, thus regulating translation in response to cell stress. Here we report a novel uORF-based regulatory mechanism that is employed under conditions of hyperosmotic stress by at least two human mRNAs, coding for translation reinitiation/recycling factor eIF2D and E3 ubiquitin ligase MDM2. This novel mode of translational control selectively downregulates their expression and requires as few as one uORF. Using a set of reporter mRNAs and fleeting mRNA transfection (FLERT) technique, we provide evidence that the phenomenon does not rely on delayed reinitiation, altered AUG recognition, ribosome stalling, mRNA destabilization or other known mechanisms. Instead, it is based on events taking place at uORF stop codon or immediately downstream. Functional aspects and implications of the novel regulatory mechanism to cell physiology are discussed.
Collapse
Affiliation(s)
- Kseniya A Akulich
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Pavel G Sinitcyn
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Curran JA, Weiss B. What Is the Impact of mRNA 5' TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype? Front Genet 2016; 7:156. [PMID: 27630668 PMCID: PMC5005323 DOI: 10.3389/fgene.2016.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
A major determinant in the efficiency of ribosome loading onto mRNAs is the 5′ TL (transcript leader or 5′ UTR). In addition, elements within this region also impact on start site selection demonstrating that it can modulate the protein readout at both quantitative and qualitative levels. With the increasing wealth of data generated by the mining of the mammalian transcriptome, it has become evident that a genes 5′ TL is not homogeneous but actually exhibits significant heterogeneity. This arises due to the utilization of alternative promoters, and is further compounded by significant variability with regards to the precise transcriptional start sites of each (not to mention alternative splicing). Consequently, the transcript for a protein coding gene is not a unique mRNA, but in-fact a complexed quasi-species of variants whose composition may respond to the changing physiological environment of the cell. Here we examine the potential impact of these events with regards to the protein readout.
Collapse
Affiliation(s)
- Joseph A Curran
- Department of Microbiology and Molecular Medicine, Medical School, University of GenevaGeneva, Switzerland; Institute of Genetics and Genomics of Geneva, University of GenevaGeneva, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Medical School, University of Geneva Geneva, Switzerland
| |
Collapse
|
6
|
Dieudonné FX, O'Connor PBF, Gubler-Jaquier P, Yasrebi H, Conne B, Nikolaev S, Antonarakis S, Baranov PV, Curran J. The effect of heterogeneous Transcription Start Sites (TSS) on the translatome: implications for the mammalian cellular phenotype. BMC Genomics 2015; 16:986. [PMID: 26589636 PMCID: PMC4654819 DOI: 10.1186/s12864-015-2179-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic program, as manifested as the cellular phenotype, is in large part dictated by the cell's protein composition. Since characterisation of the proteome remains technically laborious it is attractive to define the genetic expression profile using the transcriptome. However, the transcriptional landscape is complex and it is unclear as to what extent it reflects the ribosome associated mRNA population (the translatome). This is particularly pertinent for genes using multiple transcriptional start sites (TSS) generating mRNAs with heterogeneous 5' transcript leaders (5'TL). Furthermore, the relative abundance of the TSS gene variants is frequently cell-type specific. Indeed, promoter switches have been reported in pathologies such as cancer. The consequences of this 5'TL heterogeneity within the transcriptome for the translatome remain unresolved. This is not a moot point because the 5'TL plays a key role in regulating mRNA recruitment onto polysomes. RESULTS In this article, we have characterised both the transcriptome and translatome of the MCF7 (tumoural) and MCF10A (non-tumoural) cell lines. We identified ~550 genes exhibiting differential translation efficiency (TE). In itself, this is maybe not surprising. However, by focusing on genes exhibiting TSS heterogeneity we observed distinct differential promoter usage patterns in both the transcriptome and translatome. Only a minor fraction of these genes belonged to those exhibiting differential TE. Nonetheless, reporter assays demonstrated that the TSS variants impacted on the translational readout both quantitatively (the overall amount of protein expressed) and qualitatively (the nature of the proteins expressed). CONCLUSIONS The results point to considerable and distinct cell-specific 5'TL heterogeneity within both the transcriptome and translatome of the two cell lines analysed. This observation is in-line with the ribosome filter hypothesis which posits that the ribosomal machine can selectively filter information from within the transcriptome. As such it cautions against the simple extrapolation transcriptome → proteome. Furthermore, polysomal occupancy of specific gene 5'TL variants may also serve as novel disease biomarkers.
Collapse
Affiliation(s)
- Francois-Xavier Dieudonné
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | | | - Pascale Gubler-Jaquier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Haleh Yasrebi
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Beatrice Conne
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Sergey Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Stylianos Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,The Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Joseph Curran
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland. .,The Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2015; 15:1499-514. [PMID: 25482947 DOI: 10.4161/15384047.2014.955743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Act D, actinomycin D
- BrdU, bromodeoxyuridine
- CHX, cycloheximide
- DMSO, dimethylsulphoxide
- DOX, doxorubicin
- EGCG, epigallocatechin-3-gallate
- FACS, fluorescence-activated cell sorting
- MPA, mycophenolic acid
- MTT, (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide)
- PI, propidium iodide
- actinomycin D
- caffeine
- glioma
- mTOR
- mTOR, mechanistic target of rapamycin
- nutlin-3
- p21
- p53
- rapamycin
- ribosomal protein L11
- ribosome biogenesis
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- a Department of Oncology-Pathology; Karolinska Institutet; Cancer Center Karolinska ; Karolinska University Hospital ; Stockholm , Sweden
| | | | | |
Collapse
|
8
|
Chen FC. Alternative RNA structure-coupled gene regulations in tumorigenesis. Int J Mol Sci 2014; 16:452-75. [PMID: 25551597 PMCID: PMC4307256 DOI: 10.3390/ijms16010452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative RNA structures (ARSs), or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs) and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s) into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
9
|
Dassi E, Quattrone A. Fingerprints of a message: integrating positional information on the transcriptome. Front Cell Dev Biol 2014; 2:39. [PMID: 25364746 PMCID: PMC4207014 DOI: 10.3389/fcell.2014.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 12/24/2022] Open
Abstract
The recent explosion of high-throughput sequencing methods applied to RNA molecules is allowing us to go beyond the description of sequence variants and their relative abundances, as measured by RNA-seq. We can now probe for RNA engagement in polysomes, for ribosomes, RNA binding proteins and microRNAs binding sites, for RNA secondary structure and for RNA methylation. These descriptors produce a steadily growing multidimensional array of positional information on RNA sequences, whose effective integration only would bring to decipher the regulatory interplay occurring between proteins, RNAs and their modifications on the transcriptome. This interplay ultimately dictates the degree of mRNA availability to translation, and thus the occurrence of cell phenotypes. However, several issues in data presentation are slowing down effective integration. A standardization effort for new dataset types produced should be urgently undertaken to solve these issues. Providing uniformed experimental details along with datasets processed to be directly usable and employing shared formats would greatly simplify integration efforts, strengthening hypotheses stemming from correlative observations and eventually bringing to mechanistic understanding.
Collapse
Affiliation(s)
- Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
10
|
Clemens MJ, Elia A, Morley SJ. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition. PLoS One 2013; 8:e71138. [PMID: 23940704 PMCID: PMC3733773 DOI: 10.1371/journal.pone.0071138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.
Collapse
Affiliation(s)
- Michael J. Clemens
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton United Kingdom
| | - Androulla Elia
- Division of Biomedical Sciences, St George’s, University of London, Cranmer Terrace, London, United Kingdom
- * E-mail:
| | - Simon J. Morley
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton United Kingdom
| |
Collapse
|
11
|
van Breugel PC, Robert EI, Mueller H, Decorsière A, Zoulim F, Hantz O, Strubin M. Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology 2012; 56:2116-24. [PMID: 22744635 DOI: 10.1002/hep.25928] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/15/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cancer development. HBV encodes the hepatitis B virus X (HBx) protein that promotes transcription of the viral episomal DNA genome by the host cell RNA polymerase II. Here we provide evidence that HBx accomplishes this task by a conserved and unusual mechanism. Thus, HBx strongly stimulates expression of transiently transfected reporter constructs, regardless of the enhancer and promoter sequences. This activity invariably requires HBx binding to the cellular UV-damaged DDB1 E3 ubiquitin ligase, suggesting a common mechanism. Unexpectedly, none of the reporters tested is stimulated by HBx when integrated into the chromosome, despite remaining responsive to their cognate activators. Likewise, HBx promotes gene expression from the natural HBV episomal template but not from a chromosomally integrated HBV construct. The same was observed with the HBx protein of woodchuck HBV. HBx does not affect nuclear plasmid copy number and functions independently of CpG dinucleotide methylation. CONCLUSION We propose that HBx supports HBV gene expression by a conserved mechanism that acts specifically on episomal DNA templates independently of the nature of the cis-regulatory sequences. Because of its uncommon property and key role in viral transcription, HBx represents an attractive target for new antiviral therapies.
Collapse
Affiliation(s)
- Pieter C van Breugel
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Jewer M, Findlay SD, Postovit LM. Post-transcriptional regulation in cancer progression : Microenvironmental control of alternative splicing and translation. J Cell Commun Signal 2012; 6:233-48. [PMID: 23054595 DOI: 10.1007/s12079-012-0179-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
The microenvironment acts as a conduit for cellular communication, delivering signals that direct development and sustain tissue homeostasis. In pathologies such as cancer, this integral function of the microenvironment is hijacked to support tumor growth and progression. Cells sense the microenvironment via signal transduction pathways culminating in altered gene expression. In addition to induced transcriptional changes, the microenvironment exerts its effect on the cell through regulation of post-transcriptional processes including alternative splicing and translational control. Here we describe how alternative splicing and protein translation are controlled by microenvironmental parameters such as oxygen availability. We also emphasize how these pathways can be utilized to support processes that are hallmarks of cancer such as angiogenesis, proliferation, and cell migration. We stress that cancer cells respond to their microenvironment through an integrated regulation of gene expression at multiple levels that collectively contribute to disease progression.
Collapse
Affiliation(s)
- Michael Jewer
- Department of Anatomy & Cell Biology, The Schulich School of Medicine and Dentistry, Western University, 438 Medical Science Building, London, ON, N6A 5C1, Canada
| | | | | |
Collapse
|
13
|
Alternative splicing within the elk-1 5' untranslated region serves to modulate initiation events downstream of the highly conserved upstream open reading frame 2. Mol Cell Biol 2012; 32:1745-56. [PMID: 22354998 DOI: 10.1128/mcb.06751-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.
Collapse
|