1
|
Kirillov A, Morozova N, Kozlova S, Polinovskaya V, Smirnov S, Khodorkovskii M, Zeng L, Ispolatov Y, Severinov K. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population. Nucleic Acids Res 2022; 50:12355-12368. [PMID: 36477901 PMCID: PMC9757035 DOI: 10.1093/nar/gkac1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The action of Type II restriction-modification (RM) systems depends on restriction endonuclease (REase), which cleaves foreign DNA at specific sites, and methyltransferase (MTase), which protects host genome from restriction by methylating the same sites. We here show that protection from phage infection increases as the copy number of plasmids carrying the Type II RM Esp1396I system is increased. However, since increased plasmid copy number leads to both increased absolute intracellular RM enzyme levels and to a decreased MTase/REase ratio, it is impossible to determine which factor determines resistance/susceptibility to infection. By controlled expression of individual Esp1396I MTase or REase genes in cells carrying the Esp1396I system, we show that a shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from infection. Consistently, due to stochastic variation of MTase and REase amount in individual cells, bacterial cells that are productively infected by bacteriophage have significantly higher MTase to REase ratios than cells that ward off the infection. Our results suggest that cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.
Collapse
Affiliation(s)
- Alexander Kirillov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Natalia Morozova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Svetlana Kozlova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Vasilisa Polinovskaya
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Sergey Smirnov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Lanying Zeng
- Texas A&M University, Department of Biochemistry and Biophysics, Center for Phage Technology, College Station, TX 77843, USA
| | - Yaroslav Ispolatov
- University of Santiago of Chile (USACH), Physics Department, Av. Víctor Jara 3493, Santiago, Chile
| | - Konstantin Severinov
- To whom correspondence should be addressed. Tel: +7 9854570284; Fax: +1 848 445 5735;
| |
Collapse
|
2
|
Negri A, Werbowy O, Wons E, Dersch S, Hinrichs R, Graumann PL, Mruk I. Regulator-dependent temporal dynamics of a restriction-modification system's gene expression upon entering new host cells: single-cell and population studies. Nucleic Acids Res 2021; 49:3826-3840. [PMID: 33744971 PMCID: PMC8053105 DOI: 10.1093/nar/gkab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
Restriction-modification (R-M) systems represent a first line of defense against invasive DNAs, such as bacteriophage DNAs, and are widespread among bacteria and archaea. By acquiring a Type II R-M system via horizontal gene transfer, the new hosts generally become more resistant to phage infection, through the action of a restriction endonuclease (REase), which cleaves DNA at or near specific sequences. A modification methyltransferase (MTase) serves to protect the host genome against its cognate REase activity. The production of R-M system components upon entering a new host cell must be finely tuned to confer protective methylation before the REase acts, to avoid host genome damage. Some type II R-M systems rely on a third component, the controller (C) protein, which is a transcription factor that regulates the production of REase and/or MTase. Previous studies have suggested C protein effects on the dynamics of expression of an R-M system during its establishment in a new host cell. Here, we directly examine these effects. By fluorescently labelling REase and MTase, we demonstrate that lack of a C protein reduces the delay of REase production, to the point of being simultaneous with, or even preceding, production of the MTase. Single molecule tracking suggests that a REase and a MTase employ different strategies for their target search within host cells, with the MTase spending much more time diffusing in proximity to the nucleoid than does the REase. This difference may partially ameliorate the toxic effects of premature REase expression.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Olesia Werbowy
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Simon Dersch
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Rebecca Hinrichs
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
3
|
Lejars M, Hajnsdorf E. The world of asRNAs in Gram-negative and Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194489. [PMID: 31935527 DOI: 10.1016/j.bbagrm.2020.194489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Bacteria exhibit an amazing diversity of mechanisms controlling gene expression to both maintain essential functions and modulate accessory functions in response to environmental cues. Over the years, it has become clear that bacterial regulation of gene expression is still far from fully understood. This review focuses on antisense RNAs (asRNAs), a class of RNA regulators defined by their location in cis and their perfect complementarity with their targets, as opposed to small RNAs (sRNAs) which act in trans with only short regions of complementarity. For a long time, only few functional asRNAs in bacteria were known and were almost exclusively found on mobile genetic elements (MGEs), thus, their importance among the other regulators was underestimated. However, the extensive application of transcriptomic approaches has revealed the ubiquity of asRNAs in bacteria. This review aims to present the landscape of studied asRNAs in bacteria by comparing 67 characterized asRNAs from both Gram-positive and Gram-negative bacteria. First we describe the inherent ambiguity in the existence of asRNAs in bacteria, second, we highlight their diversity and their involvement in all aspects of bacterial life. Finally we compare their location and potential mode of action toward their target between Gram-negative and Gram-positive bacteria and present tendencies and exceptions that could lead to a better understanding of asRNA functions.
Collapse
Affiliation(s)
- Maxence Lejars
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
4
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
5
|
Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci Rep 2019; 9:5808. [PMID: 30967604 PMCID: PMC6456624 DOI: 10.1038/s41598-019-42311-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification (R-M) systems are highly widespread among bacteria and archaea, and they appear to play a pivotal role in modulating horizontal gene transfer, as well as in protecting the host organism against viruses and other invasive DNA particles. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). If the cell is to survive, the counteracting activities as toxin and antitoxin, must be finely balanced in vivo. The molecular basis of this regulatory process remains unclear and current searches for regulatory elements in R-M modules are focused mainly at the transcription step. In this report, we show new aspects of REase control that are linked to translation. We used the EcoVIII R-M system as a model. Both, the REase and MTase genes for this R-M system contain an unusually high number of rare arginine codons (AGA and AGG) when compared to the rest of the E. coli K-12 genome. Clusters of these codons near the N-terminus of the REase greatly affect the translational efficiency. Changing these to higher frequency codons for E. coli (CGC) improves the REase synthesis, making the R-M system more potent to defend its host against bacteriophages. However, this improved efficiency in synthesis reduces host fitness due to increased autorestriction. We hypothesize that expression of the endonuclease gene can be modulated depending on the host genetic context and we propose a novel post-transcriptional mode of R–M system regulation that alleviates the potential lethal action of the restriction enzyme.
Collapse
|
6
|
Rodic A, Blagojevic B, Zdobnov E, Djordjevic M, Djordjevic M. Understanding key features of bacterial restriction-modification systems through quantitative modeling. BMC SYSTEMS BIOLOGY 2017; 11:377. [PMID: 28466789 PMCID: PMC5333194 DOI: 10.1186/s12918-016-0377-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Restriction-modification (R-M) systems are rudimentary bacterial immune systems. The main components include restriction enzyme (R), which cuts specific unmethylated DNA sequences, and the methyltransferase (M), which protects the same DNA sequences. The expression of R-M system components is considered to be tightly regulated, to ensure successful establishment in a naïve bacterial host. R-M systems are organized in different architectures (convergent or divergent) and are characterized by different features, i.e. binding cooperativities, dissociation constants of dimerization, translation rates, which ensure this tight regulation. It has been proposed that R-M systems should exhibit certain dynamical properties during the system establishment, such as: i) a delayed expression of R with respect to M, ii) fast transition of R from “OFF” to “ON” state, iii) increased stability of the toxic molecule (R) steady-state levels. It is however unclear how different R-M system features and architectures ensure these dynamical properties, particularly since it is hard to address this question experimentally. Results To understand design of different R-M systems, we computationally analyze two R-M systems, representative of the subset controlled by small regulators called ‘C proteins’, and differing in having convergent or divergent promoter architecture. We show that, in the convergent system, abolishing any of the characteristic system features adversely affects the dynamical properties outlined above. Moreover, an extreme binding cooperativity, accompanied by a very high dissociation constant of dimerization, observed in the convergent system, but absent from other R-M systems, can be explained in terms of the same properties. Furthermore, we develop the first theoretical model for dynamics of a divergent R-M system, which does not share any of the convergent system features, but has overlapping promoters. We show that i) the system dynamics exhibits the same three dynamical properties, ii) introducing any of the convergent system features to the divergent system actually diminishes these properties. Conclusions Our results suggest that different R-M architectures and features may be understood in terms of constraints imposed by few simple dynamical properties of the system, providing a unifying framework for understanding these seemingly diverse systems. We also provided predictions for the perturbed R-M systems dynamics, which may in future be tested through increasingly available experimental techniques, such as re-engineering R-M systems and single-cell experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0377-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andjela Rodic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.,Multidisciplinary PhD program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Bojana Blagojevic
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Evgeny Zdobnov
- Department of Genetic Medicine and Development, University of Geneva and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Marko Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
7
|
Koroleva ON, Dubrovin EV, Yaminsky IV, Drutsa VL. Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta Gen Subj 2016; 1860:2086-96. [DOI: 10.1016/j.bbagen.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023]
|
8
|
Morozova N, Sabantsev A, Bogdanova E, Fedorova Y, Maikova A, Vedyaykin A, Rodic A, Djordjevic M, Khodorkovskii M, Severinov K. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system. Nucleic Acids Res 2016; 44:790-800. [PMID: 26687717 PMCID: PMC4737168 DOI: 10.1093/nar/gkv1490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 11/14/2022] Open
Abstract
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.
Collapse
Affiliation(s)
- Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Anton Sabantsev
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ekaterina Bogdanova
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yana Fedorova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Anna Maikova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Alexey Vedyaykin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Andjela Rodic
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Djordjevic
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Konstantin Severinov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Rezulak M, Borsuk I, Mruk I. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system. Nucleic Acids Res 2015; 44:2646-60. [PMID: 26656489 PMCID: PMC4824078 DOI: 10.1093/nar/gkv1331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Restriction-modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems.
Collapse
Affiliation(s)
- Monika Rezulak
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Izabela Borsuk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
10
|
Tanas AS, Kuznetsova EB, Borisova ME, Rudenko VV, Zaletayev DV, Strelnikov VV. Reduced representation bisulfite sequencing design for assessing the methylation of human CpG islands in large samples. Mol Biol 2015. [DOI: 10.1134/s0026893315040184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mruk I, Kobayashi I. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 2013; 42:70-86. [PMID: 23945938 PMCID: PMC3874152 DOI: 10.1093/nar/gkt711] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the simplest classes of genes involved in programmed death is that containing the toxin–antitoxin (TA) systems of prokaryotes. These systems are composed of an intracellular toxin and an antitoxin that neutralizes its effect. These systems, now classified into five types, were initially discovered because some of them allow the stable maintenance of mobile genetic elements in a microbial population through postsegregational killing or the death of cells that have lost these systems. Here, we demonstrate parallels between some TA systems and restriction–modification systems (RM systems). RM systems are composed of a restriction enzyme (toxin) and a modification enzyme (antitoxin) and limit the genetic flux between lineages with different epigenetic identities, as defined by sequence-specific DNA methylation. The similarities between these systems include their postsegregational killing and their effects on global gene expression. Both require the finely regulated expression of a toxin and antitoxin. The antitoxin (modification enzyme) or linked protein may act as a transcriptional regulator. A regulatory antisense RNA recently identified in an RM system can be compared with those RNAs in TA systems. This review is intended to generalize the concept of TA systems in studies of stress responses, programmed death, genetic conflict and epigenetics.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan and Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | |
Collapse
|
12
|
Williams K, Savageau MA, Blumenthal RM. A bistable hysteretic switch in an activator-repressor regulated restriction-modification system. Nucleic Acids Res 2013; 41:6045-57. [PMID: 23630319 PMCID: PMC3695507 DOI: 10.1093/nar/gkt324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Restriction–modification (RM) systems are extremely widespread among bacteria and archaea, and are often specified by mobile genetic elements. In type II RM systems, where the restriction endonuclease (REase) and protective DNA methyltransferase (MTase) are separate proteins, a major regulatory challenge is delaying expression of the REase relative to the MTase after RM genes enter a new host cell. Basic understanding of this regulation is available for few RM systems, and detailed understanding for none. The PvuII RM system is one of a large subset in which the central regulatory role is played by an activator–repressor protein (called C, for controller). REase expression depends upon activation by C, whereas expression of the MTase does not. Thus delay of REase expression depends on the rate of C-protein accumulation. This is a nonlinear process, as C also activates transcription of its own gene. Mathematical modeling of the PvuII system led to the unexpected predictions of responsiveness to a factor not previously studied in RM system control—gene copy number—and of a hysteretic response. In this study, those predictions have been confirmed experimentally. The results may apply to many other C-regulated RM systems, and help explain their ability to spread so widely.
Collapse
Affiliation(s)
- Kristen Williams
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, University of Toledo, Toledo, OH 43614, USA
| | | | | |
Collapse
|