1
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
2
|
Mandler MD, Kulkarni S, Batista PJ. acp³U: A Conserved RNA Modification with Lessons Yet to Unfold. Mol Cell Biol 2025:1-8. [PMID: 39757918 DOI: 10.1080/10985549.2024.2443138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
RNA modifications are highly conserved across all domains of life, suggesting an early emergence and a fundamental role in cellular processes. The modification 3-(3-amino-3-carboxypropyl)uridine (acp³U) is found in tRNAs of eukaryotes and prokaryotes, and in the 16S rRNA of archaea. In eukaryotic rRNA, a complex modification containing the acp group, m1acp3Ψ is present at the analogous position. Although this modification was first identified in tRNA in 1969, only recently have the enzymes responsible for the synthesis of this modification on tRNA been identified. Despite its deep evolutionary conservation, the biological role of acp³U on tRNAs remains elusive. In Escherichia coli, it may contribute to genomic stability, while in human cells, loss of both tRNA acp³U-modifying enzymes impairs cell growth, though the underlying mechanisms are not yet understood. The conservation and multifunctionality of acp³U highlight the broader challenges of elucidating the roles of tRNA modifications in cellular homeostasis.
Collapse
Affiliation(s)
- Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sneha Kulkarni
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Li Z, Fan J, Xiao Y, Wang W, Zhen C, Pan J, Wu W, Liu Y, Chen Z, Yan Q, Zeng H, Luo S, Liu L, Tu Z, Zhao X, Hou Y. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia 2024; 38:2699-2708. [PMID: 39333759 DOI: 10.1038/s41375-024-02423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Hematopoietic stem cells (HSCs) are vital for the differentiation of all mature blood cells, with their homeostasis being tightly regulated by intrinsic and extrinsic factors. Alternative splicing, mediated by the spliceosome complex, plays a crucial role in regulating HSC homeostasis by increasing protein diversity. This study focuses on the ATP-dependent RNA helicase DHX16, a key spliceosome component, and its role in HSC regulation. Using conditional knockout mice, we demonstrate that loss of Dhx16 in the hematopoietic system results in significant depletion of hematopoietic stem and progenitor cells, bone marrow failure, and rapid mortality. Dhx16-deficient HSCs exhibit impaired quiescence, G2-M phase cell cycle arrest, reduced protein synthesis, abnormal ribosome assembly, increased apoptosis, and decreased self-renewal capacity. Multi-omics analysis identified intron 4 retention in Emg1 mRNA in Dhx16 knockout HSCs, leading to reduced EMG1 protein expression, disrupted ribosome assembly, and nucleolar stress, activating the p53 pathway. Overexpression of Emg1 in Dhx16-deficient HSCs partially restored ribosome assembly and HSC function, suggesting Emg1 as a potential therapeutic target for ribosomopathies. Our findings reveal the critical role of Dhx16 in HSC homeostasis through the regulation of alternative splicing and ribosome assembly, providing insights into the molecular mechanisms underlying hematopoietic diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Wang
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Changlin Zhen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junbing Pan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Weiru Wu
- Department of Clinical Hematology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qinrong Yan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hanqing Zeng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shuyu Luo
- Chongqing BI Academy, Chongqing, 401127, China
| | - Lun Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhanhan Tu
- Leicester Medical School, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
- University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
| | - Xueya Zhao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Li M, Li H. Research progress on inhibitors and inhibitory mechanisms of mycotoxin biosynthesis. Mycotoxin Res 2024; 40:483-494. [PMID: 39164466 DOI: 10.1007/s12550-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.
Collapse
Affiliation(s)
- Mengjie Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Honghua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| |
Collapse
|
5
|
Cheng Y, Wang S, Zhang H, Lee JS, Ni C, Guo J, Chen E, Wang S, Acharya A, Chang TC, Buszczak M, Zhu H, Mendell JT. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 2024; 187:4770-4789.e23. [PMID: 38981482 PMCID: PMC11344685 DOI: 10.1016/j.cell.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Cellular senescence is an irreversible state of cell-cycle arrest induced by various stresses, including aberrant oncogene activation, telomere shortening, and DNA damage. Through a genome-wide screen, we discovered a conserved small nucleolar RNA (snoRNA), SNORA13, that is required for multiple forms of senescence in human cells and mice. Although SNORA13 guides the pseudouridylation of a conserved nucleotide in the ribosomal decoding center, loss of this snoRNA minimally impacts translation. Instead, we found that SNORA13 negatively regulates ribosome biogenesis. Senescence-inducing stress perturbs ribosome biogenesis, resulting in the accumulation of free ribosomal proteins (RPs) that trigger p53 activation. SNORA13 interacts directly with RPL23, decreasing its incorporation into maturing 60S subunits and, consequently, increasing the pool of free RPs, thereby promoting p53-mediated senescence. Thus, SNORA13 regulates ribosome biogenesis and the p53 pathway through a non-canonical mechanism distinct from its role in guiding RNA modification. These findings expand our understanding of snoRNA functions and their roles in cellular signaling.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siwen Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jong-Sun Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason Guo
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric Chen
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Li Y, Wu S, Ye K. Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus. Nucleic Acids Res 2024; 52:4644-4658. [PMID: 38375885 PMCID: PMC11077068 DOI: 10.1093/nar/gkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.
Collapse
MESH Headings
- Pseudouridine/metabolism
- Sulfolobus/genetics
- Sulfolobus/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- Archaeal Proteins/metabolism
- Archaeal Proteins/genetics
- RNA Processing, Post-Transcriptional
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
Collapse
Affiliation(s)
- Yuqian Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ho LLY, Schiess GHA, Miranda P, Weber G, Astakhova K. Pseudouridine and N1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development. RSC Chem Biol 2024; 5:418-425. [PMID: 38725905 PMCID: PMC11078203 DOI: 10.1039/d4cb00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 05/12/2024] Open
Abstract
Modified nucleosides are integral to modern drug development, serving as crucial building blocks for creating safer, more potent, and more precisely targeted therapeutic interventions. Nucleobase modifications often confer antiviral and anti-cancer activity as monomers. When incorporated into nucleic acid oligomers, they increase stability against degradation by enzymes, enhancing the drugs' lifespan within the body. Moreover, modification strategies can mitigate potential toxic effects and reduce immunogenicity, making drugs safer and better tolerated. Particularly, N1-methylpseudouridine modification improved the efficacy of the mRNA coding for spike protein of COVID-19. This became a crucial step for developing COVID-19 vaccine applied during the 2020 pandemic. This makes N1-methylpseudouridine, and its "parent" analogue pseudouridine, potent nucleotide analogues for future RNA therapy and vaccine development. This review focuses on the structure and properties of pseudouridine and N1-methylpseudouridine. RNA has a greater structural versatility, different conformation, and chemical reactivity than DNA. Watson-Crick pairing is not strictly followed by RNA that has more unusual base pairs and base-triplets. This requires detailed structural studies and structure-activity relationship analyses for RNA, also when modifications are incorporated. Recent successes in this direction are revised in this review. We describe recent successes with using pseudouridine and N1-methylpseudouridine in mRNA drug candidates. We also highlight remaining challenges that need to be solved to develop new mRNA vaccines and therapies.
Collapse
Affiliation(s)
- Lyana L Y Ho
- Technical University of Denmark 2800 Kongens Lyngby Denmark
- The Hong Kong Polytechnic University 11 Yuk Choi Rd Hung Hom Hong Kong
| | - Gabriel H A Schiess
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Pâmella Miranda
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Kira Astakhova
- Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
8
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
9
|
Goh WSS, Kuang Y. Heterogeneity of chemical modifications on RNA. Biophys Rev 2024; 16:79-87. [PMID: 38495447 PMCID: PMC10937866 DOI: 10.1007/s12551-023-01128-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/27/2023] [Indexed: 03/19/2024] Open
Abstract
The chemical modifications of RNAs broadly impact almost all cellular events and influence various diseases. The rapid advance of sequencing and other technologies opened the door to global methods for profiling all RNA modifications, namely the "epitranscriptome." The mapping of epitranscriptomes in different cells and tissues unveiled that RNA modifications exhibit extensive heterogeneity, in type, amount, and in location. In this mini review, we first introduce the current understanding of modifications on major types of RNAs and the methods that enabled their discovery. We next discuss the tissue and cell heterogeneity of RNA modifications and briefly address the limitations of current technologies. With much still remaining unknown, the development of the epitranscriptomic field lies in the further developments of novel technologies.
Collapse
Affiliation(s)
- W. S. Sho Goh
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
10
|
Milicevic N, Jenner L, Myasnikov A, Yusupov M, Yusupova G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 2024; 625:393-400. [PMID: 38030725 DOI: 10.1038/s41586-023-06780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.
Collapse
Affiliation(s)
- Nemanja Milicevic
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Lasse Jenner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | | | - Marat Yusupov
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR7104, INSERM U1258, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
de Luna Vitorino FN, Levy MJ, Mansano Wailemann RA, Lopes M, Silva ML, Sardiu ME, Garcia BA, Machado Motta MC, Oliveira CC, Armelin HA, Florens LA, Washburn MP, Pinheiro Chagas da Cunha J. The antiproliferative effect of FGF2 in K-Ras-driven tumor cells involves modulation of rRNA and the nucleolus. J Cell Sci 2023; 136:jcs260989. [PMID: 37921359 PMCID: PMC11166202 DOI: 10.1242/jcs.260989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
The nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins. The chromatin and nucleolar proteome indicated that FGF2 stimulation modulates proteins related to transcription, rRNA expression and chromatin-remodeling proteins. The global transcriptional rate and nucleolus area increased along with nucleolar disorganization upon 24 h of FGF2 stimulation. FGF2 stimulation induced immature rRNA accumulation by increasing rRNA transcription. The rDNA-associated protein analysis reinforced that FGF2 stimulus interferes with transcription and rRNA processing. RNA Pol I inhibition partially reversed the growth arrest induced by FGF2, indicating that changes in rRNA expression might be crucial for triggering the antiproliferative effect. Taken together, we demonstrate that the antiproliferative FGF2 stimulus triggers significant transcriptional changes and modulates the main cell transcription site, the nucleolus.
Collapse
Affiliation(s)
- Francisca N. de Luna Vitorino
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Rosangela A. Mansano Wailemann
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
| | - Mariana Lopes
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
| | - Mariana Loterio Silva
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
| | | | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ 21941-902, Brazil
| | - Carla Columbano Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hugo Aguirre Armelin
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
| | | | | | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular – Center of Toxins, Immune-Response and Cell Signalling – CeTICS, Instituto Butantan, São Paulo, SP 055503-900, Brazil
| |
Collapse
|
12
|
Abstract
Covering: from 2000 up to the very early part of 2023S-Adenosyl-L-methionine (SAM) is a naturally occurring trialkyl sulfonium molecule that is typically associated with biological methyltransfer reactions. However, SAM is also known to donate methylene, aminocarboxypropyl, adenosyl and amino moieties during natural product biosynthetic reactions. The reaction scope is further expanded as SAM itself can be modified prior to the group transfer such that a SAM-derived carboxymethyl or aminopropyl moiety can also be transferred. Moreover, the sulfonium cation in SAM has itself been found to be critical for several other enzymatic transformations. Thus, while many SAM-dependent enzymes are characterized by a methyltransferase fold, not all of them are necessarily methyltransferases. Furthermore, other SAM-dependent enzymes do not possess such a structural feature suggesting diversification along different evolutionary lineages. Despite the biological versatility of SAM, it nevertheless parallels the chemistry of sulfonium compounds used in organic synthesis. The question thus becomes how enzymes catalyze distinct transformations via subtle differences in their active sites. This review summarizes recent advances in the discovery of novel SAM utilizing enzymes that rely on Lewis acid/base chemistry as opposed to radical mechanisms of catalysis. The examples are categorized based on the presence of a methyltransferase fold and the role played by SAM within the context of known sulfonium chemistry.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Byungsun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Zhao Y, Rai J, Li H. Regulation of translation by ribosomal RNA pseudouridylation. SCIENCE ADVANCES 2023; 9:eadg8190. [PMID: 37595043 PMCID: PMC10438446 DOI: 10.1126/sciadv.adg8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Pseudouridine is enriched in ribosomal, spliceosomal, transfer, and messenger RNA and thus integral to the central dogma. The chemical basis for how pseudouridine affects the molecular apparatus such as ribosome, however, remains elusive owing to the lack of structures without this natural modification. Here, we studied the translation of a hypopseudouridylated ribosome initiated by the internal ribosome entry site (IRES) elements. We analyzed eight cryo-electron microscopy structures of the ribosome bound with the Taura syndrome virus IRES in multiple functional states. We found widespread loss of pseudouridine-mediated interactions through water and long-range base pairings. In the presence of the translocase, eukaryotic elongation factor 2, and guanosine 5'-triphosphate hydrolysis, the hypopseudouridylated ribosome favors a rare unconducive conformation for decoding that is partially recouped in the ribosome population that remains modified at the P-site uridine. The structural principles learned establish the link between functional defects and modification loss and are likely applicable to other pseudouridine-associated processes.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Jedrzejewski M, Belza B, Lewandowska I, Sadlej M, Perlinska AP, Augustyniak R, Christian T, Hou YM, Kalek M, Sulkowska JI. Nucleolar Essential Protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study. Comput Struct Biotechnol J 2023; 21:3999-4008. [PMID: 37649713 PMCID: PMC10462857 DOI: 10.1016/j.csbj.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
The Nep1 protein is essential for the formation of eukaryotic and archaeal small ribosomal subunits, and it catalyzes the site-directed SAM-dependent methylation of pseudouridine (Ψ) during pre-rRNA processing. It possesses a non-trivial topology, namely, a 31 knot in the active site. Here, we address the issue of seemingly unfeasible deprotonation of Ψ in Nep1 active site by a distant aspartate residue (D101 in S. cerevisiae), using a combination of bioinformatics, computational, and experimental methods. We identified a conserved hydroxyl-containing amino acid (S233 in S. cerevisiae, T198 in A. fulgidus) that may act as a proton-transfer mediator. Molecular dynamics simulations, based on the crystal structure of S. cerevisiae, and on a complex generated by molecular docking in A. fulgidus, confirmed that this amino acid can shuttle protons, however, a water molecule in the active site may also serve this role. Quantum-chemical calculations based on density functional theory and the cluster approach showed that the water-mediated pathway is the most favorable for catalysis. Experimental kinetic and mutational studies reinforce the requirement for the aspartate D101, but not S233. These findings provide insight into the catalytic mechanisms underlying proton transfer over extended distances and comprehensively elucidate the mode of action of Nep1.
Collapse
Affiliation(s)
- Mateusz Jedrzejewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Barbara Belza
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Iwona Lewandowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Marta Sadlej
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Agata P. Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Rafal Augustyniak
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
15
|
Parker MD, Karbstein K. Quality control ensures fidelity in ribosome assembly and cellular health. J Cell Biol 2023; 222:e202209115. [PMID: 36790396 PMCID: PMC9960125 DOI: 10.1083/jcb.202209115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The coordinated integration of ribosomal RNA and protein into two functional ribosomal subunits is safeguarded by quality control checkpoints that ensure ribosomes are correctly assembled and functional before they engage in translation. Quality control is critical in maintaining the integrity of ribosomes and necessary to support healthy cell growth and prevent diseases associated with mistakes in ribosome assembly. Its importance is demonstrated by the finding that bypassing quality control leads to misassembled, malfunctioning ribosomes with altered translation fidelity, which change gene expression and disrupt protein homeostasis. In this review, we outline our understanding of quality control within ribosome synthesis and how failure to enforce quality control contributes to human disease. We first provide a definition of quality control to guide our investigation, briefly present the main assembly steps, and then examine stages of assembly that test ribosome function, establish a pass-fail system to evaluate these functions, and contribute to altered ribosome performance when bypassed, and are thus considered "quality control."
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
- University of Florida—Scripps Biomedical Research, Jupiter, FL, USA
- Howard Hughes Medical Institute Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
16
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
17
|
Strassler SE, Bowles IE, Dey D, Jackman JE, Conn GL. Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases. J Biol Chem 2022; 298:102393. [PMID: 35988649 PMCID: PMC9508554 DOI: 10.1016/j.jbc.2022.102393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/25/2022] Open
Abstract
The SpoU-TrmD (SPOUT) methyltransferase superfamily was designated when structural similarity was identified between the transfer RNA-modifying enzymes TrmH (SpoU) and TrmD. SPOUT methyltransferases are found in all domains of life and predominantly modify transfer RNA or ribosomal RNA substrates, though one instance of an enzyme with a protein substrate has been reported. Modifications placed by SPOUT methyltransferases play diverse roles in regulating cellular processes such as ensuring translational fidelity, altering RNA stability, and conferring bacterial resistance to antibiotics. This large collection of S-adenosyl-L-methionine-dependent methyltransferases is defined by a unique α/β fold with a deep trefoil knot in their catalytic (SPOUT) domain. Herein, we describe current knowledge of SPOUT enzyme structure, domain architecture, and key elements of catalytic function, including S-adenosyl-L-methionine co-substrate binding, beginning with a new sequence alignment that divides the SPOUT methyltransferase superfamily into four major clades. Finally, a major focus of this review will be on our growing understanding of how these diverse enzymes accomplish the molecular feat of specific substrate recognition and modification, as highlighted by recent advances in our knowledge of protein-RNA complex structures and the discovery of the dependence of one SPOUT methyltransferase on metal ion binding for catalysis. Considering the broad biological roles of RNA modifications, developing a deeper understanding of the process of substrate recognition by the SPOUT enzymes will be critical for defining many facets of fundamental RNA biology with implications for human disease.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
18
|
Tsagkogeorga G, Santos-Rosa H, Alendar A, Leggate D, Rausch O, Kouzarides T, Weisser H, Han N. Predicting genes associated with RNA methylation pathways using machine learning. Commun Biol 2022; 5:868. [PMID: 36008532 PMCID: PMC9411552 DOI: 10.1038/s42003-022-03821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
RNA methylation plays an important role in functional regulation of RNAs, and has thus attracted an increasing interest in biology and drug discovery. Here, we collected and collated transcriptomic, proteomic, structural and physical interaction data from the Harmonizome database, and applied supervised machine learning to predict novel genes associated with RNA methylation pathways in human. We selected five types of classifiers, which we trained and evaluated using cross-validation on multiple training sets. The best models reached 88% accuracy based on cross-validation, and an average 91% accuracy on the test set. Using protein-protein interaction data, we propose six molecular sub-networks linking model predictions to previously known RNA methylation genes, with roles in mRNA methylation, tRNA processing, rRNA processing, but also protein and chromatin modifications. Our study exemplifies how access to large omics datasets joined by machine learning methods can be used to predict gene function.
Collapse
Affiliation(s)
- Georgia Tsagkogeorga
- STORM Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
- Milner Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Helena Santos-Rosa
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Andrej Alendar
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Dan Leggate
- STORM Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | - Oliver Rausch
- STORM Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | - Tony Kouzarides
- Milner Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Hendrik Weisser
- STORM Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. Front Mol Biosci 2022; 9:887686. [PMID: 35923465 PMCID: PMC9340255 DOI: 10.3389/fmolb.2022.887686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Bladder cancer (BLCA) is one of the most common cancer types worldwide. The disease is responsible for about 200,000 deaths annually, thus improved diagnostics and therapy is needed. A large body of evidence reveal that small RNAs of less than 40 nucleotides may act as tumor suppressors, oncogenes, and disease biomarkers, with a major focus on microRNAs. However, the role of other families of small RNAs is not yet deciphered. Recent results suggest that small RNAs and their modification status, play a role in BLCA development and are promising biomarkers due to their high abundance in the exomes and body fluids (including urine). Moreover, free modified nucleosides have been detected at elevated levels from the urine of BLCA patients. A genome-wide view of small RNAs, and their modifications, will help pinpoint the molecules that could be used as biomarker or has important biology in BLCA development. Methods: BLCA tumor tissue specimens were obtained from 12 patients undergoing transurethral resection of non-muscle invasive papillary urothelial carcinomas. Genome-wide profiling of small RNAs less than 40 bases long was performed by a modified protocol with TGIRT (thermostable group II reverse transcriptase) to identify novel small RNAs and their modification status. Results: Comprehensive analysis identified not only microRNAs. Intriguingly, 57 ± 15% (mean ± S.D.) of sequencing reads mapped to non-microRNA-small RNAs including tRNA-derived fragments (tRFs), ribosomal RNA-derived fragments (rRFs) and YRNA-derived fragments (YRFs). Misincorporation (mismatch) sites identified potential base modification positions on the small RNAs, especially on tRFs, corresponding to m1A (N1-methyladenosine), m1G (N1-methylguanosine) and m2 2G (N2, N2-dimethylguanosine). We also detected mismatch sites on rRFs corresponding to known modifications on 28 and 18S rRNA. Conclusion: We found abundant non-microRNA-small RNAs in BLCA tumor samples. Small RNAs, especially tRFs and rRFs, contain modifications that can be captured as mismatch by TGIRT sequencing. Both the modifications and the non-microRNA-small RNAs should be explored as a biomarker for BLCA detection or follow-up.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Ida Monshaugen
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rune Ougland
- Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
20
|
Li X, Li K, Guo W, Wen Y, Meng C, Wu B. Structure Characterization of Escherichia coli Pseudouridine Kinase PsuK. Front Microbiol 2022; 13:926099. [PMID: 35783380 PMCID: PMC9247573 DOI: 10.3389/fmicb.2022.926099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudouridine (Ψ) is one of the most abundant RNA modifications in cellular RNAs that post-transcriptionally impact many aspects of RNA. However, the metabolic fate of modified RNA nucleotides has long been a question. A pseudouridine kinase (PsuK) and a pseudouridine monophosphate glycosylase (PsuG) in Escherichia coli were first characterized as involved in pseudouridine degradation by catalyzing the phosphorylation of pseudouridine to pseudouridine 5′-phosphate (ΨMP) and further hydrolyzing 5′-ΨMP to produce uracil and ribose 5′-phosphate. Recently, their homolog proteins in eukaryotes were also identified, which were named PUKI and PUMY in Arabidopsis. Here, we solved the crystal structures of apo-EcPsuK and its binary complex with Ψ or N1-methyl-pseudouridine (m1Ψ). The structure of EcPsuK showed a homodimer conformation assembled by its β-thumb region. EcPsuK has an appropriate binding site with a series of hydrophilic and hydrophobic interactions for Ψ. Moreover, our complex structure of EcPsuK-m1Ψ suggested the binding pocket has an appropriate capacity for m1Ψ. We also identified the monovalent ion-binding site and potential ATP-binding site. Our studies improved the understanding of the mechanism of Ψ turnover.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangjie Li
- Department of Biopharmaceutical Technology, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Baixing Wu,
| |
Collapse
|
21
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
22
|
Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, Beckmann R, Hurt E. Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 2022; 39:110640. [PMID: 35385737 PMCID: PMC8994135 DOI: 10.1016/j.celrep.2022.110640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.
Collapse
Affiliation(s)
- Sherif Ismail
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | - Lennart Randau
- Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Huang H, Parker M, Karbstein K. The modifying enzyme Tsr3 establishes the hierarchy of Rio kinase binding in 40S ribosome assembly. RNA (NEW YORK, N.Y.) 2022; 28:568-582. [PMID: 35031584 PMCID: PMC8925970 DOI: 10.1261/rna.078994.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Ribosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AFs) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate "handover" from one highly related AF to another, remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the binding of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1 into its functional site. Inactive Tsr3 blocks Rio1 function, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.
Collapse
Affiliation(s)
- Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida 33458, USA
| | - Melissa Parker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida 33458, USA
- HHMI Faculty Scholar, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
24
|
Abstract
Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ, USA.
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt/M., Germany.
| |
Collapse
|
25
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
26
|
Wang Y, Lin W, Yan H, Neng J, Zheng Y, Yang K, Xing F, Sun P. iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4969-4979. [PMID: 33543481 DOI: 10.1002/jsfa.11140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/28/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aspergillus ochraceus causes food spoilage and produces mycotoxin ochratoxin A (OTA) during storage of agricultural commodities. In this study, citral was used to inhibit A. ochraceus growth and OTA accumulation, proteomic analysis was employed to verify the mechanism of citral. RESULTS Citral was found to significantly inhibit fungal growth and mycotoxin production in A. ochraceus. Specifically, 75, 125, 150 and 200 μL L-1 citral suppressed mycelial growth by 33%, 46%, 50% and 100%, respectively. Additionally, 75 μL L-1 citral inhibited OTA accumulation by 25%. Proteomic analysis was performed to elucidate the inhibitory mechanism of citral on mycelial growth and OTA production at subinhibitory concentrations (75 μL L-1 ). Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 218 were differentially expressed between control and 75 μL L-1 citral treatment samples. Differentially expressed proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of biological process, cellular component and molecular function terms. Potential factors affecting mycelial growth and OTA production were analysed, and OTA production was revealed to be a complex process involving many associated factors related to various processes including nutrient intake, sterol biosynthesis, ribosome biogenesis, energy metabolism, oxidative stress and amino acid metabolism. In addition, citral at 75 μL L-1 down-regulated OTA biosynthetic genes including pks and nrps, but slightly up-regulated the global regulatory factors veA, velB and laeA. CONCLUSION The findings further demonstrate the potential of citral for the preservation of grains and other agricultural products, and provide new insight into its antifungal mechanisms at subinhibitory concentrations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Wei Lin
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jing Neng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Yong Zheng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| |
Collapse
|
27
|
Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. Proc Natl Acad Sci U S A 2021; 118:2101164118. [PMID: 34135123 DOI: 10.1073/pnas.2101164118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While RNAs are known to misfold, the underlying molecular causes have been mainly studied in fragments of biologically relevant larger RNAs. As these small RNAs are dominated by secondary structures, misfolding of these secondary structures remains the most-explored cause for global RNA misfolding. Conversely, how RNA chaperones function in a biological context to promote native folding beyond duplex annealing remains unknown. Here, in a combination of dimethylsulfate mutational profiling with sequencing (DMS-MaPseq), structural analyses, biochemical experiments, and yeast genetics, we show that three-helix junctions are prone to misfolding during assembly of the small ribosomal subunit in vivo. We identify ubiquitous roles for ribosome assembly factors in chaperoning their folding by preventing the formation of premature tertiary interactions, which otherwise kinetically trap misfolded junctions, thereby blocking further progress in the assembly cascade. While these protein chaperones act indirectly by binding the interaction partners of junctions, our analyses also suggest direct roles for small nucleolar RNAs (snoRNAs) in binding and chaperoning helical junctions during transcription. While these assembly factors do not utilize energy to ameliorate misfolding, our data demonstrate how their dissociation renders reversible folding steps irreversible, thereby driving native folding and assembly and setting up a timer that dictates the propensity of misfolded intermediates to escape quality control. Finally, the data demonstrate that RNA chaperones act locally on individual tertiary interactions, in contrast to protein chaperones, which globally unfold misfolded proteins.
Collapse
|
28
|
Site-Specific Fluorescent Labeling of RNA Interior Positions. Molecules 2021; 26:molecules26051341. [PMID: 33802273 PMCID: PMC7959133 DOI: 10.3390/molecules26051341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.
Collapse
|
29
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
31
|
Shen H, Stoute J, Liu KF. Structural and catalytic roles of the human 18 S rRNA methyltransferases DIMT1 in ribosome assembly and translation. J Biol Chem 2020; 295:12058-12070. [PMID: 32616653 PMCID: PMC7443495 DOI: 10.1074/jbc.ra120.014236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18S rRNA N6,6-dimethyladenosine (m26,6A) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant. We found that DIMT1+/- heterozygous HEK 293T cells have a significantly decreased 40S fraction and reduced protein synthesis but no major changes in m26,6A levels in 18S rRNA. Expression of a catalytically inactive variant, DIMT1-E85A, in WT and DIMT1+/- cells significantly decreased m26,6A levels in 18S rRNA, indicating a dominant-negative effect of this variant on m26,6A levels. However, expression of the DIMT1-E85A variant restored the defects in 40S levels. Of note, unlike WT DIMT1, DIMT1-E85A could not revert the defects in protein translation. We found that the differences between this variant and the WT enzyme extended to translation fidelity and gene expression patterns in DNA damage response pathways. These results suggest that the catalytic activity of DIMT1 is involved in protein translation and that the overall protein scaffold of DIMT1, regardless of the catalytic activity on m26,6A in 18S rRNA, is essential for 40S assembly.
Collapse
MESH Headings
- Amino Acid Substitution
- Catalysis
- Crystallography, X-Ray
- HEK293 Cells
- Humans
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mutation, Missense
- Protein Biosynthesis
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Laptev I, Shvetsova E, Levitskii S, Serebryakova M, Rubtsova M, Zgoda V, Bogdanov A, Kamenski P, Sergiev P, Dontsova O. METTL15 interacts with the assembly intermediate of murine mitochondrial small ribosomal subunit to form m4C840 12S rRNA residue. Nucleic Acids Res 2020; 48:8022-8034. [PMID: 32573735 PMCID: PMC7641309 DOI: 10.1093/nar/gkaa522] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Methylation
- Methyltransferases/metabolism
- Mice
- Mitochondria/enzymology
- Mitochondria/metabolism
- RNA, Mitochondrial/chemistry
- RNA, Mitochondrial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 28S/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/enzymology
- Ribosome Subunits, Small, Eukaryotic/metabolism
Collapse
Affiliation(s)
- Ivan Laptev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143028, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina Shvetsova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Sergey Levitskii
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina Serebryakova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143028, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Maria Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143028, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119435, Russia
| | - Alexey Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Petr Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143028, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143028, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
33
|
Meyer B, Immer C, Kaiser S, Sharma S, Yang J, Watzinger P, Weiß L, Kotter A, Helm M, Seitz HM, Kötter P, Kellner S, Entian KD, Wöhnert J. Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Res 2020; 48:1435-1450. [PMID: 31863583 PMCID: PMC7026641 DOI: 10.1093/nar/gkz1191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Steffen Kaiser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter Watzinger
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Lena Weiß
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hans-Michael Seitz
- Institute for Geosciences, Research Unit Mineralogy, and Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt/M., Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
34
|
Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation. Commun Biol 2020; 3:58. [PMID: 32029867 PMCID: PMC7005279 DOI: 10.1038/s42003-020-0780-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023] Open
Abstract
Archaeal translation initiation occurs within a macromolecular complex containing the small ribosomal subunit (30S) bound to mRNA, initiation factors aIF1, aIF1A and the ternary complex aIF2:GDPNP:Met-tRNAiMet. Here, we determine the cryo-EM structure of a 30S:mRNA:aIF1A:aIF2:GTP:Met-tRNAiMet complex from Pyrococcus abyssi at 3.2 Å resolution. It highlights archaeal features in ribosomal proteins and rRNA modifications. We find an aS21 protein, at the location of eS21 in eukaryotic ribosomes. Moreover, we identify an N-terminal extension of archaeal eL41 contacting the P site. We characterize 34 N4-acetylcytidines distributed throughout 16S rRNA, likely contributing to hyperthermostability. Without aIF1, the 30S head is stabilized and initiator tRNA is tightly bound to the P site. A network of interactions involving tRNA, mRNA, rRNA modified nucleotides and C-terminal tails of uS9, uS13 and uS19 is observed. Universal features and domain-specific idiosyncrasies of translation initiation are discussed in light of ribosomal structures from representatives of each domain of life.
Collapse
|
35
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
36
|
Sergiev PV, Aleksashin NA, Chugunova AA, Polikanov YS, Dontsova OA. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol 2019; 14:226-235. [PMID: 29443970 DOI: 10.1038/nchembio.2569] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023]
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides. The structures of ribosomes from various organisms and organelles have also lately become available, enabling comparative structure-based analysis of rRNA methylation sites in various taxonomic groups. In addition to the conserved core of modified residues in ribosomes from the majority of studied organisms, structural analysis points to the functional roles of some of the rRNA methylations, which are discussed in this Review in an evolutionary context.
Collapse
Affiliation(s)
- Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anastasia A Chugunova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
37
|
Abstract
Long thought to be too big and too ubiquitous to fail, we now know that human cells can fail to make sufficient amounts of ribosomes, causing a number of diseases collectively known as ribosomopathies. The best characterized ribosomopathies, with the exception of Treacher Collins syndrome, are inherited bone marrow failure syndromes, each of which has a marked increase in cancer predisposition relative to the general population. Although rare, emerging data reveal that the inherited bone marrow failure syndromes may be underdiagnosed on the basis of classical symptomology, leaving undiagnosed patients with these syndromes at an elevated risk of cancer without adequate counselling and surveillance. The link between the inherited ribosomopathies and cancer has led to greater awareness that somatic mutations in factors involved in ribosome biogenesis may also be drivers in sporadic cancers. Our goal here is to compare and contrast the pathophysiological mechanisms underpinning ribosomopathies to gain a better understanding of the mechanisms that predispose these disorders to cancer.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Steven R Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
38
|
Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes (Basel) 2019; 10:genes10020102. [PMID: 30704115 PMCID: PMC6409601 DOI: 10.3390/genes10020102] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/04/2023] Open
Abstract
5-methylcytosine (m⁵C) is an abundant RNA modification that's presence is reported in a wide variety of RNA species, including cytoplasmic and mitochondrial ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as messenger RNAs (mRNAs), enhancer RNAs (eRNAs) and a number of non-coding RNAs. In eukaryotes, C5 methylation of RNA cytosines is catalyzed by enzymes of the NOL1/NOP2/SUN domain (NSUN) family, as well as the DNA methyltransferase homologue DNMT2. In recent years, substrate RNAs and modification target nucleotides for each of these methyltransferases have been identified, and structural and biochemical analyses have provided the first insights into how each of these enzymes achieves target specificity. Functional characterizations of these proteins and the modifications they install have revealed important roles in diverse aspects of both mitochondrial and nuclear gene expression. Importantly, this knowledge has enabled a better understanding of the molecular basis of a number of diseases caused by mutations in the genes encoding m⁵C methyltransferases or changes in the expression level of these enzymes.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Justus-von-Liebig-Weg 11, 37077 Germany.
| |
Collapse
|
39
|
Choudhury P, Hackert P, Memet I, Sloan KE, Bohnsack MT. The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles. RNA Biol 2018; 16:54-68. [PMID: 30582406 PMCID: PMC6380342 DOI: 10.1080/15476286.2018.1556149] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis is an essential cellular process, and perturbation of human ribosome production is linked to cancer and genetic diseases termed ribosomopathies. During their assembly, pre-ribosomal particles undergo numerous structural rearrangements, which establish the architecture present in mature complexes and serve as key checkpoints, ensuring the fidelity of ribosome biogenesis. RNA helicases are essential mediators of such remodelling events and here, we demonstrate that the DEAH-box RNA helicase DHX37 is required for maturation of the small ribosomal subunit in human cells. Our data reveal that the presence of DHX37 in early pre-ribosomal particles is monitored by a quality control pathway and that failure to recruit DHX37 leads to pre-rRNA degradation. Using an in vivo crosslinking approach, we show that DHX37 binds directly to the U3 small nucleolar RNA (snoRNA) and demonstrate that the catalytic activity of the helicase is required for dissociation of the U3 snoRNA from pre-ribosomal complexes. This is an important event during ribosome assembly as it enables formation of the central pseudoknot structure of the small ribosomal subunit. We identify UTP14A as a direct interaction partner of DHX37 and our data suggest that UTP14A can act as a cofactor that stimulates the activity of the helicase in the context of U3 snoRNA release.
Collapse
Affiliation(s)
- Priyanka Choudhury
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Philipp Hackert
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Indira Memet
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Katherine E Sloan
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany
| | - Markus T Bohnsack
- a Department of Molecular Biology , University Medical Centre Göttingen , Göttingen , Germany.,b Göttingen Center for Molecular Biosciences , Georg-August University , Göttingen , Germany
| |
Collapse
|
40
|
Abstract
Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| |
Collapse
|
41
|
Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 2018; 7:e39273. [PMID: 30475211 PMCID: PMC6298780 DOI: 10.7554/elife.39273] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Collapse
Affiliation(s)
- Jose Luis Llácer
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Instituto de Biomedicina de Valencia (IBV-CSIC)ValenciaSpain
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Adesh K Saini
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Jagpreet Singh Nanda
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Sukhvir Kaur
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | | | - Rakesh Kumar
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and DevelopmentEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
42
|
Deciphering the Role of the Non-Coding Genome in Regulating Gene-Diet Interactions. Nutrients 2018; 10:nu10121831. [PMID: 30486341 PMCID: PMC6316136 DOI: 10.3390/nu10121831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Protein encoding genes constitute a small fraction of mammalian genomes. In addition to the protein coding genes, there are other functional units within the genome that are transcribed, but not translated into protein, the so called non-coding RNAs. There are many types of non-coding RNAs that have been identified and shown to have important roles in regulating gene expression either at the transcriptional or post-transcriptional level. A number of recent studies have highlighted that dietary manipulation in mammals can influence the expression or function of a number of classes of non-coding RNAs that contribute to the protein translation machinery. The identification of protein translation as a common target for nutritional regulation underscores the need to investigate how this may mechanistically contribute to phenotypes and diseases that are modified by nutritional intervention. Finally, we describe the state of the art and the application of emerging ‘-omics’ technologies to address the regulation of protein translation in response to diet.
Collapse
|
43
|
Krüger DM, Neubacher S, Grossmann TN. Protein-RNA interactions: structural characteristics and hotspot amino acids. RNA (NEW YORK, N.Y.) 2018; 24:1457-1465. [PMID: 30093489 PMCID: PMC6191724 DOI: 10.1261/rna.066464.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Structural information about protein-RNA complexes supports the understanding of crucial recognition processes in the cell, and it can allow the development of high affinity ligands to interfere with these processes. In this respect, the identification of amino acid hotspots is particularly important. In contrast to protein-protein interactions, in silico approaches for protein-RNA interactions lag behind in their development. Herein, we report an analysis of available protein-RNA structures. We assembled a data set of 322 crystal and NMR structures and analyzed them regarding interface properties. In addition, we describe a computational alanine-scanning approach which provides interaction scores for interface amino acids, allowing the identification of potential hotspots in protein-RNA interfaces. We have made the computational approach available as an online tool, which allows interaction scores to be calculated for any structure of a protein-RNA complex by uploading atomic coordinates to the PRI HotScore web server (https://pri-hotscore.labs.vu.nl).
Collapse
Affiliation(s)
- Dennis M Krüger
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Aubert M, O'Donohue MF, Lebaron S, Gleizes PE. Pre-Ribosomal RNA Processing in Human Cells: From Mechanisms to Congenital Diseases. Biomolecules 2018; 8:biom8040123. [PMID: 30356013 PMCID: PMC6315592 DOI: 10.3390/biom8040123] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomal RNAs, the most abundant cellular RNA species, have evolved as the structural scaffold and the catalytic center of protein synthesis in every living organism. In eukaryotes, they are produced from a long primary transcript through an intricate sequence of processing steps that include RNA cleavage and folding and nucleotide modification. The mechanisms underlying this process in human cells have long been investigated, but technological advances have accelerated their study in the past decade. In addition, the association of congenital diseases to defects in ribosome synthesis has highlighted the central place of ribosomal RNA maturation in cell physiology regulation and broadened the interest in these mechanisms. Here, we give an overview of the current knowledge of pre-ribosomal RNA processing in human cells in light of recent progress and discuss how dysfunction of this pathway may contribute to the physiopathology of congenital diseases.
Collapse
Affiliation(s)
- Maxime Aubert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| |
Collapse
|
45
|
Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'. Open Biol 2018; 7:rsob.170077. [PMID: 28566301 PMCID: PMC5451548 DOI: 10.1098/rsob.170077] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| |
Collapse
|
46
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
47
|
|
48
|
Cheng J, Kellner N, Berninghausen O, Hurt E, Beckmann R. 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nat Struct Mol Biol 2017; 24:954-964. [PMID: 28967883 DOI: 10.1038/nsmb.3476] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
The 40S small ribosomal subunit is cotranscriptionally assembled in the nucleolus as part of a large chaperone complex called the 90S preribosome or small-subunit processome. Here, we present the 3.2-Å-resolution structure of the Chaetomium thermophilum 90S preribosome, which allowed us to build atomic structures for 34 assembly factors, including the Mpp10 complex, Bms1, Utp14 and Utp18, and the complete U3 small nucleolar ribonucleoprotein. Moreover, we visualized the U3 RNA heteroduplexes with a 5' external transcribed spacer (5' ETS) and pre-18S RNA, and their stabilization by 90S factors. Overall, the structure explains how a highly intertwined network of assembly factors and pre-rRNA guide the sequential, independent folding of the individual pre-40S domains while the RNA regions forming the 40S active sites are kept immature. Finally, by identifying the unprocessed A1 cleavage site and the nearby Utp24 endonuclease, we suggest a proofreading model for regulated 5'-ETS separation and 90S-pre-40S transition.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| | - Nikola Kellner
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Roland Beckmann
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| |
Collapse
|
49
|
Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 2017; 24:689-699. [PMID: 28880863 DOI: 10.1038/nsmb.3454] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.
Collapse
|
50
|
Warda AS, Freytag B, Haag S, Sloan KE, Görlich D, Bohnsack MT. Effects of the Bowen-Conradi syndrome mutation in EMG1 on its nuclear import, stability and nucleolar recruitment. Hum Mol Genet 2017; 25:5353-5364. [PMID: 27798105 PMCID: PMC5418833 DOI: 10.1093/hmg/ddw351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Bowen-Conradi syndrome (BCS) is a severe genetic disorder that is characterised by various developmental abnormalities, bone marrow failure and early infant death. This disease is caused by a single mutation leading to the aspartate 86 to glycine (D86G) exchange in the essential nucleolar RNA methyltransferase EMG1. EMG1 is required for the synthesis of the small ribosomal subunit and is involved in modification of the 18S ribosomal RNA. Here, we identify the pre-ribosomal factors NOP14, NOC4L and UTP14A as members of a nucleolar subcomplex that contains EMG1 and is required for its recruitment to nucleoli. The BCS mutation in EMG1 leads to reduced nucleolar localisation, accumulation of EMG1D86G in nuclear foci and its proteasome-dependent degradation. We further show that EMG1 can be imported into the nucleus by the importins (Imp) Impα/β or Impβ/7. Interestingly, in addition to its role in nuclear import, binding of the Impβ/7 heterodimer can prevent unspecific aggregation of both EMG1 and EMG1D86G on RNAs in vitro, indicating that the importins act as chaperones by binding to basic regions of the RNA methyltransferase. Our findings further indicate that in BCS, nuclear disassembly of the import complex and release of EMG1D86G lead to its nuclear aggregation and degradation, resulting in the reduced nucleolar recruitment of the RNA methyltransferase and defects in the biogenesis of the small ribosomal subunit.
Collapse
Affiliation(s)
- Ahmed S Warda
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Bernard Freytag
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sara Haag
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|