1
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
2
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
3
|
Heinz M, Erlenbach N, Stelzl LS, Thierolf G, Kamble NR, Sigurdsson ST, Prisner TF, Hummer G. High-resolution EPR distance measurements on RNA and DNA with the non-covalent Ǵ spin label. Nucleic Acids Res 2020; 48:924-933. [PMID: 31777925 PMCID: PMC6954412 DOI: 10.1093/nar/gkz1096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) experiments, among them most prominently pulsed electron-electron double resonance experiments (PELDOR/DEER), resolve the conformational dynamics of nucleic acids with high resolution. The wide application of these powerful experiments is limited by the synthetic complexity of some of the best-performing spin labels. The recently developed $\bf\acute{G}$ (G-spin) label, an isoindoline-nitroxide derivative of guanine, can be incorporated non-covalently into DNA and RNA duplexes via Watson-Crick base pairing in an abasic site. We used PELDOR and molecular dynamics (MD) simulations to characterize $\bf\acute{G}$, obtaining excellent agreement between experiments and time traces calculated from MD simulations of RNA and DNA double helices with explicitly modeled $\bf\acute{G}$ bound in two abasic sites. The MD simulations reveal stable hydrogen bonds between the spin labels and the paired cytosines. The abasic sites do not significantly perturb the helical structure. $\bf\acute{G}$ remains rigidly bound to helical RNA and DNA. The distance distributions between the two bound $\bf\acute{G}$ labels are not substantially broadened by spin-label motions in the abasic site and agree well between experiment and MD. $\bf\acute{G}$ and similar non-covalently attached spin labels promise high-quality distance and orientation information, also of complexes of nucleic acids and proteins.
Collapse
Affiliation(s)
- Marcel Heinz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Grace Thierolf
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Nilesh R Kamble
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavk, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavk, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Shelke SA, Shao Y, Laski A, Koirala D, Weissman BP, Fuller JR, Tan X, Constantin TP, Waggoner AS, Bruchez MP, Armitage BA, Piccirilli JA. Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif. Nat Commun 2018; 9:4542. [PMID: 30382099 PMCID: PMC6208384 DOI: 10.1038/s41467-018-06942-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
The DIR2s RNA aptamer, a second-generation, in-vitro selected binder to dimethylindole red (DIR), activates the fluorescence of cyanine dyes, DIR and oxazole thiazole blue (OTB), allowing detection of two well-resolved emission colors. Using Fab BL3-6 and its cognate hairpin as a crystallization module, we solved the crystal structures of both the apo and OTB-SO3 bound forms of DIR2s at 2.0 Å and 1.8 Å resolution, respectively. DIR2s adopts a compact, tuning fork-like architecture comprised of a helix and two short stem-loops oriented in parallel to create the ligand binding site through tertiary interactions. The OTB-SO3 fluorophore binds in a planar conformation to a claw-like structure formed by a purine base-triple, which provides a stacking platform for OTB-SO3, and an unpaired nucleotide, which partially caps the binding site from the top. The absence of a G-quartet or base tetrad makes the DIR2s aptamer unique among fluorogenic RNAs with known 3D structure. The DIR2s RNA aptamer activates the fluorescence of cyanine dyes allowing detection of two well-resolved emission colors. Here authors solve the crystal structures of the apo and OTB-SO3 fluorophore-bound DIR2s and show how the fluorophore ligand is bound.
Collapse
Affiliation(s)
- Sandip A Shelke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Artur Laski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Deepak Koirala
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | | | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaohong Tan
- Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tudor P Constantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alan S Waggoner
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bruce A Armitage
- Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA. .,Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Kamble NR, Gränz M, Prisner TF, Sigurdsson ST. Noncovalent and site-directed spin labeling of duplex RNA. Chem Commun (Camb) 2018; 52:14442-14445. [PMID: 27901530 DOI: 10.1039/c6cc08387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An isoindoline-nitroxide derivative of guanine (Ǵ, "G-spin") was shown to bind specifically and effectively to abasic sites in duplex RNAs. Distance measurements on a Ǵ-labeled duplex RNA with PELDOR (DEER) showed a strong orientation dependence. Thus, Ǵ is a readily synthesized, orientation-selective spin label for "mix and measure" PELDOR experiments.
Collapse
Affiliation(s)
- Nilesh R Kamble
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| | - Markus Gränz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Hessen, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Hessen, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
| |
Collapse
|
6
|
Kamble NR, Sigurdsson ST. Purine-Derived Nitroxides for Noncovalent Spin-Labeling of Abasic Sites in Duplex Nucleic Acids. Chemistry 2018; 24:4157-4164. [DOI: 10.1002/chem.201705410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Nilesh R. Kamble
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
7
|
Schwarz RJ, Richert C. A four-helix bundle DNA nanostructure with binding pockets for pyrimidine nucleotides. NANOSCALE 2017; 9:7047-7054. [PMID: 28327725 DOI: 10.1039/c7nr00094d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Designed DNA nanostructures of impressive size have been described, but designed structures of the size of protein enzymes that bind organic ligands with high specificity are rare. Here we report a four-helix motif consisting of three synthetic strands with 65 base pairs and 165 nucleotides in total that folds well. Furthermore, we show that in the interior of this small folded DNA nanostructure, cavities can be set up that bind pyrimidine nucleotides with micromolar affinity. Base-specific binding for both thymidine and cytidine derivatives is demonstrated. The binding affinity depends on the position in the structure, as expected for recognition beyond simple base pairing. The folding motif reported here can help to expand DNA nanotechnology into the realm of selective molecular recognition that is currently dominated by protein-based enzymes and receptors.
Collapse
Affiliation(s)
- Rainer Joachim Schwarz
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|
8
|
Babaylova ES, Malygin AA, Lomzov AA, Pyshnyi DV, Yulikov M, Jeschke G, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG. Complementary-addressed site-directed spin labeling of long natural RNAs. Nucleic Acids Res 2016; 44:7935-43. [PMID: 27269581 PMCID: PMC5027493 DOI: 10.1093/nar/gkw516] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Nanoscale distance measurements by pulse dipolar Electron paramagnetic resonance (EPR) spectroscopy allow new insights into the structure and dynamics of complex biopolymers. EPR detection requires site directed spin labeling (SDSL) of biomolecule(s), which remained challenging for long RNAs up-to-date. Here, we demonstrate that novel complementary-addressed SDSL approach allows efficient spin labeling and following structural EPR studies of long RNAs. We succeeded to spin-label Hepatitis C Virus RNA internal ribosome entry site consisting of ≈330 nucleotides and having a complicated spatial structure. Application of pulsed double electron–electron resonance provided spin–spin distance distribution, which agrees well with the results of molecular dynamics (MD) calculations. Thus, novel SDSL approach in conjunction with EPR and MD allows structural studies of long natural RNAs with nanometer resolution and can be applied to systems of biological and biomedical significance.
Collapse
Affiliation(s)
- Elena S Babaylova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Olesya A Krumkacheva
- Novosibirsk State University, Novosibirsk 630090, Russia International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Novosibirsk 630090, Russia International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University, Novosibirsk 630090, Russia N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
|
10
|
Shelke SA, Sandholt GB, Sigurdsson ST. Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes. Org Biomol Chem 2015; 12:7366-74. [PMID: 25119508 DOI: 10.1039/c4ob01095g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-covalent and site-directed spin labeling gives easy access to spin-labeled nucleic acids for the study of their structure and dynamics by electron paramagnetic resonance (EPR) spectroscopy. In a search for improved spin labels for non-covalent binding to abasic sites in duplex DNA and RNA, ten pyrimidine-derived spin labels were prepared in good yields and their binding was evaluated by continuous wave (CW)-EPR spectroscopy. Most of the spin labels showed lower binding affinity than the previously reported label ç towards abasic sites in DNA and RNA. The most promising labels were triazole-linked spin labels and a pyrrolocytosine label. In particular, the N1-ethylamino derivative of a triazole-linked uracil spin label binds fully to both DNA and RNA containing an abasic site. This is the first example of a spin label that binds fully through non-covalent interactions with an abasic site in RNA.
Collapse
Affiliation(s)
- Sandip A Shelke
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | | |
Collapse
|
11
|
Chalmers BA, Saha S, Nguyen T, McMurtrie J, Sigurdsson ST, Bottle SE, Masters KS. TMIO-PyrImid Hybrids are Profluorescent, Site-Directed Spin Labels for Nucleic Acids. Org Lett 2014; 16:5528-31. [DOI: 10.1021/ol502003a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Benjamin A. Chalmers
- Faculty
of Science and Engineering, Queensland University of Technology, P.O. Box 2434, 2 George Street, Brisbane, QLD 4001, Australia
| | - Subham Saha
- University of Iceland, Department of Chemistry, Science
Institute, Dunhaga 3, 107 Reykjavík, Iceland
| | | | | | - Snorri Th. Sigurdsson
- University of Iceland, Department of Chemistry, Science
Institute, Dunhaga 3, 107 Reykjavík, Iceland
| | - Steven E. Bottle
- Faculty
of Science and Engineering, Queensland University of Technology, P.O. Box 2434, 2 George Street, Brisbane, QLD 4001, Australia
| | - Kye-Simeon Masters
- Faculty
of Science and Engineering, Queensland University of Technology, P.O. Box 2434, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
12
|
Benner K, Bergen A, Ihmels H, Pithan PM. Selective Stabilization of Abasic Site-Containing DNA by Insertion of Sterically Demanding Biaryl Ligands. Chemistry 2014; 20:9883-7. [DOI: 10.1002/chem.201403622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 01/17/2023]
|
13
|
Benner K, Ihmels H, Kölsch S, Pithan PM. Targeting abasic site-containing DNA with annelated quinolizinium derivatives: the influence of size, shape and substituents. Org Biomol Chem 2014; 12:1725-34. [DOI: 10.1039/c3ob42140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative analysis showed that the type and degree of annelation as well as methyl or chloro-substitution are relevant structural features that determine the interactions of quinolizinium derivatives with abasic site-containing DNA.
Collapse
Affiliation(s)
- Katja Benner
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Heiko Ihmels
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Sarah Kölsch
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | | |
Collapse
|
14
|
Frecus B, Rinkevicius Z, Ågren H. π-Stacking effects on the EPR parameters of a prototypical DNA spin label. Phys Chem Chem Phys 2013; 15:10466-71. [PMID: 23685812 DOI: 10.1039/c3cp51129d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The character and value of spin labels for probing environments like double-stranded DNA depend on the degree of change in the spin Hamiltonian parameters of the spin label induced by the environment. Herein we provide a systematic theoretical investigation of this issue, based on a density functional theory method applied to a spin labeled DNA model system, focusing on the dependence of the EPR properties of the spin label on the π stacking and hydrogen bonding that occur upon incorporating the spin label into the selected base pair inside DNA. It is found that the EPR spin Hamiltonian parameters of the spin label are only negligibly affected by its incorporation into DNA, when compared to its free form. This result gives a theoretical ground for the common empirical assumption regarding the behaviour of spin Hamiltonian parameters made in EPR based measurements of the distance between spin labels incorporated into DNA.
Collapse
Affiliation(s)
- Bogdan Frecus
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry & Biology, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
15
|
Atsumi H, Nakazawa S, Dohno C, Sato K, Takui T, Nakatani K. Ligand-induced electron spin-assembly on a DNA tile. Chem Commun (Camb) 2013; 49:6370-2. [DOI: 10.1039/c3cc41801d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST, Schiemann O. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Res 2012; 41:e11. [PMID: 22941643 PMCID: PMC3592447 DOI: 10.1093/nar/gks817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Site-directed spin labeling and pulsed electron-electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.
Collapse
Affiliation(s)
- Gunnar W Reginsson
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
17
|
Popova AM, Hatmal MM, Frushicheva M, Price EA, Qin PZ, Haworth IS. Nitroxide sensing of a DNA microenvironment: mechanistic insights from EPR spectroscopy and molecular dynamics simulations. J Phys Chem B 2012; 116:6387-96. [PMID: 22574834 PMCID: PMC3382087 DOI: 10.1021/jp303303v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The behavior of the nitroxide spin labels 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a) and 1-oxyl-2,2,5,5-tetramethylpyrroline (R5) attached at a phosphorothioate-substituted site in a DNA duplex is modulated by the DNA in a site- and stereospecific manner. A better understanding of the mechanisms of R5a/R5 sensing of the DNA microenvironment will enhance our capability to relate information from nitroxide spectra to sequence-dependent properties of DNA. Toward this goal, electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations were used to investigate R5 and R5a attached as R(p) and S(p) diastereomers at phosphorothioate (pS)C(7) of d(CTACTG(pS)C(7)Y(8)TTAG). d(CTAAAGCAGTAG) (Y = T or U). X-band continuous-wave EPR spectra revealed that the dT(8) to dU(8) change alters nanosecond rotational motions of R(p)-R5a but produces no detectable differences for S(p)-R5a, R(p)-R5, and S(p)-R5. MD simulations were able to qualitatively account for these spectral variations and provide a plausible physical basis for the R5/R5a behavior. The simulations also revealed a correlation between DNA backbone B(I)/B(II) conformations and R5/R5a rotational diffusion, thus suggesting a direct connection between DNA local backbone dynamics and EPR-detectable R5/R5a motion. These results advance our understanding of how a DNA microenvironment influences nitroxide motion and the observed EPR spectra. This may enable use of R5/R5a for a quantitative description of the sequence-dependent properties of large biologically relevant DNA molecules.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ma’mon M. Hatmal
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
| | - Maria Frushicheva
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Eric A. Price
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0744
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ian S. Haworth
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|