1
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. Nat Commun 2024; 15:3574. [PMID: 38678027 PMCID: PMC11055893 DOI: 10.1038/s41467-024-48030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559410. [PMID: 37808672 PMCID: PMC10557607 DOI: 10.1101/2023.09.25.559410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that all CDO-like enzymes are likely enzyme filaments. Our work represents the first structural characterization of a CDO. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Liu J, Li SM. Genomics-Guided Efficient Identification of 2,5-Diketopiperazine Derivatives from Actinobacteria. Chembiochem 2023; 24:e202200502. [PMID: 36098493 PMCID: PMC10092475 DOI: 10.1002/cbic.202200502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Indexed: 02/04/2023]
Abstract
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.,Current address: Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
4
|
Liu J, Yang Y, Xie X, Li SM. A Streptomyces Cytochrome P450 Enzyme Catalyzes Regiospecific C2-Guaninylation for the Synthesis of Diverse Guanitrypmycin Analogs. JOURNAL OF NATURAL PRODUCTS 2023; 86:94-102. [PMID: 36599087 DOI: 10.1021/acs.jnatprod.2c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heterologous expression of a cdps-p450 locus from Streptomyces sp. NRRL S-1521 led to the identification of guanitrypmycin D1, a new guaninylated diketopiperazine. The cytochrome P450 GutD1521 catalyzed the regiospecific transfer of guanine to C-2 of the indole ring of cyclo-(l-Trp-l-Tyr) via a C-C linkage and represents a new chemical transformation within this enzyme class. Furthermore, GutD1521 efficiently accepts several other tryptophan-containing cyclodipeptides or derivatives for regiospecific coupling with guanine, thus generating different guanitrypmycin analogs.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
5
|
Chen T, Zhang Z, Li W, Chen J, Chen X, Wang B, Ma J, Dai Y, Ding H, Wang W, Long Y. Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterisation. Front Microbiol 2022; 13:1069109. [PMID: 36532498 PMCID: PMC9751376 DOI: 10.3389/fmicb.2022.1069109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/05/2023] Open
Abstract
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Bince Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Yunyun Dai
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Haixia Ding
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Department of Plant Pathology, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Teaching Experimental Factory, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
A novel cyclic dipeptide from Lactiplantibacillus plantarum MC39 inhibits proliferation of multidrug-resistant Klebsiella pneumoniae W8 and Enterobacter hormaechei U25. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Sutherland E, Harding CJ, Czekster CM. Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Commun Chem 2022; 5:101. [DOI: 10.1038/s42004-022-00715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractCyclodipeptide synthases (CDPSs) generate a wide range of cyclic dipeptides using aminoacylated tRNAs as substrates. Histidine-containing cyclic dipeptides have important biological activities as anticancer and neuroprotective molecules. Out of the 120 experimentally validated CDPS members, only two are known to accept histidine as a substrate yielding cyclo(His-Phe) and cyclo(His-Pro) as products. It is not fully understood how CDPSs select their substrates, and we must rely on bioprospecting to find new enzymes and novel bioactive cyclic dipeptides. Here, we developed an in vitro system to generate an extensive library of molecules using canonical and non-canonical amino acids as substrates, expanding the chemical space of histidine-containing cyclic dipeptide analogues. To investigate substrate selection we determined the structure of a cyclo(His-Pro)-producing CDPS. Three consecutive generations harbouring single, double and triple residue substitutions elucidated the histidine selection mechanism. Moreover, substrate selection was redefined, yielding enzyme variants that became capable of utilising phenylalanine and leucine. Our work successfully engineered a CDPS to yield different products, paving the way to direct the promiscuity of these enzymes to produce molecules of our choosing.
Collapse
|
8
|
Krahn N, Söll D, Vargas-Rodriguez O. Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Front Physiol 2022; 13:983245. [PMID: 36060688 PMCID: PMC9437257 DOI: 10.3389/fphys.2022.983245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Intricate evolutionary events enabled the emergence of the full set of aminoacyl-tRNA synthetase (aaRS) families that define the genetic code. The diversification of aaRSs has continued in organisms from all domains of life, yielding aaRSs with unique characteristics as well as aaRS-like proteins with innovative functions outside translation. Recent bioinformatic analyses have revealed the extensive occurrence and phylogenetic diversity of aaRS gene duplication involving every synthetase family. However, only a fraction of these duplicated genes has been characterized, leaving many with biological functions yet to be discovered. Here we discuss how genomic duplication is associated with the occurrence of novel aaRSs and aaRS-like proteins that provide adaptive advantages to their hosts. We illustrate the variety of activities that have evolved from the primordial aaRS catalytic sites. This precedent underscores the need to investigate currently unexplored aaRS genomic duplications as they may hold a key to the discovery of exciting biological processes, new drug targets, important bioactive molecules, and tools for synthetic biology applications.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
9
|
Khopade TM, Ajayan K, Vincent DM, Lane AL, Viswanathan R. Biomimetic Total Synthesis of (+)-Nocardioazine B and Analogs. J Org Chem 2022; 87:11519-11533. [PMID: 35960860 DOI: 10.1021/acs.joc.2c01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nocardioazines A and B are prenylated, bioactive pyrroloindoline natural products, isolated from Nocardiopsis, with a desymmetrized cyclo-d-Trp-d-Trp DKP core. Based on our deeper biosynthetic understanding, a biomimetic total synthesis of (+)-nocardioazine B is accomplished in merely seven steps and 23.2% overall yield. This pathway accesses regio- and stereoselectively C3-isoprenylated analogs of (+)-nocardioazine B, using the same number of steps and in similar efficiency. The successful strategy mandated that the biomimetic C3-prenylation step be executed early. The use of an unprotected carboxylic acid of Trp led to high diastereoselectivity toward formation of key intermediates exo-12a, exo-12b, and exo-12c (>19:1). Evidence shows that N1-methylation causes the prenylation reaction to bifurcate away to result in a C2-normal-prenylated isomer. Nocardioazine A, possessing an isoprenoidal-epoxide bridge, inhibits P-glycoprotein (P-gp)-mediated membrane efflux, in multidrug-resistant mammalian colon cancer cells. As several P-gp inhibitors have failed due to their toxicity effects, endogenous amino-acid-derived noncytotoxic inhibitors (from the nocardioazine core) are worthy leads toward a rejuvenated strategy against resistant carcinomas. This total synthesis provides direct access to Trp-derived isoprenylated DKP natural products and their derivatives.
Collapse
Affiliation(s)
- Tushar M Khopade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Kalyani Ajayan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Dona Mariya Vincent
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amy L Lane
- Department of Chemistry, University of North Florida, Jacksonville, Florida 32224, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.,Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
10
|
Zhang S, Zhu J, Fan S, Xie W, Yang Z, Si T. Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening. Chem Sci 2022; 13:7581-7586. [PMID: 35872818 PMCID: PMC9241961 DOI: 10.1039/d2sc01637k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Directed evolution is a powerful approach to engineer enzymes via iterative creation and screening of variant libraries. However, assay development for high-throughput mutant screening remains challenging, particularly for new catalytic activities. Mass spectrometry (MS) analysis is label-free and well suited for untargeted discovery of new enzyme products but is traditionally limited by slow speed. Here we report an automated workflow for directed evolution of new enzymatic activities via high-throughput library creation and label-free MS screening. For a proof of concept, we chose to engineer a cyclodipeptide synthase (CDPS) that synthesizes diketopiperazine (DKP) compounds with therapeutic potential. In recombinant Escherichia coli, site-saturation mutagenesis (SSM) and error-prone PCR (epPCR) libraries expressing CDPS mutants were automatically created and cultivated on an integrated work cell. Culture supernatants were then robotically processed for matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS analysis at a rate of 5 s per sample. The resulting mass spectral data were processed via custom computational algorithms, which performed a multivariant analysis of 108 theoretical mass-to-charge (m/z) values of 190 possible DKP molecules within a mass window of 115–373 Da. An F186L CDPS mutant was isolated to produce cyclo(l-Phe–l-Val), which is undetectable in the product profile of the wild-type enzyme. This robotic, label-free MS screening approach may be generally applicable to engineering other enzymes with new activities in high throughput. A robotic workflow for directed evolution of new enzymatic activities via high-throughput library creation and label-free MS screening.![]()
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Jing Zhu
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuai Fan
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 1000050 China
| | - Wenhao Xie
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhaoyong Yang
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 1000050 China
| | - Tong Si
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
11
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|
12
|
Zhao L, Duan F, Gong M, Tian X, Guo Y, Jia L, Deng S. (+)-Terpinen-4-ol Inhibits Bacillus cereus Biofilm Formation by Upregulating the Interspecies Quorum Sensing Signals Diketopiperazines and Diffusing Signaling Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3496-3510. [PMID: 33724028 DOI: 10.1021/acs.jafc.0c07826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacillus cereus is a Gram-positive endospore-forming foodborne pathogen that causes lethal food poisoning and significant economic losses, usually through biofilm- and endospore-induced recurrent cross- and postprocessing contamination. Due to the lack of critical inhibitory targets and control strategies, B. cereus biofilm contamination is a problem that urgently needs a solution. In this study, the antibacterial and antibiofilm activities of several natural potential bacterial quorum sensing (QS) interferers, a group of spice-originated monoterpenoids, were screened, and terpinen-4-ol effectively inhibited B. cereus growth and biofilm and spore germination with minimum growth inhibition and 50% biofilm inhibitory concentrations of 8 and 2 μmol/mL, respectively. FESEM/CLSM and phenotypic research illustrated that in addition to a decrease in the number of attached B. cereus cells, (+)-terpinen-4-ol also obviously reduced extracellular matrix synthesis, especially exopolysaccharides, and inhibited the swarming motility and protease activity of B. cereus. (+)-Terpinen-4-ol did not exert a significant effect on AI-2 signals in B. cereus. Accordingly, the B. cereus-produced interspecies QS signals diffusing signal factors (DSFs, C8-C15) and diketopiperazines (DKPs) were detected and identified here, which suppressed B. cereus biofilm formation in a concentration-dependent manner. (+)-Terpinen-4-ol significantly increased the levels of specific DSF and DKP signals in B. cereus and down-regulated the gene expression of some rpfB homologues in transcription level. Moreover, both DKPs and DSFs inhibited swarming motility and protease activity in B. cereus, while just the DSF signals 2-dodecenoic acid and 11-methyl-2-dodecenoic acid inhibited exopolysaccharide synthesis like (+)-terpinen-4-ol. In summary, B. cereus strains were found to produce nine DSF- and six DKP-type QS signaling molecules, which repressed B. cereus biofilm formation. (+)-Terpinen-4-ol was confirmed to be a promising antibacterial and antibiofilm agent against B. cereus upregulating DSFs and DKPs levels, and it could target the critical genes rpfB for DSFs turnover.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feixia Duan
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Meng Gong
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, P. R. China
| | - Xue Tian
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yan Guo
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, P. R. China
| | - Lirong Jia
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Sha Deng
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
13
|
Canu N, Moutiez M, Belin P, Gondry M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep 2021; 37:312-321. [PMID: 31435633 DOI: 10.1039/c9np00036d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to mid-2019 Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNA as substrates. The recent characterization of large sets of CDPSs has revealed that they can produce highly diverse products, and therefore have great potential for use in the production of different 2,5-diketopiperazines (2,5-DKPs). Sequence similarity networks (SSNs) are presented as a new, efficient way of classifying CDPSs by specificity and identifying new CDPS likely to display novel specificities. Several strategies for further increasing the diversity accessible with these enzymes are discussed here, including the incorporation of non-canonical amino acids by CDPSs and use of the remarkable diversity of 2,5-DKP-tailoring enzymes discovered in recent years.
Collapse
Affiliation(s)
- Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
14
|
Canu N, Tellier C, Babin M, Thai R, Ajel I, Seguin J, Cinquin O, Vinck R, Moutiez M, Belin P, Cintrat JC, Gondry M. Flexizyme-aminoacylated shortened tRNAs demonstrate that only the aminoacylated acceptor arms of the two tRNA substrates are required for cyclodipeptide synthase activity. Nucleic Acids Res 2021; 48:11615-11625. [PMID: 33095883 PMCID: PMC7672478 DOI: 10.1093/nar/gkaa903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
Cyclodipeptide synthases (CDPSs) use two aminoacyl-tRNAs (AA-tRNAs) to catalyse cyclodipeptide formation in a ping-pong mechanism. Despite intense studies of these enzymes in past years, the tRNA regions of the two substrates required for CDPS activity are poorly documented, mainly because of two limitations. First, previously studied CDPSs use two identical AA-tRNAs to produce homocyclodipeptides, thus preventing the discriminative study of the binding of the two substrates. Second, the range of tRNA analogues that can be aminoacylated by aminoacyl-tRNA synthetases is limited. To overcome the limitations, we studied a new model CDPS that uses two different AA-tRNAs to produce an heterocyclodipeptide. We also developed a production pipeline for the production of purified shortened AA-tRNA analogues (AA-minitRNAs). This method combines the use of flexizymes to aminoacylate a diversity of minitRNAs and their subsequent purifications by anion-exchange chromatography. Finally, we were able to show that aminoacylated molecules mimicking the entire acceptor arms of tRNAs were as effective a substrate as entire AA-tRNAs, thereby demonstrating that the acceptor arms of the two substrates are the only parts of the tRNAs required for CDPS activity. The method developed in this study should greatly facilitate future investigations of the specificity of CDPSs and of other AA-tRNAs-utilizing enzymes.
Collapse
Affiliation(s)
- Nicolas Canu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Carine Tellier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Morgan Babin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Robert Thai
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Inès Ajel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Jérôme Seguin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Olivier Cinquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France.,Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Robin Vinck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France.,Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Mireille Moutiez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Pascal Belin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Jean-Christophe Cintrat
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Muriel Gondry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
15
|
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. RSC Chem Biol 2021; 2:230-240. [PMID: 33937777 PMCID: PMC8084100 DOI: 10.1039/d0cb00142b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/14/2021] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) produce a variety of cyclic dipeptide products by utilising two aminoacylated tRNA substrates. We sought to investigate the minimal requirements for substrate usage in this class of enzymes as the relationship between CDPSs and their substrates remains elusive. Here, we investigated the Bacillus thermoamylovorans enzyme, BtCDPS, which synthesises cyclo(l-Leu-l-Leu). We systematically tested where specificity arises and, in the process, uncovered small molecules (activated amino esters) that will suffice as substrates, although catalytically poor. We solved the structure of BtCDPS to 1.7 Å and combining crystallography, enzymatic assays and substrate docking experiments propose a model for how the minimal substrates interact with the enzyme. This work is the first report of a CDPS enzyme utilizing a molecule other than aa-tRNA as a substrate; providing insights into substrate requirements and setting the stage for the design of improved simpler substrates.
Collapse
Affiliation(s)
- Christopher J Harding
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Emmajay Sutherland
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Jane G Hanna
- Arab Academy for Science, Technology, and Maritime Transport (AASTMT) Cairo Campus Egypt
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh Waddington 1 Building, King's Buildings Edinburgh EH9 3BF UK
| | - Clarissa M Czekster
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| |
Collapse
|
16
|
Croitoru A, Babin M, Myllykallio H, Gondry M, Aleksandrov A. Cyclodipeptide Synthases of the NYH Subfamily Recognize tRNA Using an α-Helix Enriched with Positive Residues. Biochemistry 2020; 60:64-76. [PMID: 33331769 DOI: 10.1021/acs.biochem.0c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclodipeptide synthases (CDPSs) perform nonribosomal protein synthesis using two aminoacyl-tRNA substrates to produce cyclodipeptides. At present, there are no structural details of the CDPS:tRNA interaction available. Using AlbC, a CDPS that produces cyclo(l-Phe-l-Phe), the interaction between AlbC and its Phe-tRNA substrate was investigated. Simulations of models of the AlbC:tRNA complex, proposed by rigid-body docking or homology modeling, demonstrated that interactions with residues of an AlbC α-helix, α4, significantly contribute to the free energy of binding of AlbC to tRNA. Individual residue contributions to the tRNA binding free energy of the discovered binding mode explain well the available biochemical data, and the results of in vivo assay experiments performed in this work and guided by simulations. In molecular dynamics simulations, the phenylalanyl group predominantly occupied the two positions observed in the experimental structure of AlbC in the dipeptide intermediate state, suggesting that tRNAs of the first and second substrates interact with AlbC in a similar manner. Overall, given the high degree of sequence and structural similarity among the members of the CDPS NYH protein subfamily, the mechanism of the protein:tRNA interaction is expected to be pertinent to a wide range of proteins interacting with tRNA.
Collapse
Affiliation(s)
- Anastasia Croitoru
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| | - Morgan Babin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
17
|
Yuan S, Yong X, Zhao T, Li Y, Liu J. Research Progress of the Biosynthesis of Natural Bio-Antibacterial Agent Pulcherriminic Acid in Bacillus. Molecules 2020; 25:E5611. [PMID: 33260656 PMCID: PMC7731078 DOI: 10.3390/molecules25235611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 11/16/2022] Open
Abstract
Pulcherriminic acid is a cyclic dipeptide found mainly in Bacillus and yeast. Due to the ability of pulcherriminic acid to chelate Fe3+ to produce reddish brown pulcherrimin, microorganisms capable of synthesizing pulcherriminic acid compete with other microorganisms for environmental iron ions to achieve bacteriostatic effects. Therefore, studying the biosynthetic pathway and their enzymatic catalysis, gene regulation in the process of synthesis of pulcherriminic acid in Bacillus can facilitate the industrial production, and promote the wide application in food, agriculture and medicine industries. After initially discussing, this review summarizes current research on the synthesis of pulcherriminic acid by Bacillus, which includes the crystallization of key enzymes, molecular catalytic mechanisms, regulation of synthetic pathways, and methods to improve efficiency in synthesizing pulcherriminic acid and its precursors. Finally, possible applications of pulcherriminic acid in the fermented food, such as Chinese Baijiu, applying combinatorial biosynthesis will be summarized.
Collapse
Affiliation(s)
- Siqi Yuan
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
- Luzhou Laojiao Group Co. Ltd., Airentang Square, Jiangyang District, Luzhou 646000, China
| | - Xihao Yong
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Ting Zhao
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Yuan Li
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
| | - Jun Liu
- Sichuan University of Science & Engineering, Xueyuan Street 180#, Huixing Rd., Zigong 643000, China; (S.Y.); (X.Y.); (T.Z.)
- Wuliangye Group Co. Ltd., No. 150 Minjiang West Road, Yibin 644000, China
| |
Collapse
|
18
|
Bourgeois G, Seguin J, Babin M, Gondry M, Mechulam Y, Schmitt E. Structural basis of the interaction between cyclodipeptide synthases and aminoacylated tRNA substrates. RNA (NEW YORK, N.Y.) 2020; 26:1589-1602. [PMID: 32680846 PMCID: PMC7566563 DOI: 10.1261/rna.075184.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of various cyclodipeptides by using two aminoacyl-tRNA (aa-tRNA) substrates in a sequential mechanism. Here, we studied binding of phenylalanyl-tRNAPhe to the CDPS from Candidatus Glomeribacter gigasporarum (Cglo-CDPS) by gel filtration and electrophoretic mobility shift assay. We determined the crystal structure of the Cglo-CDPS:Phe-tRNAPhe complex to 5 Å resolution and further studied it in solution using small-angle X-ray scattering (SAXS). The data show that the major groove of the acceptor stem of the aa-tRNA interacts with the enzyme through the basic β2 and β7 strands of CDPSs belonging to the XYP subfamily. A bending of the CCA extremity enables the amino acid moiety to be positioned in the P1 pocket while the terminal A76 adenosine occupies the P2 pocket. Such a positioning indicates that the present structure illustrates the binding of the first aa-tRNA. In cells, CDPSs and the elongation factor EF-Tu share aminoacylated tRNAs as substrates. The present study shows that CDPSs and EF-Tu interact with opposite sides of tRNA. This may explain how CDPSs hijack aa-tRNAs from canonical ribosomal protein synthesis.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jérôme Seguin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Morgan Babin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Muriel Gondry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| |
Collapse
|
19
|
Li Y, Yuan S, Yong X, zhao T, Liu J. Research progress on small peptides in Chinese Baijiu. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Multistep Metabolic Engineering of Bacillus licheniformis To Improve Pulcherriminic Acid Production. Appl Environ Microbiol 2020; 86:AEM.03041-19. [PMID: 32111589 DOI: 10.1128/aem.03041-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The cyclodipeptide pulcherriminic acid, produced by Bacillus licheniformis, is derived from cyclo(l-Leu-l-Leu) and possesses excellent antibacterial activities. In this study, we achieved the high-level production of pulcherriminic acid via multistep metabolic engineering of B. licheniformis DWc9n*. First, we increased leucine (Leu) supply by overexpressing the ilvBHC-leuABCD operon and ilvD, involved in Leu biosynthesis, to obtain strain W1, and the engineered strain W2 was further attained by the deletion of gene bkdAB, encoding a branched-chain α-keto acid dehydrogenase in W1. As a result, the intracellular Leu content and pulcherriminic acid yield of W2 reached 147.4 mg/g DCW (dry cell weight) and 189.9 mg/liter, which were 227.6% and 48.9% higher than those of DWc9n*, respectively. Second, strain W3 was constructed through overexpressing the leucyl-tRNA synthase gene leuS in W2, and it produced 367.7 mg/liter pulcherriminic acid. Third, the original promoter of the pulcherriminic acid synthetase cluster yvmC-cypX in W3 was replaced with a proven strong promoter, PbacA, to produce the strain W4, and its pulcherriminic acid yield was increased to 507.4 mg/liter. Finally, pulcherriminic acid secretion was strengthened via overexpressing the transporter gene yvmA in W4, resulting in the W4/pHY-yvmA strain, which yielded 556.1 mg/liter pulcherriminic acid, increased by 337.8% compared to DWc9n*, which is currently the highest pulcherriminic acid yield to the best of our knowledge. Taken together, we provided an efficient strategy for enhancing pulcherriminic acid production, which could apply to the high-level production of other cyclodipeptides.IMPORTANCE Pulcherriminic acid is a cyclodipeptide derived from cyclo(l-Leu-l-Leu), which shares the same iron chelation group with hydroxamate sidephores. Generally, pulcherriminic acid-producing strains could be the perfect candidates for antibacterial and anti-plant-pathogenic fungal agents. In this study, we obtained the promising W4/pHY-yvmA pulcherriminic acid-producing strain via a multistep metabolic modification. The engineered W4/pHY-yvmA strain is able to achieve 556.1 mg/liter pulcherriminic acid production, which is the highest yield so far to the best of our knowledge.
Collapse
|
21
|
Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules 2019; 9:biom9110733. [PMID: 31766233 PMCID: PMC6920838 DOI: 10.3390/biom9110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Short oligopeptides are some of the most promising and functionally important amide bond-containing components, with widespread applications. Biosynthesis of these oligopeptides may potentially become the ultimate strategy because it has better cost efficiency and environmental-friendliness than conventional solid phase peptide synthesis and chemo-enzymatic synthesis. To successfully apply this strategy for the biosynthesis of structurally diverse amide bond-containing components, the identification and selection of specific biocatalysts is extremely important. Given that perspective, this review focuses on the current knowledge about the typical enzymes that might be potentially used for the synthesis of short oligopeptides. Moreover, novel enzymatic methods of producing desired peptides via metabolic engineering are highlighted. It is believed that this review will be helpful for technological innovation in the production of desired peptides.
Collapse
|
22
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
23
|
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv Pharm Bull 2019; 9:335-347. [PMID: 31592430 PMCID: PMC6773942 DOI: 10.15171/apb.2019.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Antibiotic therapy is among the most important treatments against infectious diseases and has tremendously improved effects on public health. Nowadays, development in using this treatment has led us to the emergence and enhancement of drug-resistant pathogens which can result in some problems including treatment failure, increased mortality as well as treatment costs, reduced infection control efficiency, and spread of resistant pathogens from hospital to community. Therefore, many researches have tried to find new alternative approaches to control and prevent this problem. This study, has been revealed some possible and effective approaches such as using farming practice, natural antibiotics, nano-antibiotics, lactic acid bacteria, bacteriocin, cyclopeptid, bacteriophage, synthetic biology and predatory bacteria as alternatives for traditional antibiotics to prevent or reduce the emergence of drug resistant bacteria.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Alizadeh
- Department of Clinical Sciences (Surgery), Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Sánchez-Tafolla L, Padrón JM, Mendoza G, Luna-Rodríguez M, Fernández JJ, Norte M, Trigos Á. Antiproliferative activity of biomass extract from Pseudomonas cedrina. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Dubois P, Correia I, Le Chevalier F, Dubois S, Jacques I, Canu N, Moutiez M, Thai R, Gondry M, Lequin O, Belin P. Reprogramming Escherichia coli for the production of prenylated indole diketopiperazine alkaloids. Sci Rep 2019; 9:9208. [PMID: 31239480 PMCID: PMC6592928 DOI: 10.1038/s41598-019-45519-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022] Open
Abstract
Prenylated indole diketopiperazine (DKP) alkaloids are important bioactive molecules or their precursors. In the context of synthetic biology, efficient means for their biological production would increase their chemical diversification and the discovery of novel bioactive compounds. Here, we prove the suitability of the Escherichia coli chassis for the production of prenylated indole DKP alkaloids. We used enzyme combinations not found in nature by co-expressing bacterial cyclodipeptide synthases (CDPSs) that assemble the DKP ring and fungal prenyltransferases (PTs) that transfer the allylic moiety from the dimethylallyl diphosphate (DMAPP) to the indole ring of tryptophanyl-containing cyclodipeptides. Of the 11 tested combinations, seven resulted in the production of eight different prenylated indole DKP alkaloids as determined by LC-MS/MS and NMR characterization. Two were previously undescribed. Engineering E. coli by introducing a hybrid mevalonate pathway for increasing intracellular DMAPP levels improved prenylated indole DKP alkaloid production. Purified product yields of 2–26 mg/L per culture were obtained from culture supernatants. Our study paves the way for the bioproduction of novel prenylated indole DKP alkaloids in a tractable chassis that can exploit the cyclodipeptide diversity achievable with CDPSs and the numerous described PT activities.
Collapse
Affiliation(s)
- Pavlina Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Isabelle Correia
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabien Le Chevalier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | | | - Isabelle Jacques
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France.,Isabelle B. Jacques, APTEEUS, Institut Pasteur de Lille, Lille, France
| | - Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Robert Thai
- SIMOPRO, CEA, 91198, Gif-sur-Yvette, cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
26
|
Borgman P, Lopez RD, Lane AL. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org Biomol Chem 2019; 17:2305-2314. [PMID: 30688950 DOI: 10.1039/c8ob03063d] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganisms are remarkable chemists, with enzymes as their tools for executing multi-step syntheses to yield myriad natural products. Microbial synthetic aptitudes are illustrated by the structurally diverse 2,5-diketopiperazine (DKP) family of bioactive nonribosomal peptide natural products. Nonribosomal peptide synthetases (NRPSs) have long been recognized as catalysts for formation of DKP scaffolds from two amino acid substrates. Cyclodipeptide synthases (CDPSs) are more recently recognized catalysts of DKP assembly, employing two aminoacyl-tRNAs (aa-tRNAs) as substrates. CDPS-encoding genes are typically found in genomic neighbourhoods with genes encoding additional biosynthetic enzymes. These include oxidoreductases, cytochrome P450s, prenyltransferases, methyltransferases, and cyclases, which equip the DKP scaffold with groups that diversify chemical structures and confer biological activity. These tailoring enzymes have been characterized from nine CDPS-containing biosynthetic pathways to date, including four during the last year. In this review, we highlight these nine DKP pathways, emphasizing recently characterized tailoring reactions and connecting new developments to earlier findings. Featured pathways encompass a broad spectrum of chemistry, including the formation of challenging C-C and C-O bonds, regioselective methylation, a unique indole alkaloid DKP prenylation strategy, and unprecedented peptide-nucleobase bond formation. These CDPS-containing pathways also provide intriguing models of metabolic pathway evolution across related and divergent microorganisms, and open doors to synthetic biology approaches for generation of DKP combinatorial libraries. Further, bioinformatics analyses support that much unique genetically encoded DKP tailoring potential remains unexplored, suggesting opportunities for further expansion of Nature's biosynthetic spectrum. Together, recent studies of DKP pathways demonstrate the chemical ingenuity of microorganisms, highlight the wealth of unique enzymology provided by bacterial biosynthetic pathways, and suggest an abundance of untapped biosynthetic potential for future exploration.
Collapse
Affiliation(s)
- Paul Borgman
- Department of Chemistry, University of North Florida, 1 UNF Dr, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
27
|
The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 2019; 20:ijms20010140. [PMID: 30609737 PMCID: PMC6337102 DOI: 10.3390/ijms20010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes. We explore here a further prediction of our “ribosome-first” theory: the ribosomal genome provided the basis for the first cellular genomes. Modern genomes should therefore contain an unexpectedly large percentage of tRNA- and rRNA-like modules derived from both sense and antisense reading frames, and these should encode non-ribosomal proteins, as well as ribosomal ones with key cell functions. Ribosomal proteins should also have been co-opted by cellular evolution to play extra-ribosomal functions. We review existing literature supporting these predictions. We provide additional, new data demonstrating that rRNA-like sequences occur at significantly higher frequencies than predicted on the basis of mRNA duplications or randomized RNA sequences. These data support our “ribosome-first” theory of cellular evolution.
Collapse
|
28
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
29
|
Structural basis for partition of the cyclodipeptide synthases into two subfamilies. J Struct Biol 2018; 203:17-26. [DOI: 10.1016/j.jsb.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
|
30
|
Schmitt E, Bourgeois G, Gondry M, Aleksandrov A. Cyclization Reaction Catalyzed by Cyclodipeptide Synthases Relies on a Conserved Tyrosine Residue. Sci Rep 2018; 8:7031. [PMID: 29728603 PMCID: PMC5935735 DOI: 10.1038/s41598-018-25479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) form various cyclodipeptides from two aminoacyl tRNAs via a stepwise mechanism with the formation of a dipeptidyl enzyme intermediate. As a final step of the catalytic reaction, the dipeptidyl group undergoes intramolecular cyclization to generate the target cyclodipeptide product. In this work, we investigated the cyclization reaction in the cyclodipeptide synthase AlbC using QM/MM methods and free energy simulations. The results indicate that the catalytic Y202 residue is in its neutral protonated form, and thus, is not likely to serve as a general base during the reaction. We further demonstrate that the reaction relies on the conserved residue Y202 serving as a proton relay, and the direct proton transfer from the amino group to S37 of AlbC is unlikely. Calculations reveal that the hydroxyl group of tyrosine is more suitable for the proton transfer than hydroxyl groups of other amino acids, such as serine and threonine. Results also show that the residues E182, N40, Y178 and H203 maintain the correct conformation of the dipeptide needed for the cyclization reaction. The mechanism discovered in this work relies on the amino groups conserved among the entire CDPS family and, thus is expected to be universal among CDPSs.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, F-91128, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, F-91128, Palaiseau, France
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, F-91128, Palaiseau, France.
| |
Collapse
|
31
|
Gondry M, Jacques IB, Thai R, Babin M, Canu N, Seguin J, Belin P, Pernodet JL, Moutiez M. A Comprehensive Overview of the Cyclodipeptide Synthase Family Enriched with the Characterization of 32 New Enzymes. Front Microbiol 2018; 9:46. [PMID: 29483897 PMCID: PMC5816076 DOI: 10.3389/fmicb.2018.00046] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) use as substrates two amino acids activated as aminoacyl-tRNAs to synthesize cyclodipeptides in secondary metabolites biosynthetic pathways. Since the first description of a CDPS in 2002, the number of putative CDPSs in databases has increased exponentially, reaching around 800 in June 2017. They are likely to be involved in numerous biosynthetic pathways but the diversity of their products is still under-explored. Here, we describe the activity of 32 new CDPSs, bringing the number of experimentally characterized CDPSs to about 100. We detect 16 new cyclodipeptides, one of which containing an arginine which has never been observed previously. This brings to 75 the number of cyclodipeptides formed by CDPSs out of the possible 210 natural ones. We also identify several consensus sequences related to the synthesis of a specific cyclodipeptide, improving the predictive model of CDPS specificity. The improved prediction method enables to propose the main product synthesized for about 80% of the CDPS sequences available in databases and opens the way for the deciphering of CDPS-dependent pathways. Analysis of phylum distribution and predicted activity for all CDPSs identified in databases shows that the experimentally characterized set is representative of the whole family. Our work also demonstrates that some cyclodipeptides, precursors of diketopiperazines with interesting pharmacological properties and previously described as being synthesized by fungal non-ribosomal peptide synthetases, can also be produced by CDPSs in bacteria.
Collapse
Affiliation(s)
- Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle B Jacques
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Thai
- SIMOPRO, Institut Frédéric Joliot, CEA-Saclay, Gif-sur-Yvette, France
| | - Morgan Babin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Identification of Cyclic Dipeptides from Escherichia coli as New Antimicrobial Agents against Ralstonia Solanacearum. Molecules 2018; 23:molecules23010214. [PMID: 29351264 PMCID: PMC6017746 DOI: 10.3390/molecules23010214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is a causative agent of bacterial wilt in many important crops throughout the world. How to control bacterial wilt caused by R. solanacearum is a major problem in agriculture. In this study, we aim to isolate the biocontrol agents that have high efficacy in the control of bacterial wilt. Three new bacterial strains with high antimicrobial activity against R. solanacearum GMI1000 were isolated and identified. Our results demonstrated that these bacteria could remarkably inhibit the disease index of host plant infected by R. solanacearum. It was indicated that strain GZ-34 (CCTCC No. M 2016353) showed an excellent protective effect to tomato under greenhouse conditions. Strain GZ-34 was characterized as Escherichia coli based on morphology, biochemistry, and 16S rRNA analysis. We identified that the main antimicrobial compounds produced by E. coli GZ-34 were cyclo(l-Pro-d-Ile) and cyclo(l-Pro-l-Phe) using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) analysis. The two active compounds also interfered with the expression levels of some pathogenicity-contributors of R. solanacearum. Furthermore, cyclo(l-Pro-l-Phe) effectively inhibited spore formation of Magnaporthe grisea, which is a vital pathogenesis process of the fungal pathogen, suggesting cyclic dipeptides from E. coli are promising potential antimicrobial agents with broad-spectrum activity to kill pathogens or interfere with their pathogenesis.
Collapse
|
33
|
Brockmeyer K, Li SM. Mutations of Residues in Pocket P1 of a Cyclodipeptide Synthase Strongly Increase Product Formation. JOURNAL OF NATURAL PRODUCTS 2017; 80:2917-2922. [PMID: 29064250 DOI: 10.1021/acs.jnatprod.7b00430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Expression of a cyclodipeptide synthase gene from Nocardiopsis prasina (CDPS-Np) in Escherichia coli resulted in the formation of cyclo-(l-Tyr-l-Tyr) (1) as the minor and cyclo-(l-Tyr-l-Phe) (2) as the major products. Site-directed mutagenesis revealed a strong influence on product accumulation of the amino acid residues in pocket P1. An 8-fold increase in product formation for 1 and 10-fold for 2 were detected in the double mutant T82V_Y196F compared with the wild type.
Collapse
Affiliation(s)
- Kirsten Brockmeyer
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
34
|
Mishra AK, Choi J, Choi SJ, Baek KH. Cyclodipeptides: An Overview of Their Biosynthesis and Biological Activity. Molecules 2017; 22:molecules22101796. [PMID: 29065531 PMCID: PMC6151668 DOI: 10.3390/molecules22101796] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Cyclodipeptides (CDP) represent a diverse family of small, highly stable, cyclic peptides that are produced as secondary functional metabolites or side products of protein metabolism by bacteria, fungi, and animals. They are widespread in nature, and exhibit a broad variety of biological and pharmacological activities. CDP synthases (CDPSs) and non-ribosomal peptide synthetases (NRPSs) catalyze the biosynthesis of the CDP core structure, which is further modified by tailoring enzymes often associated with CDP biosynthetic gene clusters. In this review, we provide a comprehensive summary of CDP biosynthetic pathways and modifying enzymes. We also discuss the biological properties of some known CDPs and their possible applications in metabolic engineering.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Jaehyuk Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Seong-Jin Choi
- Department of Biotechnology, Daegu Catholic University, Gyeongsan 38430, Korea.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
35
|
Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 2017; 183:1323-1335. [PMID: 28523413 DOI: 10.1007/s12010-017-2500-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
Pulcherrimin, a potential biocontrol agent produced by microorganisms, has the promising applications in the agricultural, medical, and food areas, and the low yield of pulcherrimin has hindered its applications. In this study, the red pigment produced by Bacillus licheniformis DW2 was identified as pulcherrimin through the spectrometry analysis and genetic manipulation, and the component of the medium used for pulcherrimin production was optimized. Based on our results, the addition of 1.0 g L-1 Tween 80 could improve the yield of pulcherrimin, and glucose and (NH4)2SO4 were served as the optimal carbon and nitrogen sources for pulcherrimin synthesis, respectively. Furthermore, an orthogonal array design was applied for optimization of the medium. Under optimized condition, the maximum yield of pulcherrimin was 331.17 mg L-1, 5.30-fold higher than that of the initial condition, which was the maximum yield reported for pulcherrimin production. Collectively, this study provided a promising strain and a feasible approach to achieve the high-level production of antimicrobial pulcherrimin.
Collapse
Affiliation(s)
- Xiaoyun Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dongbo Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yangyang Zhan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, No. 368Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
36
|
Liu R, Kim AH, Kwak MK, Kang SO. Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from Leuconostoc mesenteroides LBP-K06 Have Activities against Multidrug-Resistant Bacteria. Front Microbiol 2017; 8:761. [PMID: 28512456 PMCID: PMC5411444 DOI: 10.3389/fmicb.2017.00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus plantarum and Leuconostoc mesenteroides play a prominent role as functional starters and predominant isolates in the production of various types of antimicrobial compound-containing fermented foods, especially including kimchi. In the case of the bioactive cyclic dipeptides, their racemic diastereomers inhibitory to bacteria and fungi have been suggested to come solely from Lactobacillus spp. of these strains. We previously demonstrated the antifungal and antiviral activities of proline-based cyclic dipeptides, which were fractionated from culture filtrates of Lb. plantarum LBP-K10 originated from kimchi. However, cyclic dipeptides have not been identified in the filtrates, either from cultures or fermented subject matter, driven by Ln. mesenteroides, which have been widely used as starter cultures for kimchi fermentation. Most importantly, the experimental verification of cyclic dipeptide-content changes during kimchi fermentation have also not been elucidated. Herein, the antibacterial fractions, including cyclo(Leu-Pro) and cyclo(Phe-Pro), from Ln. mesenteroides LBP-K06 culture filtrates, which exhibited a typical chromatographic retention behavior (tR), were identified by using semi-preparative high-performance liquid chromatography and gas chromatography-mass spectrometry. Based on this finding, the proline-based cyclic dipeptides, including cyclo(Ser-Pro), cyclo(Tyr-Pro), and cyclo(Leu-Pro), were additionally identified in the filtrates only when fermenting Chinese cabbage produced with Ln. mesenteroides LBP-K06 starter cultures. The detection and isolation of cyclic dipeptides solely in controlled fermented cabbage were conducted under the control of fermentation-process parameters concomitantly with strong CDP selectivity by using a two-consecutive-purification strategy. Interestingly, cyclic dipeptides in the filtrates, when using this strain as a starter, increased with fermentation time. However, no cyclic dipeptides were observed in the filtrates of other fermented products, including other types of kimchi and fermented materials of plant and animal origin. This is the first report to conclusively demonstrate evidence for the existence of antimicrobial cyclic dipeptides produced by Ln. mesenteroides in kimchi. Through filtrates from lactic acid bacterial cultures and from fermented foods, we have also proved a method of combining chromatographic fractionation and mass spectrometry-based analysis for screening cyclic dipeptide profiling, which may allow evaluation of the fermented dairy foods from a new perspective.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Andrew H Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
37
|
González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J. Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host. MICROBIAL ECOLOGY 2017; 73:616-629. [PMID: 27900439 DOI: 10.1007/s00248-016-0896-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Diverse molecules mediate cross-kingdom communication between bacteria and their eukaryotic partners and determine pathogenic or symbiotic relationships. N-acyl-L-homoserine lactone-dependent quorum-sensing signaling represses the biosynthesis of bacterial cyclodipeptides (CDPs) that act as auxin signal mimics in the host plant Arabidopsis thaliana. In this work, we performed bioinformatics, biochemical, and plant growth analyses to identify non-ribosomal peptide synthase (NRPS) proteins of Pseudomonas aeruginosa, which are involved in CDP synthesis. A reverse genetics strategy allowed the identification of the genes encoding putative multi-modular-NRPS (MM-NRPS). Mutations in these genes affected the synthesis of the CDPs cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-Tyr), while showing wild-type-like levels of virulence factors, such as violacein, elastase, and pyocyanin. When analyzing the bioactivity of purified, naturally produced CDPs, it was found that cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val) were capable of antagonizing quorum-sensing-LasR (QS-LasR)-dependent signaling in a contrasting manner in the cell-free supernatants of the selected NRPS mutants, which showed QS induction. Using a bacteria-plant interaction system, we further show that the pvdJ, ambB, and pchE P. aeruginosa mutants failed to repress primary root growth, but improved root branching in A. thaliana seedlings. These results indicated that the CDP production in P. aeruginosa depended on the functional MM-NRPS, which influences quorum-sensing of bacteria and plays a role in root architecture remodeling.
Collapse
Affiliation(s)
- Omar González
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Randy Ortíz-Castro
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
- Instituto de Ecología A.C., Xalapa, Ver., México
| | - César Díaz-Pérez
- Depto. Ingeniería Agroindustrial, División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Salvatierra, Gto., México
| | - Alma L Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Viridiana Magaña-Dueñas
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. A1´, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, México.
| |
Collapse
|
38
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
39
|
Lv LP, Jiang S, Inan A, Landfester K, Crespy D. Redox-responsive release of active payloads from depolymerized nanoparticles. RSC Adv 2017. [DOI: 10.1039/c6ra24796b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The difference in the reactivity of two monomers, aniline (ANI) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT), was employed to design nanoparticles with completely different nanostructures.
Collapse
Affiliation(s)
- Li-Ping Lv
- Max Planck Institute for Polymer Research
- Mainz
- Germany
- Department of Chemical Engineering
- School of Environmental and Chemical Engineering
| | - Shuai Jiang
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | - Alper Inan
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research
- Mainz
- Germany
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
| |
Collapse
|
40
|
Ulrich EC, van der Donk WA. Cameo appearances of aminoacyl-tRNA in natural product biosynthesis. Curr Opin Chem Biol 2016; 35:29-36. [PMID: 27599269 PMCID: PMC5161580 DOI: 10.1016/j.cbpa.2016.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
Abstract
The breadth of unprecedented enzymatic reactions performed during the formation of microbial natural products has continued to expand as new biosynthetic gene clusters are unearthed by genome mining. Enzymes that use aminoacyl-tRNA (aa-tRNA) outside of the translation machinery have been known for decades, and accounts of their use in natural product biosynthesis are just beginning to accumulate. This review will highlight the recent discoveries and advances in our mechanistic understanding of aa-tRNA-dependent enzymes that play key roles in the biosynthesis of a growing number of microbial natural products.
Collapse
Affiliation(s)
- Emily C Ulrich
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Ortega MA, van der Donk WA. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Cell Chem Biol 2016; 23:31-44. [PMID: 26933734 DOI: 10.1016/j.chembiol.2015.11.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 10/24/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large group of structurally diverse natural products. Their biological activities and unique biosynthetic pathways have sparked a growing interest in RiPPs. Furthermore, the relatively low genetic complexity associated with RiPP biosynthesis makes them excellent candidates for synthetic biology applications. This Review highlights recent developments in the understanding of the biosynthesis of several bacterial RiPP family members, the use of the RiPP biosynthetic machinery for generating novel macrocyclic peptides, and the implementation of tools designed to guide the discovery and characterization of novel RiPPs.
Collapse
Affiliation(s)
- Manuel A Ortega
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
42
|
Spectrophotometric assays for monitoring tRNA aminoacylation and aminoacyl-tRNA hydrolysis reactions. Methods 2016; 113:3-12. [PMID: 27780756 DOI: 10.1016/j.ymeth.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases play a central role in protein synthesis, catalyzing the attachment of amino acids to their cognate tRNAs. Here, we describe a spectrophotometric assay for tyrosyl-tRNA synthetase in which the Tyr-tRNA product is cleaved, regenerating the tRNA substrate. As tRNA is the limiting substrate in the assay, recycling it substantially increases the sensitivity of the assay while simultaneously reducing its cost. The tRNA aminoacylation reaction is monitored spectrophotometrically by coupling the production of AMP to the conversion of NAD+ to NADH. We have adapted the tyrosyl-tRNA synthetase assay to monitor: (1) aminoacylation of tRNA by l- or d-tyrosine, (2) cyclodipeptide formation by cyclodipeptide synthases, (3) hydrolysis of d-aminoacyl-tRNAs by d-tyrosyl-tRNA deacylase, and (4) post-transfer editing by aminoacyl-tRNA synthetases. All of these assays are continuous and homogenous, making them amenable for use in high-throughput screens of chemical libraries. In the case of the cyclodipeptide synthase, d-tyrosyl-tRNA deacylase, and post-transfer editing assays, the aminoacyl-tRNAs are generated in situ, avoiding the need to synthesize and purify aminoacyl-tRNA substrates prior to performing the assays. Lastly, we describe how the tyrosyl-tRNA synthetase assay can be adapted to monitor the activity of other aminoacyl-tRNA synthetases and how the approach to regenerating the tRNA substrate can be used to increase the sensitivity and decrease the cost of commercially available aminoacyl-tRNA synthetase assays.
Collapse
|
43
|
Randazzo P, Aubert-Frambourg A, Guillot A, Auger S. The MarR-like protein PchR (YvmB) regulates expression of genes involved in pulcherriminic acid biosynthesis and in the initiation of sporulation in Bacillus subtilis. BMC Microbiol 2016; 16:190. [PMID: 27542896 PMCID: PMC4992311 DOI: 10.1186/s12866-016-0807-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/07/2016] [Indexed: 12/27/2022] Open
Abstract
Background Cyclodipeptides and their derivatives constitute a large class of peptide natural products with noteworthy biological activities. In some yeasts and bacterial species, pulcherriminic acid derived from cyclo-L-leucyl-L-leucyl is excreted and chelates free ferric ions to form the pulcherrimin. In Bacillus subtilis, the enzymes YvmC and CypX are known to be involved in pulcherriminic acid biosynthesis. However, the mechanisms controlling the transcription of the yvmC-cypX operon are still unknown. Results In this work, we demonstrated that the B. subtilis YvmB MarR-like regulator is the major transcription factor controlling yvmC-cypX expression. A comprehensive quantitative proteomic analysis revealed a wide and prominent effect of yvmB deletion on proteins involved in cellular processes depending on iron availability. In addition, expression of yvmB depends on iron availability. Further analysis with real-time in vivo transcriptional profiling allowed us to define the YvmB regulon. We identified yvmBA, yvmC-cypX and yvnB for negative regulation and yisI for positive regulation. In combination with genetic approaches, gel mobility shift assays indicated that a 14-bp palindromic motif constitutes the YvmB binding site. It was unexpected that YvmB controls expression of yisI, whose encoding protein plays a negative role in the regulation of the sporulation initiation pathway. YvmB appears as an additional regulatory element into the cell’s decision to grow or sporulate. Conclusion Our findings reveal a possible role of the B. subtilis YvmB regulator in the regulatory networks connected to iron metabolism and to the control of proper timing of sporulation. YvmB was renamed as PchR controlling the pulcherriminic acid biosynthetic pathway of B. subtilis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0807-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Randazzo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Aubert-Frambourg
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
44
|
James ED, Knuckley B, Alqahtani N, Porwal S, Ban J, Karty JA, Viswanathan R, Lane AL. Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product. ACS Synth Biol 2016; 5:547-53. [PMID: 26641496 DOI: 10.1021/acssynbio.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the Nocardiopsis sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from E. coli expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze cyclo(l-Trp-l-Trp) (1) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, 1 was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that Nocardiopsis sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines.
Collapse
Affiliation(s)
- Elle D. James
- Department of Chemistry, University of North Florida, 1 UNF
Drive, Jacksonville, Florida 32224, United States
| | - Bryan Knuckley
- Department of Chemistry, University of North Florida, 1 UNF
Drive, Jacksonville, Florida 32224, United States
| | - Norah Alqahtani
- Department of Chemistry, Case Western Reserve University, Millis Science
Center Room 216, 2074 Adelbert Road, Cleveland, Ohio 44106-7078, United States
| | - Suheel Porwal
- Department of Chemistry, Case Western Reserve University, Millis Science
Center Room 216, 2074 Adelbert Road, Cleveland, Ohio 44106-7078, United States
| | - Jisun Ban
- Department of Chemistry, University of North Florida, 1 UNF
Drive, Jacksonville, Florida 32224, United States
| | - Jonathan A. Karty
- Mass Spectrometry Facility, Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University, Millis Science
Center Room 216, 2074 Adelbert Road, Cleveland, Ohio 44106-7078, United States
| | - Amy L. Lane
- Department of Chemistry, University of North Florida, 1 UNF
Drive, Jacksonville, Florida 32224, United States
| |
Collapse
|
45
|
Guo J, Jing X, Peng WL, Nie Q, Zhai Y, Shao Z, Zheng L, Cai M, Li G, Zuo H, Zhang Z, Wang RR, Huang D, Cheng W, Yu Z, Chen LL, Zhang J. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316. Sci Rep 2016; 6:29211. [PMID: 27384076 PMCID: PMC4935845 DOI: 10.1038/srep29211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueping Jing
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wen-Lei Peng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiyu Nie
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yile Zhai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Huaiyu Zuo
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhitao Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Rui-Ru Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dian Huang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wanli Cheng
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ling-Ling Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
46
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
47
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
48
|
Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity. Nat Chem Biol 2015; 11:721-7. [DOI: 10.1038/nchembio.1868] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/05/2015] [Indexed: 11/08/2022]
|
49
|
Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci Rep 2015; 5:10868. [PMID: 26040782 PMCID: PMC4455117 DOI: 10.1038/srep10868] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022] Open
Abstract
Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products.
Collapse
|
50
|
Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. A Synthetic Adenylation-Domain-Based tRNA-Aminoacylation Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|