1
|
Sarosh A, Kwong SM, Jensen SO, Northern F, Walton WG, Eakes TC, Redinbo MR, Firth N, McLaughlin KJ. pSK41/pGO1-family conjugative plasmids of Staphylococcus aureus encode a cryptic repressor of replication. Plasmid 2023; 128:102708. [PMID: 37967733 DOI: 10.1016/j.plasmid.2023.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
The majority of large multiresistance plasmids of Staphylococcus aureus utilise a RepA_N-type replication initiation protein, the expression of which is regulated by a small antisense RNA (RNAI) that overlaps the rep mRNA leader. The pSK41/pGO1-family of conjugative plasmids additionally possess a small (86 codon) divergently transcribed ORF (orf86) located upstream of the rep locus. The product of pSK41 orf86 was predicted to have a helix-turn-helix motif suggestive of a likely function in transcriptional repression. In this study, we investigated the effect of Orf86 on transcription of thirteen pSK41 backbone promoters. We found that Orf86 only repressed transcription from the rep promoter, and hence now redesignate the product as Cop. Over-expression of Cop in trans reduced the copy number of pSK41 mini-replicons, both in the presence and absence of rnaI. in vitro protein-DNA binding experiments with purified 6 × His-Cop demonstrated specific DNA binding, adjacent to, and partially overlapping the -35 hexamer of the rep promoter. The crystal structure of Cop revealed a dimeric structure similar to other known transcriptional regulators. Cop mRNA was found to result from "read-through" transcription from the strong RNAI promoter that escapes the rnaI terminator. Thus, PrnaI is responsible for transcription of two distinct negative regulators of plasmid copy number; the antisense RNAI that primarily represses Rep translation, and Cop protein that can repress rep transcription. Deletion of cop in a native plasmid did not appear to impact copy number, indicating a cryptic auxiliary role.
Collapse
Affiliation(s)
- Alvina Sarosh
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales 2751, Australia; Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Faith Northern
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas C Eakes
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
2
|
Sedhom J, Kinser J, Solomon LA. Alignment of major-groove hydrogen bond arrays uncovers shared information between different DNA sequences that bind the same protein. NAR Genom Bioinform 2022; 4:lqac101. [PMID: 36601576 PMCID: PMC9803871 DOI: 10.1093/nargab/lqac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-DNA binding is of a great interest due to its importance in many biological processes. Previous studies have presented many factors responsible for the recognition and specificity, but understanding the minimal informational requirements for proteins that bind to multiple DNA-sites is still an understudied area of bioinformatics. Here we focus on the hydrogen bonds displayed by the target DNA in the major groove that take part in protein-binding. We show that analyses focused on the base pair identity may overlook key hydrogen bonds. We have developed an algorithm that converts a nucleotide sequence into an array of hydrogen bond donors and acceptors and methyl groups. It then aligns these non-covalent interaction arrays to identify what information is being maintained among multiple DNA sequences. For three different DNA-binding proteins, Lactose repressor, controller protein and λ-CI repressor, we uncovered the minimal pattern of hydrogen bonds that are common amongst all the binding sequences. Notably in the three proteins, key interacting hydrogen bonds are maintained despite nucleobase mutations in the corresponding binding sites. We believe this work will be useful for developing new DNA binding proteins and shed new light on evolutionary relationships.
Collapse
Affiliation(s)
- Jacklin Sedhom
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA
| | - Jason Kinser
- Department of Computational and Data Sciences, George Mason University, Fairfax, VA 22030, USA
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Djordjevic M, Rodic A, Graovac S. From biophysics to 'omics and systems biology. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:413-424. [PMID: 30972433 DOI: 10.1007/s00249-019-01366-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/12/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023]
Abstract
Recent decades brought a revolution to biology, driven mainly by exponentially increasing amounts of data coming from "'omics" sciences. To handle these data, bioinformatics often has to combine biologically heterogeneous signals, for which methods from statistics and engineering (e.g. machine learning) are often used. While such an approach is sometimes necessary, it effectively treats the underlying biological processes as a black box. Similarly, systems biology deals with inherently complex systems, characterized by a large number of degrees of freedom, and interactions that are highly non-linear. To deal with this complexity, the underlying physical interactions are often (over)simplified, such as in Boolean modelling of network dynamics. In this review, we argue for the utility of applying a biophysical approach in bioinformatics and systems biology, including discussion of two examples from our research which address sequence analysis and understanding intracellular gene expression dynamics.
Collapse
Affiliation(s)
- Marko Djordjevic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia.
| | - Andjela Rodic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia.,Interdisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Stefan Graovac
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia.,Interdisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Graovac S, Rodic A, Djordjevic M, Severinov K, Djordjevic M. Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host. Molecules 2019; 24:E198. [PMID: 30621083 PMCID: PMC6337176 DOI: 10.3390/molecules24010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including them in a model introduces additional parameters shared by the dynamical equations, which can significantly increase dimensionality of the parameter inference. We here analyse the importance of these effects, on a case of bacterial restriction-modification (R-M) system. We redevelop our earlier minimal model of this system gene expression regulation, based on a thermodynamic and dynamic system modeling framework, to include the population dynamics effects. To resolve the problem of effective coupling of the dynamical equations, we propose a "mean-field-like" procedure, which allows determining only part of the parameters at a time, by separately fitting them to expression dynamics data of individual molecular species. We show that including the interplay between kinetics of cell division and plasmid replication is necessary to explain the experimental measurements. Moreover, neglecting population dynamics effects can lead to falsely identifying non-existent regulatory mechanisms. Our results call for advanced methods to reverse-engineer intracellular regulation from dynamical data, which would also take into account the population dynamics effects.
Collapse
Affiliation(s)
- Stefan Graovac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
- Multidisciplinary PhD program in Biophysics, University of Belgrade, 11000 Belgrade, Serbia.
| | - Andjela Rodic
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
- Multidisciplinary PhD program in Biophysics, University of Belgrade, 11000 Belgrade, Serbia.
| | | | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA.
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia.
| | - Marko Djordjevic
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C, Moineau S. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun 2018; 9:2919. [PMID: 30046034 PMCID: PMC6060171 DOI: 10.1038/s41467-018-05092-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.
Collapse
Affiliation(s)
- Alexander P Hynes
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University. Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Dennis A Romero
- DuPont Nutrition and Health, 3329 Agriculture Dr, Madison, WI, 53716, USA
| | | | - Philippe Horvath
- DuPont Nutrition and Health, BP 10, 86220, Dangé-Saint-Romain, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
6
|
Shevtsov MB, Streeter SD, Thresh SJ, Swiderska A, McGeehan JE, Kneale GG. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:398-407. [PMID: 25664751 PMCID: PMC4321490 DOI: 10.1107/s139900471402690x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023]
Abstract
In a wide variety of bacterial restriction-modification systems, a regulatory `controller' protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.
Collapse
Affiliation(s)
- M. B. Shevtsov
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| | - S. D. Streeter
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| | - S.-J. Thresh
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| | - A. Swiderska
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| | - J. E. McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| | - G. G. Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, England
| |
Collapse
|
7
|
Structural and mutagenic analysis of the RM controller protein C.Esp1396I. PLoS One 2014; 9:e98365. [PMID: 24887147 PMCID: PMC4041747 DOI: 10.1371/journal.pone.0098365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/01/2014] [Indexed: 12/01/2022] Open
Abstract
Bacterial restriction-modification (RM) systems are comprised of two complementary enzymatic activities that prevent the establishment of foreign DNA in a bacterial cell: DNA methylation and DNA restriction. These two activities are tightly regulated to prevent over-methylation or auto-restriction. Many Type II RM systems employ a controller (C) protein as a transcriptional regulator for the endonuclease gene (and in some cases, the methyltransferase gene also). All high-resolution structures of C-protein/DNA-protein complexes solved to date relate to C.Esp1396I, from which the interactions of specific amino acid residues with DNA bases and/or the phosphate backbone could be observed. Here we present both structural and DNA binding data for a series of mutations to the key DNA binding residues of C.Esp1396I. Our results indicate that mutations to the backbone binding residues (Y37, S52) had a lesser affect on DNA binding affinity than mutations to those residues that bind directly to the bases (T36, R46), and the contributions of each side chain to the binding energies are compared. High-resolution X-ray crystal structures of the mutant and native proteins showed that the fold of the proteins was unaffected by the mutations, but also revealed variation in the flexible loop conformations associated with DNA sequence recognition. Since the tyrosine residue Y37 contributes to DNA bending in the native complex, we have solved the structure of the Y37F mutant protein/DNA complex by X-ray crystallography to allow us to directly compare the structure of the DNA in the mutant and native complexes.
Collapse
|
8
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
9
|
Martin RNA, McGeehan JE, Ball NJ, Streeter SD, Thresh SJ, Kneale GG. Structural analysis of DNA-protein complexes regulating the restriction-modification system Esp1396I. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:962-6. [PMID: 23989141 PMCID: PMC3758141 DOI: 10.1107/s174430911302126x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022]
Abstract
The controller protein of the type II restriction-modification (RM) system Esp1396I binds to three distinct DNA operator sequences upstream of the methyltransferase and endonuclease genes in order to regulate their expression. Previous biophysical and crystallographic studies have shown molecular details of how the controller protein binds to the operator sites with very different affinities. Here, two protein-DNA co-crystal structures containing portions of unbound DNA from native operator sites are reported. The DNA in both complexes shows significant distortion in the region between the conserved symmetric sequences, similar to that of a DNA duplex when bound by the controller protein (C-protein), indicating that the naked DNA has an intrinsic tendency to bend when not bound to the C-protein. Moreover, the width of the major groove of the DNA adjacent to a bound C-protein dimer is observed to be significantly increased, supporting the idea that this DNA distortion contributes to the substantial cooperativity found when a second C-protein dimer binds to the operator to form the tetrameric repression complex.
Collapse
Affiliation(s)
- Richard N. A. Martin
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| | - John E. McGeehan
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| | - Neil J. Ball
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| | - Simon D. Streeter
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| | - Sarah-Jane Thresh
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| | - G. G. Kneale
- Institute of Biomedical and Biomolecular Science, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire PO1 2DY, England
| |
Collapse
|
10
|
Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL, Hynes MF, Salmond GPC, Ronson CW. A widely conserved molecular switch controls quorum sensing and symbiosis island transfer inMesorhizobium lotithrough expression of a novel antiactivator. Mol Microbiol 2012; 87:1-13. [DOI: 10.1111/mmi.12079] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua P. Ramsay
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Anthony S. Major
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Victor M. Komarovsky
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - John T. Sullivan
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Ron L. Dy
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Michael F. Hynes
- Department of Biological Sciences; University of Calgary; Calgary; Canada; T2N 1N4
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| |
Collapse
|
11
|
Ball NJ, McGeehan JE, Streeter SD, Thresh SJ, Kneale GG. The structural basis of differential DNA sequence recognition by restriction-modification controller proteins. Nucleic Acids Res 2012; 40:10532-42. [PMID: 22941636 PMCID: PMC3488213 DOI: 10.1093/nar/gks718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Controller (C) proteins regulate the expression of restriction-modification (RM) genes in a wide variety of RM systems. However, the RM system Esp1396I is of particular interest as the C protein regulates both the restriction endonuclease (R) gene and the methyltransferase (M) gene. The mechanism of this finely tuned genetic switch depends on differential binding affinities for the promoters controlling the R and M genes, which in turn depends on differential DNA sequence recognition and the ability to recognize dual symmetries. We report here the crystal structure of the C protein bound to the M promoter, and compare the binding affinities for each operator sequence by surface plasmon resonance. Comparison of the structure of the transcriptional repression complex at the M promoter with that of the transcriptional activation complex at the R promoter shows how subtle changes in protein-DNA interactions, underpinned by small conformational changes in the protein, can explain the molecular basis of differential regulation of gene expression.
Collapse
Affiliation(s)
- N J Ball
- Biomolecular Structure Group, Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | | | | | | | | |
Collapse
|