1
|
Gao J, Wu XJ, Zheng XN, Li TT, Kou YJ, Wang XC, Wang M, Zhu XQ. Functional Characterization of Eight Zinc Finger Motif-Containing Proteins in Toxoplasma gondii Type I RH Strain Using the CRISPR-Cas9 System. Pathogens 2023; 12:1232. [PMID: 37887748 PMCID: PMC10609756 DOI: 10.3390/pathogens12101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The Zinc finger protein (ZFP) family is widely distributed in eukaryotes and interacts with DNA, RNA, and various proteins to participate in many molecular processes. In the present study, the biological functions of eight ZFP genes in the lytic cycle and the pathogenicity of Toxoplasma gondii were examined using the CRISPR-Cas9 system. Immunofluorescence showed that four ZFPs (RH248270-HA, RH255310-HA, RH309200-HA, and RH236640-HA) were localized in the cytoplasm, and one ZFP (RH273150-HA) was located in the nucleus, while the expression level of RH285190-HA, RH260870-HA, and RH248450-HA was undetectable. No significant differences were detected between seven RHΔzfp strains (RHΔ285190, RHΔ248270, RHΔ260870, RHΔ255310, RHΔ309200, RHΔ248450, and RHΔ236640) and the wild-type (WT) strain in the T. gondii lytic cycle, including plaque formation, invasion, intracellular replication, and egress, as well as in vitro virulence (p > 0.05). However, the RHΔ273150 strain exhibited significantly lower replication efficiency compared to the other seven RHΔzfp strains and the WT strain, while in vivo virulence in mice was not significantly affected. Comparative expression analysis of the eight zfp genes indicates that certain genes may have essential functions in the sexual reproductive stage of T. gondii. Taken together, these findings expand our current understanding of the roles of ZFPs in T. gondii.
Collapse
Affiliation(s)
- Jin Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.G.); (X.-J.W.); (X.-N.Z.); (Y.-J.K.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Xiao-Jing Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.G.); (X.-J.W.); (X.-N.Z.); (Y.-J.K.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.G.); (X.-J.W.); (X.-N.Z.); (Y.-J.K.)
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Yong-Jie Kou
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.G.); (X.-J.W.); (X.-N.Z.); (Y.-J.K.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Xin-Cheng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (T.-T.L.); (X.-C.W.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.G.); (X.-J.W.); (X.-N.Z.); (Y.-J.K.)
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Ashby EC, Havens JL, Rollosson LM, Hardin J, Schulz D. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome. Microbiol Spectr 2023; 11:e0014723. [PMID: 37097159 PMCID: PMC10269879 DOI: 10.1128/spectrum.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
The eukaryotic protozoan parasite Trypanosoma brucei is transmitted by the tsetse fly to both humans and animals, where it causes a fatal disease called African trypanosomiasis. While the parasite lacks canonical DNA sequence-specific transcription factors, it does possess histones, histone modifications, and proteins that write, erase, and read histone marks. Chemical inhibition of chromatin-interacting bromodomain proteins has previously been shown to perturb bloodstream specific trypanosome processes, including silencing of the variant surface glycoprotein (VSG) genes and immune evasion. Transcriptomic changes that occur in bromodomain-inhibited bloodstream parasites mirror many of the changes that occur as parasites developmentally progress from the bloodstream to the insect stage. We performed transcriptome sequencing (RNA-seq) time courses to determine the effects of chemical bromodomain inhibition in insect-stage parasites using the compound I-BET151. We found that treatment with I-BET151 causes large changes in the transcriptome of insect-stage parasites and also perturbs silencing of VSG genes. The transcriptomes of bromodomain-inhibited parasites share some features with early metacyclic-stage parasites in the fly salivary gland, implicating bromodomain proteins as important for regulating transcript levels for developmentally relevant genes. However, the downregulation of surface procyclin protein that typically accompanies developmental progression is absent in bromodomain-inhibited insect-stage parasites. We conclude that chemical modulation of bromodomain proteins causes widespread transcriptomic changes in multiple trypanosome life cycle stages. Understanding the gene-regulatory processes that facilitate transcriptome remodeling in this highly diverged eukaryote may shed light on how these mechanisms evolved. IMPORTANCE The disease African trypanosomiasis imposes a severe human and economic burden for communities in sub-Saharan Africa. The parasite that causes the disease is transmitted to the bloodstream of a human or ungulate via the tsetse fly. Because the environments of the fly and the bloodstream differ, the parasite modulates the expression of its genes to accommodate two different lifestyles in these disparate niches. Perturbation of bromodomain proteins that interact with histone proteins around which DNA is wrapped (chromatin) causes profound changes in gene expression in bloodstream-stage parasites. This paper reports that gene expression is also affected by chemical bromodomain inhibition in insect-stage parasites but that the genes affected differ depending on life cycle stage. Because trypanosomes diverged early from model eukaryotes, an understanding of how trypanosomes regulate gene expression may lend insight into how gene-regulatory mechanisms evolved. This could also be leveraged to generate new therapeutic strategies.
Collapse
Affiliation(s)
- Ethan C. Ashby
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | | | | | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
3
|
Ceballos-Pérez G, Rico-Jiménez M, Gómez-Liñán C, Estévez AM. Role of the RNA-binding protein ZC3H41 in the regulation of ribosomal protein messenger RNAs in trypanosomes. Parasit Vectors 2023; 16:118. [PMID: 37004055 PMCID: PMC10064699 DOI: 10.1186/s13071-023-05728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Trypanosomes are single-celled eukaryotes that rely heavily on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins play essential roles in regulating the fate, abundance and translation of messenger RNAs (mRNAs). Among these, zinc finger proteins of the cysteine3histidine (CCCH) class have been shown to be key players in cellular processes as diverse as differentiation, regulation of the cell cycle and translation. ZC3H41 is an essential zinc finger protein that has been described as a component of spliced leader RNA granules and nutritional stress granules, but its role in RNA metabolism is unknown. METHODS Cell cycle analysis in ZC3H41- and Z41AP-depleted cells was carried out using 4',6-diamidino-2-phenylindole staining, microscopic examination and flow cytometry. The identification of ZC3H41 protein partners was done using tandem affinity purification and mass spectrometry. Next-generation sequencing was used to evaluate the effect of ZC3H41 depletion on the transcriptome of procyclic Trypanosoma brucei cells, and also to identify the cohort of mRNAs associated with the ZC3H41/Z41AP complex. Levels of 5S ribosomal RNA (rRNA) species in ZC3H41- and Z41AP-depleted cells were assessed by quantitative reverse transcription-polymerase chain reaction. Surface sensing of translation assays were used to monitor global translation. RESULTS We showed that depletion of the zinc finger protein ZC3H41 resulted in marked cell cycle defects and abnormal cell morphologies. ZC3H41 was found associated with an essential protein, which we named Z41AP, forming a stable heterodimer, and also with proteins of the poly(A)-binding protein 1 complex. The identification of mRNAs associated with the ZC3H41/Z41AP complex revealed that it is primarily composed of ribosomal protein mRNAs, and that binding to target transcripts is diminished upon nutritional stress. In addition, we observed that mRNAs encoding several proteins involved in the maturation of 5S rRNA are also associated with the ZC3H41/Z41AP complex. Finally, we showed that depletion of either ZC3H41 or Z41AP led to the accumulation of 5S rRNA precursors and a decrease of protein translation. CONCLUSIONS We propose that ZC3H41 and Z41AP play important roles in controlling the fate of ribosomal components in response to environmental cues.
Collapse
Affiliation(s)
- Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Miriam Rico-Jiménez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
- Estación Experimental del Zaidín (EEZ), CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
4
|
Ashby E, Paddock L, Betts HL, Liao J, Miller G, Porter A, Rollosson LM, Saada C, Tang E, Wade SJ, Hardin J, Schulz D. Genomic Occupancy of the Bromodomain Protein Bdf3 Is Dynamic during Differentiation of African Trypanosomes from Bloodstream to Procyclic Forms. mSphere 2022; 7:e0002322. [PMID: 35642518 PMCID: PMC9241505 DOI: 10.1128/msphere.00023-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 12/05/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human and animal African trypanosomiasis, cycles between a mammalian host and a tsetse fly vector. The parasite undergoes huge changes in morphology and metabolism during adaptation to each host environment. These changes are reflected in the different transcriptomes of parasites living in each host. However, it remains unclear whether chromatin-interacting proteins help mediate these changes. Bromodomain proteins localize to transcription start sites in bloodstream parasites, but whether the localization of bromodomain proteins changes as parasites differentiate from bloodstream to insect stages remains unknown. To address this question, we performed cleavage under target and release using nuclease (CUT&RUN) against bromodomain protein 3 (Bdf3) in parasites differentiating from bloodstream to insect forms. We found that Bdf3 occupancy at most loci increased at 3 h following onset of differentiation and decreased thereafter. A number of sites with increased bromodomain protein occupancy lie proximal to genes with altered transcript levels during differentiation, such as procyclins, procyclin-associated genes, and invariant surface glycoproteins. Most Bdf3-occupied sites are observed throughout differentiation. However, one site appears de novo during differentiation and lies proximal to the procyclin gene locus housing genes essential for remodeling surface proteins following transition to the insect stage. These studies indicate that occupancy of chromatin-interacting proteins is dynamic during life cycle stage transitions and provide the groundwork for future studies on the effects of changes in bromodomain protein occupancy. Additionally, the adaptation of CUT&RUN for Trypanosoma brucei provides other researchers with an alternative to chromatin immunoprecipitation (ChIP). IMPORTANCE The parasite Trypanosoma brucei is the causative agent of human and animal African trypanosomiasis (sleeping sickness). Trypanosomiasis, which affects humans and cattle, is fatal if untreated. Existing drugs have significant side effects. Thus, these parasites impose a significant human and economic burden in sub-Saharan Africa, where trypanosomiasis is endemic. T. brucei cycles between the mammalian host and a tsetse fly vector, and parasites undergo huge changes in morphology and metabolism to adapt to different hosts. Here, we show that DNA-interacting bromodomain protein 3 (Bdf3) shows changes in occupancy at its binding sites as parasites transition from the bloodstream to the insect stage. Additionally, a new binding site appears near the locus responsible for remodeling of parasite surface proteins during transition to the insect stage. Understanding the mechanisms behind host adaptation is important for understanding the life cycle of the parasite.
Collapse
Affiliation(s)
- Ethan Ashby
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Lucinda Paddock
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Hannah L. Betts
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Jingwen Liao
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Geneva Miller
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Anya Porter
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | | | - Carrie Saada
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Eric Tang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Serenity J. Wade
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
5
|
Abstract
Trypanosoma brucei is unusually reliant on mRNA-binding proteins to control mRNA fate, because its protein-coding genes lack individual promoters. We here focus on three trypanosome RNA-binding proteins. ZC3H22 is specific to Tsetse fly forms, RBP9 is preferentially expressed in bloodstream forms; and DRBD7 is constitutively expressed. Depletion of RBP9 or DRBD7 did not affect bloodstream-form trypanosome growth. ZC3H22 depletion from procyclic forms caused cell clumping, decreased expression of genes required for cell growth and proliferation, and increased expression of some epimastigote markers. Apart from decreases in mRNAs encoding enzymes of glucose metabolism, levels of most ZC3H22-bound transcripts were unaffected by ZC3H22 depletion. We compared ZC3H22, RBP9 and DRBD7 RNA binding with that of 16 other RNA-binding proteins. ZC3H22, PUF3 and ERBP1 show a preference for ribosomal protein mRNAs. RBP9 preferentially binds mRNAs that are more abundant in bloodstream forms than in procyclic forms. RBP9, ZC3H5, ZC3H30 and DRBD7 prefer mRNAs with long coding regions; UBP1-associated mRNAs have long 3′-untranslated regions; and RRM1 prefers mRNAs with long 3′or 5′-untranslated regions. We suggest that proteins that prefer long mRNAs may have relatively short or degenerate binding sites, and that preferences for A or U increase binding in untranslated regions.
Collapse
|
6
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
7
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
8
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
9
|
Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form. Mol Biochem Parasitol 2018; 221:1-9. [DOI: 10.1016/j.molbiopara.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
10
|
de Freitas Nascimento J, Kelly S, Sunter J, Carrington M. Codon choice directs constitutive mRNA levels in trypanosomes. eLife 2018; 7:e32467. [PMID: 29543152 PMCID: PMC5896880 DOI: 10.7554/elife.32467] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Selective transcription of individual protein coding genes does not occur in trypanosomes and the cellular copy number of each mRNA must be determined post-transcriptionally. Here, we provide evidence that codon choice directs the levels of constitutively expressed mRNAs. First, a novel codon usage metric, the gene expression codon adaptation index (geCAI), was developed that maximised the relationship between codon choice and the measured abundance for a transcriptome. Second, geCAI predictions of mRNA levels were tested using differently coded GFP transgenes and were successful over a 25-fold range, similar to the variation in endogenous mRNAs. Third, translation was necessary for the accelerated mRNA turnover resulting from codon choice. Thus, in trypanosomes, the information determining the levels of most mRNAs resides in the open reading frame and translation is required to access this information.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Jack Sunter
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Mark Carrington
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
11
|
Erben ED. High-throughput Methods for Dissection of Trypanosome Gene Regulatory Networks. Curr Genomics 2018; 19:78-86. [PMID: 29491736 PMCID: PMC5814965 DOI: 10.2174/1389202918666170815125336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
From synthesis to decay, mRNA associates with RNA-binding proteins (RBPs) establishing dynamic ribonucleoprotein particles (RNPs). Understanding the composition and function of RNPs is fundamental to understanding how eukaryotic mRNAs are controlled. This is especially relevant for trypanosomes and related kinetoplastid parasites, which mostly rely on post-transcriptional mechanisms to control gene expression. Crucial for trypanosome differentiation, development, or even response to heat shock, RBPs are known to be essential modulators of diverse molecular processes. The recent application of large-scale quantitative methods, such as Next-Generation Sequencing (NGS) and quantitative mass spectrometry, has revealed new exciting features about the parasite RNA-related metabolism. Novel proteins carrying RNA-binding activity, including many proteins without RNA-related ontology were discovered setting a necessary groundwork to get in insights into RNA biology. Conclusion: This review aims to give the reader an understanding of current trypanosome RNP research, highlighting the progress made using high-throughput approaches.
Collapse
Affiliation(s)
- Esteban D Erben
- Zentrum fur Molekulare Biologie der Universitet Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120Heidelberg, Germany
| |
Collapse
|
12
|
Benz C, Dondelinger F, McKean PG, Urbaniak MD. Cell cycle synchronisation of Trypanosoma brucei by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Sci Rep 2017; 7:17599. [PMID: 29242601 PMCID: PMC5730572 DOI: 10.1038/s41598-017-17779-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023] Open
Abstract
We report an optimised centrifugal counter-flow elutriation protocol for the rapid and direct isolation of G1 cell cycle synchronised populations of both the procyclic and bloodstream form stages of Trypanosoma brucei that yields viable and proliferative cells. The high quality of the synchronisation achieved can be judged by the uniform DNA content, narrow size distribution, synchronous division, and the maintenance of synchronicity into subsequent cell cycles. We show that early-eluting fractions represent different G1 subpopulations that progress through the cell cycle with distinct temporal profiles post-elutriation, as exemplified by the observation of the maturation of a second flagellar basal body in late G1 phase, DNA replication in S phase, and dimethylation of histone H3 in mitosis/cytokinesis. We use our temporal observations to construct a revised model of the relative timing and duration of the nuclear and kinetoplast cell cycle that differs from the current model.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Frank Dondelinger
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Paul G McKean
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
13
|
Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006560. [PMID: 28800584 PMCID: PMC5568443 DOI: 10.1371/journal.ppat.1006560] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/23/2017] [Accepted: 07/29/2017] [Indexed: 01/06/2023] Open
Abstract
In nearly all eukaryotes, cellular differentiation is governed by changes in transcription, and stabilized by chromatin and DNA modification. Gene expression control in the pathogen Trypanosoma brucei, in contrast, relies almost exclusively on post-transcriptional mechanisms, so RNA binding proteins must assume the burden that is usually borne by transcription factors. T. brucei multiply in the blood of mammals as bloodstream forms, and in the midgut of Tsetse flies as procyclic forms. We show here that a single RNA-binding protein, RBP10, promotes the bloodstream-form trypanosome differentiation state. Depletion of RBP10 from bloodstream-form trypanosomes gives cells that can grow only as procyclic forms; conversely, expression of RBP10 in procyclic forms converts them to bloodstream forms. RBP10 binds to procyclic-specific mRNAs containing an UAUUUUUU motif, targeting them for translation repression and destruction. Products of RBP10 target mRNAs include not only the major procyclic surface protein and enzymes of energy metabolism, but also protein kinases and stage-specific RNA-binding proteins: this suggests that alterations in RBP10 trigger a regulatory cascade.
Collapse
|
14
|
De Pablos LM, Kelly S, de Freitas Nascimento J, Sunter J, Carrington M. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biol 2017; 7:rsob.160159. [PMID: 28381627 PMCID: PMC5413900 DOI: 10.1098/rsob.160159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.
Collapse
Affiliation(s)
- Luis Miguel De Pablos
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.,Centre for Immunology and Infection (CII). Biology Dept., University of York, York YO10 5DD, UK
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Jack Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
15
|
Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. J Biosci 2017; 42:189-207. [PMID: 28229978 DOI: 10.1007/s12038-016-9660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.
Collapse
|
16
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
17
|
Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, Padmanabhan P, Ndegwa DM, Temanni MR, Corrada Bravo H, El-Sayed NM, Burleigh BA. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathog 2016; 12:e1005511. [PMID: 27046031 PMCID: PMC4821583 DOI: 10.1371/journal.ppat.1005511] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our comprehensive, high resolution transcriptomic dataset provides a substantially more detailed interpretation of T. cruzi infection biology and offers a basis for future drug and vaccine discovery efforts. In-depth knowledge of the functional processes governing host colonization and transmission of pathogenic microorganisms is essential for the advancement of effective intervention strategies. This study focuses on Trypanosoma cruzi, the vector-borne protozoan parasite responsible for human Chagas disease and the leading cause of infectious myocarditis worldwide. To gain global insights into the biology of this parasite and its interaction with mammalian host cells, we have exploited a deep-sequencing approach to generate comprehensive, high-resolution transcriptomic maps for mammalian-infective stages of T. cruzi with the simultaneous interrogation of the human host cell transcriptome across an infection time course. We demonstrate that the establishment of intracellular T. cruzi infection in mammalian host cells is accompanied by extensive remodeling of the parasite and host cell transcriptomes. Despite the lack of transcriptional control mechanisms in trypanosomatids, our analyses identified functionally-enriched processes within sets of developmentally-regulated transcripts in T. cruzi that align with known or predicted biological features of the parasite. The novel insights into the biology of intracellular T. cruzi infection and the regulation of amastigote development gained in this study establish a unique foundation for functional network analyses that will be instrumental in providing functional links between parasite dependencies and host functional pathways that have the potential to be exploited for intervention.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sheena Shah-Simpson
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kwame Okrah
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - A Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jungmin Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Prasad Padmanabhan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David M Ndegwa
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - M Ramzi Temanni
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Héctor Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 2016; 100:457-71. [PMID: 26784394 DOI: 10.1111/mmi.13328] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Control of gene expression at the post-transcriptional level is essential in all organisms, and RNA-binding proteins play critical roles from mRNA synthesis to decay. To fully understand this process, it is necessary to identify the complete set of RNA-binding proteins and the functional consequences of the protein-mRNA interactions. Here, we provide an overview of the proteins that bind to mRNAs and their functions in the pathogenic bloodstream form of Trypanosoma brucei. We describe the production of a small collection of open-reading frames encoding proteins potentially involved in mRNA metabolism. With this ORFeome collection, we used tethering to screen for proteins that play a role in post-transcriptional control. A yeast two-hybrid screen showed that several of the discovered repressors interact with components of the CAF1/NOT1 deadenylation complex. To identify the RNA-binding proteins, we obtained the mRNA-bound proteome. We identified 155 high-confidence candidates, including many not previously annotated as RNA-binding proteins. Twenty seven of these proteins affected reporter expression in the tethering screen. Our study provides novel insights into the potential trypanosome mRNPs composition, architecture and function.
Collapse
Affiliation(s)
- Smiths Lueong
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clementine Merce
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| | - Bernd Fischer
- Computational Genome Biology, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Esteban D Erben
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| |
Collapse
|
19
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
20
|
Fritz M, Vanselow J, Sauer N, Lamer S, Goos C, Siegel TN, Subota I, Schlosser A, Carrington M, Kramer S. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Res 2015; 43:8013-32. [PMID: 26187993 PMCID: PMC4652759 DOI: 10.1093/nar/gkv731] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023] Open
Abstract
RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.
Collapse
Affiliation(s)
- Melanie Fritz
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Vanselow
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nadja Sauer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephanie Lamer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ines Subota
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mark Carrington
- Department of Biochemistry, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
21
|
Bühlmann M, Walrad P, Rico E, Ivens A, Capewell P, Naguleswaran A, Roditi I, Matthews KR. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res 2015; 43:4491-504. [PMID: 25873624 PMCID: PMC4482084 DOI: 10.1093/nar/gkv330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023] Open
Abstract
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Collapse
Affiliation(s)
- Melanie Bühlmann
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Pegine Walrad
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK Centre for Immunology and Infection, Department of Biology, University of York, YO10 5DD, UK
| | - Eva Rico
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Paul Capewell
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
22
|
Abstract
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Collapse
|
23
|
Alves LR, Oliveira C, Mörking PA, Kessler RL, Martins ST, Romagnoli BAA, Marchini FK, Goldenberg S. The mRNAs associated to a zinc finger protein from Trypanosoma cruzi shift during stress conditions. RNA Biol 2014; 11:921-33. [PMID: 25180711 PMCID: PMC4179965 DOI: 10.4161/rna.29622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trypanosome gene expression is regulated almost exclusively at the posttranscriptional level, through mRNA stability, storage and degradation. Here, we characterize the ribonucleoprotein complex (mRNPs) corresponding to the zinc finger protein TcZC3H39 from T. cruzi comparing cells growing in normal conditions and under nutritional stress. The nutritional stress is a key step during T. cruzi differentiation from epimastigote form to human infective metacyclic trypomastigote form. The mechanisms by which the stress, altogether with other stimuli, triggers differentiation is not well understood. This work aims to characterize the TcZC3H39 protein during stress response. Using cells cultured in normal and stress conditions, we observed a dynamic change in TcZC3H39 granule distribution, which appeared broader in stressed epimastigotes. The protein core of the TcZC3H39-mRNP is composed of ribosomes, translation factors and RBPs. The TcZC3H39-mRNP could act sequestering highly expressed mRNAs and their associated ribosomes, potentially slowing translation in stress conditions. A shift were observed in the mRNAs associated with TcZC3H39: the number of targets in unstressed epimastigotes was smaller than that in stressed parasites, with no clear functional clustering in normal conditions. By contrast, in stressed parasites, the targets of TcZC3H39 were mRNAs encoding ribosomal proteins and a remarkable enrichment in mRNAs for the cytochrome c complex (COX), highly expressed mRNAs in the replicative form. This identification of a new component of RNA granules in T. cruzi, the TcZC3H39 protein, provides new insight into the mechanisms involved in parasite stress responses and the regulation of gene expression during T. cruzi differentiation.
Collapse
|
24
|
Erben ED, Fadda A, Lueong S, Hoheisel JD, Clayton C. A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog 2014; 10:e1004178. [PMID: 24945722 PMCID: PMC4055773 DOI: 10.1371/journal.ppat.1004178] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022] Open
Abstract
In trypanosomatids, gene expression is regulated mainly by post-transcriptional mechanisms, which affect mRNA processing, translation and degradation. Currently, our understanding of factors that regulate either mRNA stability or translation is rather limited. We know that often, the regulators are proteins that bind to the 3′-untranslated region; they presumably interact with ribonucleases and translation factors. However, very few such proteins have been characterized in any detail. Here we describe a genome-wide screen to find proteins implicated in post-transcriptional regulation in Trypanosoma brucei. We made a library of random genomic fragments in a plasmid that was designed for expression of proteins fused to an RNA-binding domain, the lambda-N peptide. This was transfected into cells expressing mRNAs encoding a positive or negative selectable marker, and bearing the “boxB” lambda-N recognition element in the 3′-untranslated region. The screen identified about 300 proteins that could be implicated in post-transcriptional mRNA regulation. These included known regulators, degradative enzymes and translation factors, many canonical RNA-binding proteins, and proteins that act via multi-protein complexes. However there were also nearly 150 potential regulators with no previously annotated function, or functions unrelated to mRNA metabolism. Almost 50 novel regulators were shown to bind RNA using a targeted proteome array. The screen also provided fine structure mapping of the hit candidates' functional domains. Our findings not only confirm the key role that RNA-binding proteins play in the regulation of gene expression in trypanosomatids, but also suggest new roles for previously uncharacterized proteins. Survival and adaptation of trypanosomatids to new surroundings requires activation of specific gene networks. This is mainly achieved by post-transcriptional mechanisms, and proteins that bind to specific mRNAs, and influence degradation or translation, are known to be important. However, only few such proteins have been characterized to date. The trypanosome genome encodes over 150 proteins with conserved RNA-binding domains, and it is very likely that additional proteins that do not have such domains could also modulate mRNA fate. Here, we report the results of a genome-wide screen to identify mRNA-fate regulators in Trypanosoma brucei. We used a method called “tethering” to artificially attach protein fragments to an mRNA. Our findings confirmed the role of RNA-binding proteins in the regulation of mRNA fate, and also suggested such roles for many other proteins, including some metabolic enzymes. Our results should serve as a useful resource. Moreover, the tethering screen approach could readily be adapted for use in other organisms.
Collapse
Affiliation(s)
- Esteban D. Erben
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Smiths Lueong
- Division of Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
25
|
Abstract
The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and translational repression.
Collapse
|
26
|
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Chiang JH, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 2014; 25:1421-36. [PMID: 24600046 PMCID: PMC4004592 DOI: 10.1091/mbc.e13-12-0750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear face of the nuclear pore complex (NPC) interfaces with chromatin, transcription, and transport intermediates. A novel architecture for the nuclear face of the trypanosome NPC provides insights into NPC function and evolution. The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.
Collapse
Affiliation(s)
- Jennifer M Holden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom The Rockefeller University, New York, NY 10021 Seattle Biomedical Research Institute and Institute for Systems Biology, Seattle, WA 98109 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City 701, Taiwan Department of Plant Sciences, University of Oxford, Oxford OX1 4JP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kolev NG, Ullu E, Tschudi C. The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol 2014; 16:482-9. [PMID: 24438230 DOI: 10.1111/cmi.12268] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
One of the key questions in understanding the biology of an organism is how to correlate cellular fate and function with gene expression patterns. This is particularly relevant for pathogenic organisms, like the parasitic protozoa Trypanosoma brucei, who often cycle between different hosts, thereby encountering vastly different environments. Survival in and adaptation to new surroundings requires activation of specific gene networks, which is most often achieved by regulatory mechanisms embedded in the transcriptional machinery. However, in T. brucei and related trypanosomatids these responses appear to be accomplished mainly by post-transcriptional mechanisms. Although an understanding of how this parasite modulates gene regulatory networks is in the early stages, RNA-binding proteins (RBPs) are beginning to take centre stage. Here, we discuss recent progress in the identification of RBPs with crucial roles in different stages of the T. brucei life cycle, and in elucidating targets of RBPs.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
28
|
Singh A, Minia I, Droll D, Fadda A, Clayton C, Erben E. Trypanosome MKT1 and the RNA-binding protein ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Res 2014; 42:4652-68. [PMID: 24470144 PMCID: PMC3985637 DOI: 10.1093/nar/gkt1416] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The trypanosome zinc finger protein ZC3H11 binds to AU-rich elements in mRNAs. It is essential for survival of the mammalian-infective bloodstream form, where it stabilizes several mRNAs including some encoding chaperones, and is also required for stabilization of chaperone mRNAs during the heat-shock response in the vector-infective procyclic form. When ZC3H11 was artificially 'tethered' to a reporter mRNA in bloodstream forms it increased reporter expression. We here show that ZC3H11 interacts with trypanosome MKT1 and PBP1, and that domains required for both interactions are necessary for function in the bloodstream-form tethering assay. PBP1 interacts with MKT1, LSM12 and poly(A) binding protein, and localizes to granules during parasite starvation. All of these proteins are essential for bloodstream-form trypanosome survival and increase gene expression in the tethering assay. MKT1 is cytosolic and polysome associated. Using a yeast two-hybrid screen and tandem affinity purification we found that trypanosome MKT1 interacts with multiple RNA-binding proteins and other potential RNA regulators, placing it at the centre of a post-transcriptional regulatory network. A consensus interaction sequence, H(E/D/N/Q)PY, was identified. Recruitment of MKT1-containing regulatory complexes to mRNAs via sequence-specific mRNA-binding proteins could thus control several different post-transcriptional regulons.
Collapse
Affiliation(s)
- Aditi Singh
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
32
|
De Gaudenzi JG, Carmona SJ, Agüero F, Frasch AC. Genome-wide analysis of 3'-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes. PeerJ 2013; 1:e118. [PMID: 23904995 PMCID: PMC3728762 DOI: 10.7717/peerj.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 3'-UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
33
|
Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host. PLoS One 2013; 8:e67069. [PMID: 23840587 PMCID: PMC3694164 DOI: 10.1371/journal.pone.0067069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
The gene expression of Trypanosoma brucei has been examined extensively in the blood of mammalian hosts and in forms found in the midgut of its arthropod vector, the tsetse fly. However, trypanosomes also undergo development within the mammalian bloodstream as they progress from morphologically ‘slender forms’ to transmissible ‘stumpy forms’ through morphological intermediates. This transition is temporally progressive within the first wave of parasitaemia such that gene expression can be monitored in relatively pure slender and stumpy populations as well as during the progression between these extremes. The development also represents the progression of cells from translationally active forms adapted for proliferation in the host to translationally quiescent forms, adapted for transmission. We have used metabolic labelling to quantitate translational activity in slender forms, stumpy forms and in forms undergoing early differentiation to procyclic forms in vitro. Thereafter we have examined the cohort of total mRNAs that are enriched throughout development in the mammalian bloodstream (slender, intermediate and stumpy forms), irrespective of strain, revealing those that exhibit consistent developmental regulation rather than sample specific changes. Transcripts that cosediment with polysomes in stumpy forms and slender forms have also been enriched to identify transcripts that escape translational repression prior to transmission. Combined, the expression and polysomal association of transcripts as trypanosomes undergo development in the mammalian bloodstream have been defined, providing a resource for trypanosome researchers. This facilitates the identification of those that undergo developmental regulation in the bloodstream and therefore those likely to have a role in the survival and capacity for transmission of stumpy forms.
Collapse
|
34
|
Gupta SK, Kosti I, Plaut G, Pivko A, Tkacz ID, Cohen-Chalamish S, Biswas DK, Wachtel C, Waldman Ben-Asher H, Carmi S, Glaser F, Mandel-Gutfreund Y, Michaeli S. The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability. Nucleic Acids Res 2013; 41:6577-94. [PMID: 23666624 PMCID: PMC3711420 DOI: 10.1093/nar/gkt369] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cycle between a mammalian host (bloodstream form) and an insect host, the Tsetse fly (procyclic stage). In trypanosomes, all mRNAs are trans-spliced as part of their maturation. Genome-wide analysis of trans-splicing indicates the existence of alternative trans-splicing, but little is known regarding RNA-binding proteins that participate in such regulation. In this study, we performed functional analysis of the Trypanosoma brucei heterogeneous nuclear ribonucleoproteins (hnRNP) F/H homologue, a protein known to regulate alternative splicing in metazoa. The hnRNP F/H is highly expressed in the bloodstream form of the parasite, but is also functional in the procyclic form. Transcriptome analyses of RNAi-silenced cells were used to deduce the RNA motif recognized by this protein. A purine rich motif, AAGAA, was enriched in both the regulatory regions flanking the 3′ splice site and poly (A) sites of the regulated genes. The motif was further validated using mini-genes carrying wild-type and mutated sequences in the 3′ and 5′ UTRs, demonstrating the role of hnRNP F/H in mRNA stability and splicing. Biochemical studies confirmed the binding of the protein to this proposed site. The differential expression of the protein and its inverse effects on mRNA level in the two lifecycle stages demonstrate the role of hnRNP F/H in developmental regulation.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Droll D, Minia I, Fadda A, Singh A, Stewart M, Queiroz R, Clayton C. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog 2013; 9:e1003286. [PMID: 23592996 PMCID: PMC3616968 DOI: 10.1371/journal.ppat.1003286] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/19/2013] [Indexed: 12/30/2022] Open
Abstract
In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3'-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures.
Collapse
Affiliation(s)
- Dorothea Droll
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Igor Minia
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aditi Singh
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mhairi Stewart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Rafael Queiroz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
36
|
Urbaniak MD, Martin DMA, Ferguson MAJ. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 2013; 12:2233-44. [PMID: 23485197 PMCID: PMC3646404 DOI: 10.1021/pr400086y] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
We
report a global quantitative phosphoproteomic study of bloodstream
and procyclic form Trypanosoma brucei using SILAC
labeling of each lifecycle stage. Phosphopeptide enrichment by SCX
and TiO2 led to the identification of a total of 10096
phosphorylation sites on 2551 protein groups and quantified the ratios
of 8275 phosphorylation sites between the two lifecycle stages. More
than 9300 of these sites (92%) have not previously been reported.
Model-based gene enrichment analysis identified over representation
of Gene Ontology terms relating to the flagella, protein kinase activity,
and the regulation of gene expression. The quantitative data reveal
that differential protein phosphorylation is widespread between bloodstream
and procyclic form trypanosomes, with significant intraprotein differential
phosphorylation. Despite a lack of dedicated tyrosine kinases, 234
phosphotyrosine residues were identified, and these were 3–4
fold over-represented among site changing >10-fold between the
two lifecycle stages. A significant proportion of the T. brucei kinome was phosphorylated, with evidence that MAPK pathways are
functional in both lifecycle stages. Regulation of gene expression
in T. brucei is exclusively post-transcriptional,
and the extensive phosphorylation of RNA binding proteins observed
may be relevant to the control of mRNA stability in this organism.
Collapse
Affiliation(s)
- Michael D Urbaniak
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|