1
|
Honda T, Sakai H, Inui M. Intracellular delivery of a phospholamban-targeting aptamer using cardiomyocyte-internalizing aptamers. Eur J Pharmacol 2024; 985:177130. [PMID: 39536855 DOI: 10.1016/j.ejphar.2024.177130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The sarco (endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-phospholamban (PLN) system within the sarcoplasmic reticulum is crucial for regulating intracellular Ca2+ cycling in ventricular cardiomyocytes. Given that impaired Ca2+ cycling is associated with heart failure, modulating SERCA2a activity represents a promising therapeutic strategy. Previously, we engineered an RNA aptamer (Apt30) that binds to PLN, thereby activating SERCA2a by alleviating PLN's inhibitory effect. However, Apt30 alone cannot reach intracellular PLN, necessitating the development of a mechanism for its specific internalization into cardiomyocytes. Using the systematic evolution of ligands by exponential enrichment (SELEX) method, we isolated RNA aptamers capable of internalizing into cardiomyocytes. These aptamers demonstrated sub-micromolar EC50 values for cardiomyocyte internalization and exhibited significantly reduced activity against various non-myocardial cells, highlighting their specificity for cardiomyocytes. Moreover, some of these cardiomyocyte-internalizing aptamers could be linked to Apt30 as a single RNA strand without compromising their internalization efficacy. Supplementing the culture medium with these hybrid aptamers enhanced Ca2+ transients and contractile function in rat cardiomyocytes. These findings provide critical insights for developing novel therapeutics directly acting on PLN in cardiomyocytes, potentially compensating for the disadvantages of conventional methods that involve viral vector-mediated intracellular transduction or alterations in endogenous protein expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Hiroki Sakai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
2
|
Muñoz-Bucio A, Arellano-Reynoso B, Sangari FJ, Sieira R, Thébault P, Espitia C, García Lobo JM, Seoane A, Suárez-Güemes F. Increased Brucella abortus asRNA_0067 expression under intraphagocytic stressors is associated with enhanced virB2 transcription. Arch Microbiol 2024; 206:285. [PMID: 38816572 PMCID: PMC11139718 DOI: 10.1007/s00203-024-03984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Collapse
Affiliation(s)
- Adrian Muñoz-Bucio
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Félix J Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435CABA, CP. 1405, Buenos Aires Argentina, Argentina
| | - Patricia Thébault
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux, 33400, Talence, France
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México MX, CDMX, Circuito Escolar 33, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Juan M García Lobo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Asunción Seoane
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
3
|
Hoffmann UA, Lichtenberg E, Rogh SN, Bilger R, Reimann V, Heyl F, Backofen R, Steglich C, Hess WR, Wilde A. The role of the 5' sensing function of ribonuclease E in cyanobacteria. RNA Biol 2024; 21:1-18. [PMID: 38469716 PMCID: PMC10939160 DOI: 10.1080/15476286.2024.2328438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.
Collapse
Affiliation(s)
- Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elisabeth Lichtenberg
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Said N. Rogh
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
5
|
Watanabe S, Stazic D, Georg J, Ohtake S, Sakamaki Y, Numakura M, Asayama M, Chibazakura T, Wilde A, Steglich C, Hess WR. Regulation of RNase E during the UV stress response in the cyanobacterium Synechocystis sp. PCC 6803. MLIFE 2023; 2:43-57. [PMID: 38818332 PMCID: PMC10989929 DOI: 10.1002/mlf2.12056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 06/01/2024]
Abstract
Endoribonucleases govern the maturation and degradation of RNA and are indispensable in the posttranscriptional regulation of gene expression. A key endoribonuclease in Gram-negative bacteria is RNase E. To ensure an appropriate supply of RNase E, some bacteria, such as Escherichia coli, feedback-regulate RNase E expression via the rne 5'-untranslated region (5' UTR) in cis. However, the mechanisms involved in the control of RNase E in other bacteria largely remain unknown. Cyanobacteria rely on solar light as an energy source for photosynthesis, despite the inherent ultraviolet (UV) irradiation. In this study, we first investigated globally the changes in gene expression in the cyanobacterium Synechocystis sp. PCC 6803 after a brief exposure to UV. Among the 407 responding genes 2 h after UV exposure was a prominent upregulation of rne mRNA level. Moreover, the enzymatic activity of RNase E rapidly increased as well, although the protein stability decreased. This unique response was underpinned by the increased accumulation of full-length rne mRNA caused by the stabilization of its 5' UTR and suppression of premature transcriptional termination, but not by an increased transcription rate. Mapping of RNA 3' ends and in vitro cleavage assays revealed that RNase E cleaves within a stretch of six consecutive uridine residues within the rne 5' UTR, indicating autoregulation. These observations suggest that RNase E in cyanobacteria contributes to reshaping the transcriptome during the UV stress response and that its required activity level is secured at the RNA level despite the enhanced turnover of the protein.
Collapse
Affiliation(s)
- Satoru Watanabe
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Damir Stazic
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
- Present address:
NexxiotPrime Tower (Hardstrasse 201)ZurichSwitzerland
| | - Jens Georg
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Shota Ohtake
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Yutaka Sakamaki
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Megumi Numakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Munehiko Asayama
- School of Agriculture, Molecular GeneticsIbaraki UniversityIbarakiJapan
| | - Taku Chibazakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Annegret Wilde
- Faculty of Biology, Molecular GeneticsUniversity of FreiburgFreiburgGermany
| | - Claudia Steglich
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Wolfgang R. Hess
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| |
Collapse
|
6
|
Lambrecht SJ, Stappert N, Sommer F, Schroda M, Steglich C. A Cyanophage MarR-Type Transcription Factor Regulates Host RNase E Expression during Infection. Microorganisms 2022; 10:2245. [PMID: 36422315 PMCID: PMC9692554 DOI: 10.3390/microorganisms10112245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/30/2024] Open
Abstract
The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.
Collapse
Affiliation(s)
- S. Joke Lambrecht
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Medical Faculty, Medical Center, Institute for Surgical Pathology, University of Freiburg, 79106 Freiburg, Germany
| | - Nils Stappert
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Baur ST, Poehlein A, Renz NJ, Hollitzer SK, Montoya Solano JD, Schiel-Bengelsdorf B, Daniel R, Dürre P. Modulation of sol mRNA expression by the long non-coding RNA Assolrna in Clostridium saccharoperbutylacetonicum affects solvent formation. Front Genet 2022; 13:966643. [PMID: 36035128 PMCID: PMC9402939 DOI: 10.3389/fgene.2022.966643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Solvents such as butanol are important platform chemicals and are often produced from petrochemical sources. Production of butanol and other compounds from renewable and sustainable resources can be achieved by solventogenic bacteria, such as the hyper-butanol producer Clostridium saccharoperbutylacetonicum. Its sol operon consists of the genes encoding butyraldehyde dehydrogenase, CoA transferase, and acetoacetate decarboxylase (bld, ctfA, ctfB, adc) and the gene products are involved in butanol and acetone formation. It is important to understand its regulation to further optimize the solvent production. In this study, a new long non-coding antisense transcript complementary to the complete sol operon, now called Assolrna, was identified by transcriptomic analysis and the regulatory mechanism of Assolrna was investigated. For this purpose, the promoter-exchange strain C. saccharoperbutylacetonicum ΔPasr::Pasr** was constructed. Additionally, Assolrna was expressed plasmid-based under control of the native Pasr promoter and the lactose-inducible PbgaL promoter in both the wild type and the promoter-exchange strain. Solvent formation was strongly decreased for all strains based on C. saccharoperbutylacetonicum ΔPasr::Pasr** and growth could not be restored by plasmid-based complementation of the exchanged promoter. Interestingly, very little sol mRNA expression was detected in the strain C. saccharoperbutylacetonicum ΔPasr::Pasr** lacking Assolrna expression. Butanol titers were further increased for the overexpression strain C. saccharoperbutylacetonicum [pMTL83151_asr_PbgaL] compared to the wild type. These results suggest that Assolrna has a positive effect on sol operon expression. Therefore, a possible stabilization mechanism of the sol mRNA by Assolrna under physiological concentrations is proposed.
Collapse
Affiliation(s)
- Saskia Tabea Baur
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Saskia Tabea Baur,
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Niklas Jan Renz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | | | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Li X, Xue C, Chen H, Zhang H, Wang Q. Small antisense RNA ThfR positively regulates Thf1 in Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153642. [PMID: 35193088 DOI: 10.1016/j.jplph.2022.153642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thylakoid formation1 (Thf1), encoded by sll1414 (thf1), is a multifunctional protein conserved in all photosynthetic organisms. thf1 expression is highly induced by high light in Synechocystis during photosynthesis-related stress. In this study, differential RNA sequencing analysis of the Synechocystis sp. PCC 6803 revealed a small antisense RNA (asRNA) gene located on the reverse-complementary strand of the thf1 gene. The full length of this asRNA (designated ThfR) was determined by 5' and 3' RACE analysis. The accumulation of thf1 mRNA was up-regulated synchronously with the ThfR level during survival after high-light stress or nitrogen starvation. Under nitrogen starvation or high-light stress, compared with the wild type, a ThfR overexpression mutant demonstrated relatively more Thf1 protein content, while a ThfR reduced-expression mutant accumulated less Thf1 protein. Furthermore, the overexpression of ThfR enhanced the electron transport rate and the proliferation of cyanobacteria under high-light stress. These results, which we confirmed further using an Escherichia coli sRNA expression platform, suggest that the thf1 gene is positively regulated by ThfR, possibly through protection of the RAUUW element at the RNase E cleavage site. This study represents the first report, to our knowledge, of a cis-transcript antisense RNA that targets thf1 in Synechocystis sp. PCC 6803 and provides evidence that ThfR regulates photosynthesis by positively modulating thf1 under high-light conditions.
Collapse
Affiliation(s)
- Xiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Chunling Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Yang B, Xu B, Yang R, Fu J, Li L, Huo D, Chen J, Yang X, Tan C, Chen H, Wang X. Long Non-coding Antisense RNA DDIT4-AS1 Regulates Meningitic Escherichia coli-Induced Neuroinflammation by Promoting DDIT4 mRNA Stability. Mol Neurobiol 2022; 59:1351-1365. [PMID: 34985734 PMCID: PMC8882120 DOI: 10.1007/s12035-021-02690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Our previous studies have shown that meningitic Escherichia coli can colonize the brain and cause neuroinflammation. Controlling the balance of inflammatory responses in the host central nervous system is particularly vital. Emerging evidence has shown the important regulatory roles of long non-coding RNAs (lncRNAs) in a wide range of biological and pathological processes. However, whether lncRNAs participate in the regulation of meningitic E. coli-mediated neuroinflammation remains unknown. In the present study, we characterized a cytoplasm-enriched antisense lncRNA DDIT4-AS1, which showed similar concordant expression patterns with its parental mRNA DDIT4 upon E. coli infection. DDIT4-AS1 modulated DDIT4 expression at both mRNA and protein levels. Mechanistically, DDIT4-AS1 promoted the stability of DDIT4 mRNA through RNA duplex formation. DDIT4-AS1 knockdown and DDIT4 knockout both attenuated E. coli-induced NF-κB signaling as well as pro-inflammatory cytokines expression, and DDIT4-AS1 regulated the inflammatory response by targeting DDIT4. In summary, our results show that DDIT4-AS1 promotes E. coli-induced neuroinflammatory responses by enhancing the stability of DDIT4 mRNA through RNA duplex formation, providing potential nucleic acid targets for new therapeutic interventions in the treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaqi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
11
|
Layton E, Fairhurst AM, Griffiths-Jones S, Grencis RK, Roberts IS. Regulatory RNAs: A Universal Language for Inter-Domain Communication. Int J Mol Sci 2020; 21:E8919. [PMID: 33255483 PMCID: PMC7727864 DOI: 10.3390/ijms21238919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, microRNAs (miRNAs) have roles in development, homeostasis, disease and the immune response. Recent work has shown that plant and mammalian miRNAs also mediate cross-kingdom and cross-domain communications. However, these studies remain controversial and are lacking critical mechanistic explanations. Bacteria do not produce miRNAs themselves, and therefore it is unclear how these eukaryotic RNA molecules could function in the bacterial recipient. In this review, we compare and contrast the biogenesis and functions of regulatory RNAs in eukaryotes and bacteria. As a result, we discovered several conserved features and homologous components in these distinct pathways. These findings enabled us to propose novel mechanisms to explain how eukaryotic miRNAs could function in bacteria. Further understanding in this area is necessary to validate the findings of existing studies and could facilitate the use of miRNAs as novel tools for the directed remodelling of the human microbiota.
Collapse
Affiliation(s)
- Emma Layton
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore;
| | - Sam Griffiths-Jones
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Ian S. Roberts
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| |
Collapse
|
12
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
13
|
Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol 2020; 16:1261-1268. [DOI: 10.1038/s41589-020-0637-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
|
14
|
Lott SC, Voigt K, Lambrecht SJ, Hess WR, Steglich C. A framework for the computational prediction and analysis of non-coding RNAs in microbial environmental populations and their experimental validation. THE ISME JOURNAL 2020; 14:1955-1965. [PMID: 32346084 PMCID: PMC7368042 DOI: 10.1038/s41396-020-0658-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 11/09/2022]
Abstract
Small regulatory RNAs and antisense RNAs play important roles in the regulation of gene expression in bacteria but are underexplored, especially in natural populations. While environmentally relevant microbes often are not amenable to genetic manipulation or cannot be cultivated in the laboratory, extensive metagenomic and metatranscriptomic datasets for these organisms might be available. Hence, dedicated workflows for specific analyses are needed to fully benefit from this information. Here, we identified abundant sRNAs from oceanic environmental populations of the ecologically important primary producer Prochlorococcus starting from a metatranscriptomic differential RNA-Seq (mdRNA-Seq) dataset. We tracked their homologs in laboratory isolates, and we provide a framework for their further detailed characterization. Several of the experimentally validated sRNAs responded to ecologically relevant changes in cultivation conditions. The expression of the here newly discovered sRNA Yfr28 was highly stimulated in low-nitrogen conditions. Its predicted top targets include mRNAs encoding cell division proteins, a sigma factor, and several enzymes and transporters, suggesting a pivotal role of Yfr28 in the coordination of primary metabolism and cell division. A cis-encoded antisense RNA was identified as a possible positive regulator of atpF encoding subunit b' of the ATP synthase complex. The presented workflow will also be useful for other environmentally relevant microorganisms for which experimental validation abilities are frequently limiting although there is wealth of sequence information available.
Collapse
Affiliation(s)
- Steffen C Lott
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Karsten Voigt
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - S Joke Lambrecht
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany.
| |
Collapse
|
15
|
Ram-Mohan N, Meyer MM. Comparative Metatranscriptomics of Periodontitis Supports a Common Polymicrobial Shift in Metabolic Function and Identifies Novel Putative Disease-Associated ncRNAs. Front Microbiol 2020; 11:482. [PMID: 32328037 PMCID: PMC7160235 DOI: 10.3389/fmicb.2020.00482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Periodontitis is an inflammatory disease that deteriorates bone supporting teeth afflicting ∼743 million people worldwide. Bacterial communities associated with disease have been classified into red, orange, purple, blue, green, and yellow complexes based on their roles in the periodontal pocket. Previous metagenomic and metatranscriptomics analyses suggest a common shift in metabolic signatures in disease vs. healthy communities with up-regulated processes including pyruvate fermentation, histidine degradation, amino acid metabolism, TonB-dependent receptors. In this work, we examine existing metatranscriptome datasets to identify the commonly differentially expressed transcripts and potential underlying RNA regulatory mechanisms behind the metabolic shifts. Raw RNA-seq reads from three studies (including 49 healthy and 48 periodontitis samples) were assembled into transcripts de novo. Analyses revealed 859 differentially expressed (DE) transcripts, 675 more- and 174 less-expressed. Only ∼20% of the DE transcripts originate from the pathogenic red/orange complexes, and ∼50% originate from organisms unaffiliated with a complex. Comparison of expression profiles revealed variations among disease samples; while specific metabolic processes are commonly up-regulated, the underlying organisms are diverse both within and across disease associated communities. Surveying DE transcripts for known ncRNAs from the Rfam database identified a large number of tRNAs and tmRNAs as well as riboswitches (FMN, glycine, lysine, and SAM) in more prevalent transcripts and the cobalamin riboswitch in both more and less prevalent transcripts. In silico discovery identified many putative ncRNAs in DE transcripts. We report 15 such putative ncRNAs having promising covariation in the predicted secondary structure and interesting genomic context. Seven of these are antisense of ribosomal proteins that are novel and may involve maintaining ribosomal protein stoichiometry during the disease associated metabolic shift. Our findings describe the role of organisms previously unaffiliated with disease and identify the commonality in progression of disease across three metatranscriptomic studies. We find that although the communities are diverse between individuals, the switch in metabolic signatures characteristic of disease is typically achieved through the contributions of several community members. Furthermore, we identify many ncRNAs (both known and putative) which may facilitate the metabolic shifts associated with periodontitis.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
16
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
17
|
Lambrecht SJ, Steglich C, Hess WR. A minimum set of regulators to thrive in the ocean. FEMS Microbiol Rev 2020; 44:232-252. [DOI: 10.1093/femsre/fuaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT
Marine cyanobacteria of the genus Prochlorococcus thrive in high cell numbers throughout the euphotic zones of the world's subtropical and tropical oligotrophic oceans, making them some of the most ecologically relevant photosynthetic microorganisms on Earth. The ecological success of these free-living phototrophs suggests that they are equipped with a regulatory system competent to address many different stress situations. However, Prochlorococcus genomes are compact and streamlined, with the majority encoding only five different sigma factors, five to six two-component systems and eight types of other transcriptional regulators. Here, we summarize the existing information about the functions of these protein regulators, about transcriptomic responses to defined stress conditions, and discuss the current knowledge about riboswitches, RNA-based regulation and the roles of certain metabolites as co-regulators. We focus on the best-studied isolate, Prochlorococcus MED4, but extend to other strains and ecotypes when appropriate, and we include some information gained from metagenomic and metatranscriptomic analyses.
Collapse
Affiliation(s)
- S Joke Lambrecht
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Lambrecht SJ, Kanesaki Y, Fuss J, Huettel B, Reinhardt R, Steglich C. Interplay and Targetome of the Two Conserved Cyanobacterial sRNAs Yfr1 and Yfr2 in Prochlorococcus MED4. Sci Rep 2019; 9:14331. [PMID: 31586076 PMCID: PMC6778093 DOI: 10.1038/s41598-019-49881-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
The sRNA Yfr1 and members of the Yfr2 sRNA family are almost universally present within cyanobacteria. The conserved motifs of these sRNAs are nearly complementary to each other, suggesting their ability to participate in crosstalk. The conserved motif of Yfr1 is shared by members of the Yfr10 sRNA family, members of which are otherwise less conserved in sequence, structure, and synteny compared to Yfr1. The different structural properties enable the discrimination of unique targets of Yfr1 and Yfr10. Unlike most studied regulatory sRNAs, Yfr1 gene expression only slightly changes under the tested stress conditions and is present at high levels at all times. In contrast, cellular levels of Yfr10 increase during the course of acclimation to darkness, and levels of Yfr2 increase when cells are shifted to high light or nitrogen limitation conditions. In this study, we investigated the targetomes of Yfr2, Yfr1, and Yfr10 in Prochlorococcus MED4, establishing CRAFD-Seq as a new method for identifying direct targets of these sRNAs that is applicable to all bacteria, including those that are not amenable to genetic modification. The results suggest that these sRNAs are integrated within a regulatory network of unprecedented complexity in the adjustment of carbon and nitrogen-related primary metabolism.
Collapse
Affiliation(s)
- S Joke Lambrecht
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, D-50829, Köln, Germany
| | - Claudia Steglich
- University of Freiburg, Faculty of Biology, D-79104, Freiburg, Germany.
| |
Collapse
|
19
|
Dendooven T, Lavigne R. Dip-a-Dee-Doo-Dah: Bacteriophage-Mediated Rescoring of a Harmoniously Orchestrated RNA Metabolism. Annu Rev Virol 2019; 6:199-213. [DOI: 10.1146/annurev-virology-092818-015644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA turnover and processing in bacteria are governed by the structurally divergent but functionally convergent RNA degradosome, and the mechanisms have been researched extensively in Gram-positive and Gram-negative bacteria. An emerging research field focuses on how bacterial viruses hijack all aspects of the bacterial metabolism, including the host machinery of RNA metabolism. This review addresses research on phage-based influence on RNA turnover, which can act either indirectly or via dedicated effector molecules that target degradosome assemblies. The structural divergence of host RNA turnover mechanisms likely explains the limited number of phage proteins directly targeting these specialized, host-specific complexes. The unique and nonconserved structure of DIP, a phage-encoded inhibitor of the Pseudomonas degradosome, illustrates this hypothesis. However, the natural occurrence of phage-encoded mechanisms regulating RNA turnover indicates a clear evolutionary benefit for this mode of host manipulation. Further exploration of the viral dark matter of unknown phage proteins may reveal more structurally novel interference strategies that, in turn, could be exploited for biotechnological applications.
Collapse
Affiliation(s)
- T. Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - R. Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
20
|
Hermansen GMM, Sazinas P, Kofod D, Millard A, Andersen PS, Jelsbak L. Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression. FEMS Microbiol Lett 2019; 365:4794939. [PMID: 29325106 DOI: 10.1093/femsle/fny004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression. This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction. After whole-genome sequencing of two nasal staphylococcal isolates, an agar-based RNA sequencing setup was utilized to identify interaction-induced transcriptional alterations in surface-associated populations. Our results revealed differential expression of several virulence genes in both species. We also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense ncRNA are both downregulated during interaction with S. aureus. Our findings contribute to a better understanding of pathogen physiology in the context of interactions with the commensal microbiota, and may provide targets for future therapeutics.
Collapse
Affiliation(s)
- Grith M M Hermansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Ditte Kofod
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Andrew Millard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
21
|
Rosikiewicz W, Suzuki Y, Makalowska I. OverGeneDB: a database of 5' end protein coding overlapping genes in human and mouse genomes. Nucleic Acids Res 2019; 46:D186-D193. [PMID: 29069459 PMCID: PMC5753363 DOI: 10.1093/nar/gkx948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
Gene overlap plays various regulatory functions on transcriptional and post-transcriptional levels. Most current studies focus on protein-coding genes overlapping with non-protein-coding counterparts, the so called natural antisense transcripts. Considerably less is known about the role of gene overlap in the case of two protein-coding genes. Here, we provide OverGeneDB, a database of human and mouse 5′ end protein-coding overlapping genes. The database contains 582 human and 113 mouse gene pairs that are transcribed using overlapping promoters in at least one analyzed library. Gene pairs were identified based on the analysis of the transcription start site (TSS) coordinates in 73 human and 10 mouse organs, tissues and cell lines. Beside TSS data, resources for 26 human lung adenocarcinoma cell lines also contain RNA-Seq and ChIP-Seq data for seven histone modifications and RNA Polymerase II activity. The collected data revealed that the overlap region is rarely conserved between the studied species and tissues. In ∼50% of the overlapping genes, transcription started explicitly in the overlap regions. In the remaining half of overlapping genes, transcription was initiated both from overlapping and non-overlapping TSSs. OverGeneDB is accessible at http://overgenedb.amu.edu.pl.
Collapse
Affiliation(s)
- Wojciech Rosikiewicz
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 272-8562, Japan
| | - Izabela Makalowska
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| |
Collapse
|
22
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
23
|
Lambrecht SJ, Wahlig JML, Steglich C. The GntR family transcriptional regulator PMM1637 regulates the highly conserved cyanobacterial sRNA Yfr2 in marine picocyanobacteria. DNA Res 2019; 25:489-497. [PMID: 29901694 PMCID: PMC6191309 DOI: 10.1093/dnares/dsy019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Prochlorococcus is a marine picocyanobacterium with a streamlined genome that is adapted to different ecological niches in the oligotrophic oceans. There are currently >20 regulatory small RNAs (sRNAs) that have been identified in the model strain Prochlorococcus MED4. While most of these sRNAs are ecotype-specific, sRNA homologs of Yfr1 and of the Yfr2 family are widely found throughout the cyanobacterial phylum. Although they were identified 13 yrs ago, the functions of Yfr1 and Yfr2 have remained unknown. We observed a strong induction of two Yfr2 sRNA homologs of Prochlorococcus MED4 during high light stress and nitrogen starvation. Several Prochlorococcus and marine Synechococcus yfr2 promoter regions contain a conserved motif we named CGRE1 (cyanobacterial GntR family transcriptional regulator responsive element 1). Using the conserved promoter region as bait in a DNA affinity pull-down assay we identified the GntR family transcriptional regulator PMM1637 as a binding partner. Similar to Yfr2, homologs of PMM1637 are universally and exclusively found in cyanobacteria. We suggest that PMM1637 governs the induction of gene expression of Yfr2 homologs containing CGRE1 in their promoters under nitrogen-depleted and high-light stress conditions.
Collapse
Affiliation(s)
- S Joke Lambrecht
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - J Mascha L Wahlig
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Georg J, Hess WR. Widespread Antisense Transcription in Prokaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0029-2018. [PMID: 30003872 PMCID: PMC11633618 DOI: 10.1128/microbiolspec.rwr-0029-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Although bacterial genomes are usually densely protein-coding, genome-wide mapping approaches of transcriptional start sites revealed that a significant fraction of the identified promoters drive the transcription of noncoding RNAs. These can be trans-acting RNAs, mainly originating from intergenic regions and, in many studied examples, possessing regulatory functions. However, a significant fraction of these noncoding RNAs consist of natural antisense transcripts (asRNAs), which overlap other transcriptional units. Naturally occurring asRNAs were first observed to play a role in bacterial plasmid replication and in bacteriophage λ more than 30 years ago. Today's view is that asRNAs abound in all three domains of life. There are several examples of asRNAs in bacteria with clearly defined functions. Nevertheless, many asRNAs appear to result from pervasive initiation of transcription, and some data point toward global functions of such widespread transcriptional activity, explaining why the search for a specific regulatory role is sometimes futile. In this review, we give an overview about the occurrence of antisense transcription in bacteria, highlight particular examples of functionally characterized asRNAs, and discuss recent evidence pointing at global relevance in RNA processing and transcription-coupled DNA repair.
Collapse
MESH Headings
- Bacteria/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- DNA Repair/physiology
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Plasmids
- RNA, Antisense/genetics
- RNA, Antisense/physiology
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Untranslated
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Jens Georg
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, Germany
| |
Collapse
|
25
|
Huang J, Chen S, Cai D, Bian D, Wang F. Long noncoding RNA lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway. Life Sci 2018; 203:48-53. [PMID: 29678744 DOI: 10.1016/j.lfs.2018.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
AIMS Disruption of cholesterol homeostasis has been identified as a major factor in the pathogenesis of atherosclerosis, myocardial infarction, and strokes. Long noncoding RNAs (lncRNAs) have emerged as critical players in cellular cholesterol metabolism, but their functions are still largely unknown. MATERIALS AND METHODS C57BL6/j mice were fed with high cholesterol diet (containing 4% cholesterol) or chow diet. Adenoviruses-lncARSR and lncARSR shRNA were used to overexpress or knockdown lncARSR expression. KEY FINDINGS The expression of lncARSR were increased both in patients with hypercholesterolemia and mice with high cholesterol diet feeding. Overexpression of lncARSR in mice resulted in elevated lipid levels in both serum and liver fragments. However, knockdown of lncARSR in mice fed with high cholesterol diet showed decreased lipid levels in serum and liver fragments compared with control mice. Furthermore, we found that the expression of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis was increased with lncARSR overexpression, which was accompanied with the increase of hepatic de novo cholesterol synthesis rate. Mechanistically, we found that lncARSR increased the expression of mature SREBP-2, which is a primary transcription factor of HMGCR. And lncARSR activated the PI3K/Akt pathway. When PI3K/Akt pathway was blocked by LY294002, the inhibitor of PI3K, the effect of lncARSR on SREBP-2 and HMGCR disappeared. SIGNIFICANCE Our data indicated upregulated lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway, and implied that lncARSR may serve as a therapeutic target for cholesterol disorder.
Collapse
Affiliation(s)
- Jiabin Huang
- Department of Geratology, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang Province 154002, China.
| | - Shangjun Chen
- Department of Geratology, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang Province 154002, China
| | - Dongliang Cai
- Department of Geratology, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang Province 154002, China
| | - Deqiang Bian
- Department of Geratology, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang Province 154002, China
| | - Fengling Wang
- Department of Geratology, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang Province 154002, China
| |
Collapse
|
26
|
The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system. Nat Microbiol 2018; 3:367-377. [PMID: 29403013 DOI: 10.1038/s41564-017-0103-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.
Collapse
|
27
|
Li Y, Ye Y, Feng B, Qi Y. Long Noncoding RNA lncARSR Promotes Doxorubicin Resistance in Hepatocellular Carcinoma via Modulating PTEN-PI3K/Akt Pathway. J Cell Biochem 2017; 118:4498-4507. [PMID: 28464252 DOI: 10.1002/jcb.26107] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is generally resistant to chemotherapy due to intrinsic or acquired drug resistances. Many molecules and signaling pathways are involved in chemo-resistance of HCC cells. However, the contribution of long noncoding RNA (lncRNA) to chemo-resistance of HCC cells is still largely unknown. In this study, we revealed the critical roles of long noncoding RNA lncARSR in chemo-resistance of HCC cells. lncARSR is upregulated in HCC, associated with large tumor size and advanced BCLC stage, and indicts poor prognosis. Functional assays showed that overexpression of lncARSR enhances doxorubicin resistance of HCC cells in vitro and in vivo. And while knockdown of lncARSR increases sensitivity of HCC cells to doxorubicin in vitro and in vivo. Mechanistically, we found that lncARSR physically associates with PTEN mRNA, promotes PTEN mRNA degradation, decreases PTEN expression, and activates PI3K/Akt pathway. PTEN is downregulated in HCC, and the expression of PTEN is negatively correlated with lncARSR in HCC tissues. Furthermore, the effects of lncARSR overexpression on doxorubicin resistance could be reversed by PI3K/Akt pathway inhibitor, and lncARSR knockdown-induced doxorubicin sensitivity could be reversed by PTEN depletion. Taken together, our results showed that upregulated lncARSR promotes doxorubicin resistance in HCC via modulating PTEN-PI3K/Akt pathway, and implied that lncARSR may serve as a promising prognostic biomarker and therapeutic target for HCC chemo-resistance. J. Cell. Biochem. 118: 4498-4507, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bimin Feng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Qi
- Central Laboratory, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
28
|
Jeong Y, Shin H, Seo SW, Kim D, Cho S, Cho BK. Elucidation of bacterial translation regulatory networks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Hu J, Li T, Xu W, Zhan J, Chen H, He C, Wang Q. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:231. [PMID: 28261186 PMCID: PMC5306279 DOI: 10.3389/fmicb.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(−) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University Xi'an, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of SciencesWuhan, China; University of the Chinese Academy of SciencesBeijing, China
| | - Wen Xu
- Crop Designing Centre, Henan Academy of Agricultural Sciences Zhengzhou, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| | - Qiang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences Wuhan, China
| |
Collapse
|
30
|
Srikumar A, Krishna PS, Sivaramakrishna D, Kopfmann S, Hess WR, Swamy MJ, Lin-Chao S, Prakash JSS. The Ssl2245-Sll1130 Toxin-Antitoxin System Mediates Heat-induced Programmed Cell Death in Synechocystis sp. PCC6803. J Biol Chem 2017; 292:4222-4234. [PMID: 28104802 DOI: 10.1074/jbc.m116.748178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Two putative heat-responsive genes, ssl2245 and sll1130, constitute an operon that also has characteristics of a toxin-antitoxin system, thus joining several enigmatic features. Closely related orthologs of Ssl2245 and Sll1130 exist in widely different bacteria, which thrive under environments with large fluctuations in temperature and salinity, among which some are thermo-epilithic biofilm-forming cyanobacteria. Transcriptome analyses revealed that the clustered regularly interspaced short palindromic repeats (CRISPR) genes as well as several hypothetical genes were commonly up-regulated in Δssl2245 and Δsll1130 mutants. Genes coding for heat shock proteins and pilins were also induced in Δsll1130 We observed that the majority of cells in a Δsll1130 mutant strain remained unicellular and viable after prolonged incubation at high temperature (50 °C). In contrast, the wild type formed large cell clumps of dead and live cells, indicating the attempt to form biofilms under harsh conditions. Furthermore, we observed that Sll1130 is a heat-stable ribonuclease whose activity was inhibited by Ssl2245 at optimal temperatures but not at high temperatures. In addition, we demonstrated that Ssl2245 is physically associated with Sll1130 by electrostatic interactions, thereby inhibiting its activity at optimal growth temperature. This association is lost upon exposure to heat, leaving Sll1130 to exhibit its ribonuclease activity. Thus, the activation of Sll1130 leads to the degradation of cellular RNA and thereby heat-induced programmed cell death that in turn supports the formation of a more resistant biofilm for the surviving cells. We suggest to designate Ssl2245 and Sll1130 as MazE and MazF, respectively.
Collapse
Affiliation(s)
- Afshan Srikumar
- From the Department of Biotechnology and Bioinformatics, School of Life Sciences and
| | - Pilla Sankara Krishna
- From the Department of Biotechnology and Bioinformatics, School of Life Sciences and
| | | | - Stefan Kopfmann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jogadhenu S S Prakash
- From the Department of Biotechnology and Bioinformatics, School of Life Sciences and
| |
Collapse
|
31
|
Liu C, Lin J. Long noncoding RNA ZEB1-AS1 acts as an oncogene in osteosarcoma by epigenetically activating ZEB1. Am J Transl Res 2016; 8:4095-4105. [PMID: 27829995 PMCID: PMC5095304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to be dysregulated in many disease states and have pivotal roles in various pathophysiological processes. However, the expression, roles and potential mechanism of lncRNA ZEB1-AS1 in osteosarcoma are still unknown. In this study, we measured ZEB1-AS1 expression and the results showed that ZEB1-AS1 was upregulated in osteosarcoma tissues and cells. Increased expression of ZEB1-AS1 is correlated with larger tumor size, progressed Enneking stage, tumor metastasis, worse recurrence-free and overall survival of osteosarcoma patients. Functional experiments showed that enhanced expression of ZEB1-AS1 promotes osteosarcoma cells proliferation and migration. By contrast, ZEB1-AS1 knockdown inhibits osteosarcoma cells proliferation and migration. Mechanistically, ZEB1-AS1 directly binds and recruits p300 to the ZEB1 promoter region, induces an open chromatin structure, and activates ZEB1 transcription. There is a significant correlation between the expression of ZEB1-AS1 and ZEB1 in osteosarcoma tissues. ZEB1 depletion abrogates the roles of ZEB1-AS1 on the proliferation and migration of osteosarcoma cells. Collectively, these findings demonstrated that ZEB1-AS1 functions as an oncogene in osteosarcoma via epigenetically activating ZEB1 and could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal HospitalTaizhou, Zhejiang, China
| | - Jianjun Lin
- Department of Clinical Laboratory, Fourth Hospital of NingboXiangshan, Zhejiang, China
| |
Collapse
|
32
|
Saberi F, Kamali M, Najafi A, Yazdanparast A, Moghaddam MM. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell Mol Biol Lett 2016; 21:6. [PMID: 28536609 PMCID: PMC5415839 DOI: 10.1186/s11658-016-0007-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Naturally occurring antisense RNAs are small, diffusible, untranslated transcripts that pair to target RNAs at specific regions of complementarity to control their biological function by regulating gene expression at the post-transcriptional level. This review focuses on known cases of antisense RNA control in prokaryotes and provides an overview of some natural RNA-based mechanisms that bacteria use to modulate gene expression, such as mRNA sensors, riboswitches and antisense RNAs. We also highlight recent advances in RNA-based technology. The review shows that studies on both natural and synthetic systems are reciprocally beneficial.
Collapse
Affiliation(s)
- Fatemeh Saberi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alavieh Yazdanparast
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Zorgani MA, Quentin R, Lartigue MF. Regulatory RNAs in the Less Studied Streptococcal Species: From Nomenclature to Identification. Front Microbiol 2016; 7:1161. [PMID: 27507970 PMCID: PMC4960207 DOI: 10.3389/fmicb.2016.01161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
Streptococcal species are Gram-positive bacteria involved in severe and invasive diseases in humans and animals. Although, this group includes different pathogenic species involved in life-threatening infections for humans, it also includes beneficial species, such as Streptococcus thermophilus, which is used in yogurt production. In bacteria virulence factors are controlled by various regulatory networks including regulatory RNAs. For clearness and to develop logical thinking, we start this review with a revision of regulatory RNAs nomenclature. Previous reviews are mostly dealing with Streptococcus pyogenes and Streptococcus pneumoniae regulatory RNAs. We especially focused our analysis on regulatory RNAs in Streptococcus agalactiae, Streptococcus mutans, Streptococcus thermophilus and other less studied Streptococcus species. Although, S. agalactiae RNome remains largely unknown, sRNAs (small RNAs) are supposed to mediate regulation during environmental adaptation and host infection. In the case of S. mutans, sRNAs are suggested to be involved in competence regulation, carbohydrate metabolism, and Toxin–Antitoxin systems. A new category of miRNA-size small RNAs (msRNAs) was also identified for the first time in this species. The analysis of S. thermophilus sRNome shows that many sRNAs are associated to the bacterial immune system known as CRISPR-Cas system. Only few of the other different Streptococcus species have been the subject of studies pointed toward the characterization of regulatory RNAs. Finally, understanding bacterial sRNome can constitute one step forward to the elaboration of new strategies in therapy such as substitution of antibiotics in the management of S. agalactiae neonatal infections, prevention of S. mutans dental caries or use of S. thermophilus CRISPR-Cas system in genome editing applications.
Collapse
Affiliation(s)
- Mohamed A Zorgani
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, Tours France
| | - Roland Quentin
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, ToursFrance; Service de Bactériologie Virologie et Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Tours, ToursFrance
| | - Marie-Frédérique Lartigue
- ISP, INRA, Equipe 5 "Bactéries et Risque Materno-foetal", Faculté de Médecine, UMR 1282, Université François Rabelais de Tours, ToursFrance; Service de Bactériologie Virologie et Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Tours, ToursFrance
| |
Collapse
|
34
|
Van den Bossche A, Hardwick SW, Ceyssens PJ, Hendrix H, Voet M, Dendooven T, Bandyra KJ, De Maeyer M, Aertsen A, Noben JP, Luisi BF, Lavigne R. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 2016; 5:e16413. [PMID: 27447594 PMCID: PMC4980113 DOI: 10.7554/elife.16413] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.
Collapse
Affiliation(s)
- An Van den Bossche
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Division of Bacterial diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Division of Bacterial diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Tom Dendooven
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marc De Maeyer
- Biochemistry, Molecular and Structural Biology Scetion, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute, University of Hasselt, Diepenbeek, Belgium
- Transnational University Limburg, University of Hasselt, Diepenbeek, Belgium
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Toxins (Basel) 2016; 8:toxins8070228. [PMID: 27455323 PMCID: PMC4963859 DOI: 10.3390/toxins8070228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.
Collapse
|
36
|
Zhao Y, Hou Y, Zhao C, Liu F, Luan Y, Jing L, Li X, Zhu M, Zhao S. Cis-Natural Antisense Transcripts Are Mainly Co-expressed with Their Sense Transcripts and Primarily Related to Energy Metabolic Pathways during Muscle Development. Int J Biol Sci 2016; 12:1010-21. [PMID: 27489504 PMCID: PMC4971739 DOI: 10.7150/ijbs.14825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/30/2016] [Indexed: 12/22/2022] Open
Abstract
Cis-natural antisense transcripts (cis-NATs) are a new class of RNAs identified in various species. However, the biological functions of cis-NATs are largely unknown. In this study, we investigated the transcriptional characteristics and functions of cis-NATs in the muscle tissue of lean Landrace and indigenous fatty Lantang pigs. In total, 3,306 cis-NATs of 2,469 annotated genes were identified in the muscle tissue of pigs. More than 1,300 cis-NATs correlated with their sense genes at the transcriptional level, and approximately 80% of them were co-expressed in the two breeds. Furthermore, over 1,200 differentially expressed cis-NATs were identified during muscle development. Function annotation showed that the cis-NATs participated in muscle development mainly by co-expressing with genes involved in energy metabolic pathways, including citrate cycle (TCA cycle), glycolysis or gluconeogenesis, mitochondrial activation and so on. Moreover, these cis-NATs and their sense genes abruptly increased at the transition from the late fetal stages to the early postnatal stages and then decreased along with muscle development. In conclusion, the cis-NATs in the muscle tissue of pigs were identified and determined to be mainly co-expressed with their sense genes. The co-expressed cis-NATs and their sense gene were primarily related to energy metabolic pathways during muscle development in pigs. Our results offered novel evidence on the roles of cis-NATs during the muscle development of pigs.
Collapse
Affiliation(s)
- Yunxia Zhao
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Ye Hou
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Changzhi Zhao
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Fei Liu
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Yu Luan
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Lu Jing
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Xinyun Li
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Mengjin Zhu
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| | - Shuhong Zhao
- 1. Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
- 2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, PR China
| |
Collapse
|
37
|
Stazic D, Pekarski I, Kopf M, Lindell D, Steglich C. A Novel Strategy for Exploitation of Host RNase E Activity by a Marine Cyanophage. Genetics 2016; 203:1149-59. [PMID: 27182944 PMCID: PMC4937493 DOI: 10.1534/genetics.115.183475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that infection of Prochlorococcus MED4 by the cyanophage P-SSP7 leads to increased transcript levels of host endoribonuclease (RNase) E. However, it has remained enigmatic whether this is part of a host defense mechanism to degrade phage messenger RNA (mRNA) or whether this single-strand RNA-specific RNase is utilized by the phage. Here we describe a hitherto unknown means through which this cyanophage increases expression of RNase E during phage infection and concomitantly protects its own RNA from degradation. We identified two functionally different RNase E mRNA variants, one of which is significantly induced during phage infection. This transcript lacks the 5' UTR, is considerably more stable than the other transcript, and is likely responsible for increased RNase E protein levels during infection. Furthermore, selective enrichment and in vivo analysis of double-stranded RNA (dsRNA) during infection revealed that phage antisense RNAs (asRNAs) sequester complementary mRNAs to form dsRNAs, such that the phage protein-coding transcriptome is nearly completely covered by asRNAs. In contrast, the host protein-coding transcriptome is only partially covered by asRNAs. These data suggest that P-SSP7 orchestrates degradation of host RNA by increasing RNase E expression while masking its own transcriptome from RNase E degradation in dsRNA complexes. We propose that this combination of strategies contributes significantly to phage progeny production.
Collapse
Affiliation(s)
- Damir Stazic
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Irena Pekarski
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | - Matthias Kopf
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Debbie Lindell
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
38
|
Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell JC, Chen Y, Schäfer H. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle. Environ Microbiol 2016; 18:2754-66. [PMID: 27114231 DOI: 10.1111/1462-2920.13354] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
Abstract
The volatile organosulfur compound, dimethylsulfide (DMS), plays an important role in climate regulation and global sulfur biogeochemical cycles. Microbial oxidation of DMS to dimethylsulfoxide (DMSO) represents a major sink of DMS in surface seawater, yet the underlying molecular mechanisms and key microbial taxa involved are not known. Here, we reveal that Ruegeria pomeroyi, a model marine heterotrophic bacterium, can oxidize DMS to DMSO using trimethylamine monooxygenase (Tmm). Purified Tmm oxidizes DMS to DMSO at a 1:1 ratio. Mutagenesis of the tmm gene in R. pomeroyi completely abolished DMS oxidation and subsequent DMSO formation. Expression of Tmm and DMS oxidation in R. pomeroyi is methylamine-dependent and regulated at the post-transcriptional level. Considering that Tmm is present in approximately 20% of bacterial cells inhabiting marine surface waters, particularly the marine Roseobacter clade and the SAR11 clade, our observations contribute to a mechanistic understanding of biological DMSO production in surface seawater.
Collapse
Affiliation(s)
- Ian Lidbury
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Eileen Kröber
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agriculture Sciences, Urumqi, 830091, China
| | - Yijun Zhu
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| | - Yin Chen
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Hendrik Schäfer
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
39
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|
40
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
41
|
Abstract
A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip‐based oligo synthesis was applied to build a large library of 5,668 terminator–promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
42
|
Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME JOURNAL 2015; 10:1437-55. [PMID: 26623542 DOI: 10.1038/ismej.2015.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
Collapse
|
43
|
Bordoy AE, Chatterjee A. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach. PLoS One 2015. [PMID: 26222133 PMCID: PMC4519249 DOI: 10.1371/journal.pone.0133873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards design of synthetic biological switches.
Collapse
Affiliation(s)
- Antoni E. Bordoy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States of America
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States of America
- BioFrontiers institute, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
44
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Cho KH, Kim JH. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens. Front Genet 2015; 6:110. [PMID: 25859258 PMCID: PMC4374534 DOI: 10.3389/fgene.2015.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/19/2023] Open
Abstract
Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University Terre Haute, IN, USA
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science Washington, DC, USA
| |
Collapse
|
46
|
Wehner S, Mannala GK, Qing X, Madhugiri R, Chakraborty T, Mraheil MA, Hain T, Marz M. Detection of very long antisense transcripts by whole transcriptome RNA-Seq analysis of Listeria monocytogenes by semiconductor sequencing technology. PLoS One 2014; 9:e108639. [PMID: 25286309 PMCID: PMC4186813 DOI: 10.1371/journal.pone.0108639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host.
Collapse
Affiliation(s)
- Stefanie Wehner
- Faculty of Mathematics and Computer Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Gopala K. Mannala
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Xiaoxing Qing
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Mobarak A. Mraheil
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany
- * E-mail: (TH); (MM)
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich-Schiller-University Jena, Jena, Germany
- * E-mail: (TH); (MM)
| |
Collapse
|
47
|
Camsund D, Lindblad P. Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2014; 2:40. [PMID: 25325057 PMCID: PMC4181335 DOI: 10.3389/fbioe.2014.00040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity, and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength, and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology.
Collapse
Affiliation(s)
- Daniel Camsund
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| | - Peter Lindblad
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| |
Collapse
|
48
|
Schultze T, Izar B, Qing X, Mannala GK, Hain T. Current status of antisense RNA-mediated gene regulation in Listeria monocytogenes. Front Cell Infect Microbiol 2014; 4:135. [PMID: 25325017 PMCID: PMC4179725 DOI: 10.3389/fcimb.2014.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development.
Collapse
Affiliation(s)
- Tilman Schultze
- Department of Medicine, Institute of Medical Microbiology, Justus-Liebig University Giessen Giessen, Germany
| | - Benjamin Izar
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Xiaoxing Qing
- Department of Medicine, Institute of Medical Microbiology, Justus-Liebig University Giessen Giessen, Germany
| | - Gopala K Mannala
- Department of Medicine, Institute of Medical Microbiology, Justus-Liebig University Giessen Giessen, Germany
| | - Torsten Hain
- Department of Medicine, Institute of Medical Microbiology, Justus-Liebig University Giessen Giessen, Germany
| |
Collapse
|
49
|
Abstract
BACKGROUND Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial community, providing complementary information to the metagenomic sequencing of the community. The acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and to study the gene activities and their regulation in complex microbial communities and their dynamics. RESULTS In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript. CONCLUSION We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and their functions) in a microbial community. AVAILABILITY TransGeneScan is available as open-source software on SourceForge at https://sourceforge.net/projects/transgenescan/.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, IN 47401 Bloomington, USA
| |
Collapse
|
50
|
Georg J, Dienst D, Schürgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klähn S, Lokstein H, Hess WR, Wilde A. The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. THE PLANT CELL 2014; 26:3661-79. [PMID: 25248550 PMCID: PMC4213160 DOI: 10.1105/tpc.114.129767] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 05/19/2023]
Abstract
Little is known so far about RNA regulators of photosynthesis in plants, algae, or cyanobacteria. The small RNA PsrR1 (formerly SyR1) has been discovered in Synechocystis sp PCC 6803 and appears to be widely conserved within the cyanobacterial phylum. Expression of PsrR1 is induced shortly after a shift from moderate to high-light conditions. Artificial overexpression of PsrR1 led to a bleaching phenotype under moderate light growth conditions. Advanced computational target prediction suggested that several photosynthesis-related mRNAs could be controlled by PsrR1, a finding supported by the results of transcriptome profiling experiments upon pulsed overexpression of this small RNA in Synechocystis sp PCC 6803. We confirmed the interaction between PsrR1 and the ribosome binding regions of the psaL, psaJ, chlN, and cpcA mRNAs by mutational analysis in a heterologous reporter system. Focusing on psaL as a specific target, we show that the psaL mRNA is processed by RNase E only in the presence of PsrR1. Furthermore, we provide evidence for a posttranscriptional regulation of psaL by PsrR1 in the wild type at various environmental conditions and analyzed the consequences of PsrR1-based regulation on photosystem I. In summary, computational and experimental data consistently establish the small RNA PsrR1 as a regulatory factor controlling photosynthetic functions.
Collapse
Affiliation(s)
- Jens Georg
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Dennis Dienst
- Humboldt-University Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Nils Schürgers
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Thomas Wallner
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Dominik Kopp
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Damir Stazic
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | | | - Stephan Klähn
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Heiko Lokstein
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| | - Annegret Wilde
- University of Freiburg, Faculty of Biology, D-79104 Freiburg, Germany
| |
Collapse
|