1
|
Franck C, Stéphane G, Julien C, Virginie G, Martine G, Norbert G, Fabrice C, Didier F, Josef SM, Bertrand C. Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing. Nucleic Acids Res 2022; 50:11072-11092. [PMID: 36300625 PMCID: PMC9638937 DOI: 10.1093/nar/gkac932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
8-Oxoguanine (GO) is a major purine oxidation product in DNA. Because of its highly mutagenic properties, GO absolutely must be eliminated from DNA. To do this, aerobic and anaerobic organisms from the three kingdoms of life have evolved repair mechanisms to prevent its deleterious effect on genetic integrity. The major way to remove GO is the base excision repair pathway, usually initiated by a GO-DNA glycosylase. First identified in bacteria (Fpg) and eukaryotes (OGG1), GO-DNA glycosylases were more recently identified in archaea (OGG2 and AGOG). AGOG is the less documented enzyme and its mode of damage recognition and removing remains to be clarified at the molecular and atomic levels. This study presents a complete structural characterisation of apo AGOGs from Pyrococcus abyssi (Pab) and Thermococcus gammatolerans (Tga) and the first structure of Pab-AGOG bound to lesion-containing single- or double-stranded DNA. By combining X-ray structure analysis, site directed mutagenesis and biochemistry experiments, we identified key amino acid residues of AGOGs responsible for the specific recognition of the lesion and the base opposite the lesion and for catalysis. Moreover, a unique binding mode of GO, involving double base flipping, never observed for any other DNA glycosylases, is revealed. In addition to unravelling the properties of AGOGs, our study, through comparative biochemical and structural analysis, offers new insights into the evolutionary plasticity of DNA glycosylases across all three kingdoms of life.
Collapse
Affiliation(s)
- Coste Franck
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Goffinont Stéphane
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Cros Julien
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Gaudon Virginie
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Guérin Martine
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Garnier Norbert
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Confalonieri Fabrice
- Institut de Biologie Intégrative de la cellule (I2BC), UMR 9198 Université Paris-Saclay-CNRS-CEA , Bâtiment 21, Avenue de la Terrasse , F-91190 Gif-sur-Yvette , France
| | - Flament Didier
- Université de Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP) , F-29280 Plouzané , France
| | - Suskiewicz Marcin Josef
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Castaing Bertrand
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| |
Collapse
|
2
|
Ancient DNA Research: Ongoing Challenges and Contribution to Medical Sciences. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.854258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
4
|
Rieux C, Goffinont S, Coste F, Tber Z, Cros J, Roy V, Guérin M, Gaudon V, Bourg S, Biela A, Aucagne V, Agrofoglio L, Garnier N, Castaing B. Thiopurine Derivative-Induced Fpg/Nei DNA Glycosylase Inhibition: Structural, Dynamic and Functional Insights. Int J Mol Sci 2020; 21:ijms21062058. [PMID: 32192183 PMCID: PMC7139703 DOI: 10.3390/ijms21062058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Rieux
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Zahira Tber
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Julien Cros
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Martine Guérin
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Artur Biela
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Correspondence: (V.R.); (N.G.); (B.C.)
| |
Collapse
|
5
|
Quiñones JL, Thapar U, Wilson SH, Ramsden DA, Demple B. Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair. DNA Repair (Amst) 2020; 87:102773. [PMID: 31945542 PMCID: PMC7065521 DOI: 10.1016/j.dnarep.2019.102773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023]
Abstract
Free radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polβ) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polβ-DPC in cells challenged with oxidants generating significant levels of dL. Proteasome inhibition under 1,10-copper-ortho-phenanthroline (CuOP) treatment significantly increased Polβ-DPC accumulation and trapped ubiquitin in the DPC, with Polβ accounting for 60-70 % of the total ubiquitin signal. However, the identity of the remaining oxidative ubiquityl-DPC remained unknown. In this report, we surveyed whether additional AP lyases are trapped in oxidative DPC in mammalian cells in culture. Poly(ADP-ribose) polymerase 1 (PARP1), Ku proteins, DNA polymerase λ (Polλ), and the bifunctional 8-oxoguanine DNA glycosylase 1 (OGG1), were all trapped in oxidative DPC in mammalian cells. We also observed significant trapping of Polλ, PARP1, and OGG1 in cells treated with the alkylating agent methylmethane sulfonate (MMS), in addition to dL-inducing agents. Ku proteins, in contrast, followed a pattern of trapping similar to that for Polβ: MMS failed to produce Ku-DPC, while treatment with CuOP or (less effectively) H2O2 gave rise to significant Ku-DPC. Unexpectedly, NEIL1 and NEIL3 were trapped following H2O2 treatment, but not detectably in cells exposed to CuOP. The half-life of all the AP lyase-DPC ranged from 15-60 min, consistent with their active repair. Accordingly, CuOP treatment under proteasome inhibition significantly increased the observed levels of DPC in cultured mammalian cells containing PARP1, Ku protein, Polλ, and OGG1 proteins. As seen for Polβ, blocking the proteasome led to the accumulation of DPC containing ubiquitin. Thus, the ubiquitin-dependent proteolytic mechanisms that control Polβ-DPC removal may also apply to a broad array of oxidative AP lyase-DPC, preventing their toxic accumulation in cells.
Collapse
Affiliation(s)
- Jason L Quiñones
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA
| | - Upasna Thapar
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA
| | - Samuel H Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC, 27709-2233, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA.
| |
Collapse
|
6
|
Psykarakis EE, Chatzopoulou E, Gimisis T. First characterisation of two important postulated intermediates in the formation of a HydT DNA lesion, a thymidine oxidation product. Org Biomol Chem 2018. [PMID: 29537022 DOI: 10.1039/c8ob00378e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of environmental pollutants and endogenous oxidation agents form 1-(2-deoxy-β-d-ribofuranosyl)-5-hydroxy-5-methylhydantoin (HydT), an important DNA lesion resulting from thymidine oxidation. In this paper, two intermediates, postulated in the formation of HydT, have been characterised for the first time. The first, N1-formyl-N3-pyruvoylurea intermediate, was produced by the ozonolysis reaction of 2',3',5'-tri-O-acetylribo-, 3',5'-di-O-TBS- and N3,O3',O5-tribenzyl-protected thymidines and was shown to produce, upon decomposition and depending on the protecting group and the conditions, HydT alone, or together with protected-β-d-ribofuranosyl-N1-formylurea and formamide products. In addition, the second and long sought, open-chain-pyruvoylurea intermediate, was produced through de novo synthesis in protected β-d-ribofuranosyl-, 2-deoxy-β-d-ribofuranosyl- and 2-deoxy-β-d-ribopyranosyl systems. The conditions that induce the cyclization to the hydantoin ring of HydT have been determined. The chemistry utilised in the de novo synthesis is suitable for generating isotopically labelled HydT, as a reference in isotope-dilution-aided quantification of DNA damage.
Collapse
Affiliation(s)
- Emmanuel E Psykarakis
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10571, Athens, Greece.
| | | | | |
Collapse
|
7
|
|
8
|
Caston RA, Demple B. Risky repair: DNA-protein crosslinks formed by mitochondrial base excision DNA repair enzymes acting on free radical lesions. Free Radic Biol Med 2017; 107:146-150. [PMID: 27867099 PMCID: PMC5815828 DOI: 10.1016/j.freeradbiomed.2016.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023]
Abstract
Oxygen is both necessary and dangerous for aerobic cell function. ATP is most efficiently made by the electron transport chain, which requires oxygen as an electron acceptor. However, the presence of oxygen, and to some extent the respiratory chain itself, poses a danger to cellular components. Mitochondria, the sites of oxidative phosphorylation, have defense and repair pathways to cope with oxidative damage. For mitochondrial DNA, an essential pathway is base excision repair, which acts on a variety of small lesions. There are instances, however, in which attempted DNA repair results in more damage, such as the formation of a DNA-protein crosslink trapping the repair enzyme on the DNA. That is the case for mitochondrial DNA polymerase γ acting on abasic sites oxidized at the 1-carbon of 2-deoxyribose. Such DNA-protein crosslinks presumably must be removed in order to restore function. In nuclear DNA, ubiquitylation of the crosslinked protein and digestion by the proteasome are essential first processing steps. How and whether such mechanisms operate on DNA-protein crosslinks in mitochondria remains to be seen.
Collapse
Affiliation(s)
- Rachel Audrey Caston
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|
10
|
Popov AV, Endutkin AV, Vorobjev YN, Zharkov DO. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. BMC STRUCTURAL BIOLOGY 2017; 17:5. [PMID: 28482831 PMCID: PMC5422863 DOI: 10.1186/s12900-017-0075-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/20/2017] [Indexed: 01/20/2023]
Abstract
Background Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1′ of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg–DNA complexes have been solved, yet no structure with A opposite the lesion is available. Results Here we use molecular dynamic simulation to model interactions in the pre-catalytic complex of Lactococcus lactis Fpg with DNA containing oxoG opposite C or A, the latter in either syn or anti conformation. The catalytic dyad, Pro1–Glu2, was modeled in all four possible protonation states. Only one transition was observed in the experimental reaction rate pH dependence plots, and Glu2 kept the same set of interactions regardless of its protonation state, suggesting that it does not limit the reaction rate. The adenine base opposite oxoG was highly distorting for the adjacent nucleotides: in the more stable syn models it formed non-canonical bonds with out-of-register nucleotides in both the damaged and the complementary strand, whereas in the anti models the adenine either formed non-canonical bonds or was expelled into the major groove. The side chains of Arg109 and Phe111 that Fpg inserts into DNA to maintain its kinked conformation tended to withdraw from their positions if A was opposite to the lesion. The region showing the largest differences in the dynamics between oxoG:C and oxoG:A substrates was unexpectedly remote from the active site, located near the linker joining the two domains of Fpg. This region was also highly conserved among 124 analyzed Fpg sequences. Three sites trapping water molecules through multiple bonds were identified on the protein–DNA interface, apparently helping to maintain enzyme-induced DNA distortion and participating in oxoG recognition. Conclusion Overall, the discrimination against A opposite to the lesion seems to be due to incorrect DNA distortion around the lesion-containing base pair and, possibly, to gross movement of protein domains connected by the linker. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Yuri N Vorobjev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
11
|
|
12
|
Quiñones JL, Demple B. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions. DNA Repair (Amst) 2016; 44:103-109. [PMID: 27264558 PMCID: PMC6420214 DOI: 10.1016/j.dnarep.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Free radicals generate an array of DNA lesions affecting all parts of the molecule. The damage to deoxyribose receives less attention than base damage, even though the former accounts for ∼20% of the total. Oxidative deoxyribose fragments (e.g., 3'-phosphoglycolate esters) are removed by the Ape1 AP endonuclease and other enzymes in mammalian cells to enable DNA repair synthesis. Oxidized abasic sites are initially incised by Ape1, thus recruiting these lesions into base excision repair (BER) pathways. Lesions such as 2-deoxypentos-4-ulose can be removed by conventional (single-nucleotide) BER, which proceeds through a covalent Schiff base intermediate with DNA polymerase β (Polβ) that is resolved by hydrolysis. In contrast, the lesion 2-deoxyribonolactone (dL) must be processed by multinucleotide ("long-patch") BER: attempted repair via the single-nucleotide pathway leads to a dead-end, covalent complex with Polβ cross- linked to the DNA by an amide bond. We recently detected these stable DNA-protein crosslinks (DPC) between Polβ and dL in intact cells. The features of the DPC formation in vivo are exactly in keeping with the mechanistic properties seen in vitro: Polβ-DPC are formed by oxidative agents in line with their ability to form the dL lesion; they are not formed by non-oxidative agents; DPC formation absolutely requires the active-site lysine-72 that attacks the 5'-deoxyribose; and DPC formation depends on Ape1 to incise the dL lesion first. The Polβ-DPC are rapidly processed in vivo, the signal disappearing with a half-life of 15-30min in both mouse and human cells. This removal is blocked by inhibiting the proteasome, which leads to the accumulation of ubiquitin associated with the Polβ-DPC. While other proteins (e.g., topoisomerases) also form DPC under these conditions, 60-70% of the trapped ubiquitin depends on Polβ. The mechanism of ubiquitin targeting to Polβ-DPC, the subsequent processing of the expected 5'-peptidyl-dL, and the biological consequences of unrepaired DPC are important to assess. Many other lyase enzymes that attack dL can also be trapped in DPC, so the processing mechanisms may apply quite broadly.
Collapse
Affiliation(s)
- Jason Luis Quiñones
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Stony Brook, NY, 11794, USA
| | - Bruce Demple
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Stony Brook, NY, 11794, USA.
| |
Collapse
|
13
|
Ali A, Wagner JR. Isomerization of 5-Hydroxy-5-methylhydantoin 2′-Deoxynucleoside into α-Furanose, β-Furanose, α-Pyranose, and β-Pyranose Anomers. Chem Res Toxicol 2015; 29:65-74. [DOI: 10.1021/acs.chemrestox.5b00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anum Ali
- Département de Médecine
Nucléaire et de Radiobiologie, Faculté de Médecine
et des Sciences de la Santé, Université de Sherbrooke, 3001,
12e Avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - J. Richard Wagner
- Département de Médecine
Nucléaire et de Radiobiologie, Faculté de Médecine
et des Sciences de la Santé, Université de Sherbrooke, 3001,
12e Avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
14
|
Sowlati-Hashjin S, Wetmore SD. Computational Investigation of Glycosylase and β-Lyase Activity Facilitated by Proline: Applications to FPG and Comparisons to hOgg1. J Phys Chem B 2014; 118:14566-77. [PMID: 25415645 DOI: 10.1021/jp507783d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
15
|
Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization. Nucleic Acids Res 2014; 42:10748-61. [PMID: 25143530 PMCID: PMC4176347 DOI: 10.1093/nar/gku613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.
Collapse
Affiliation(s)
- Artur Biela
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Martine Guerin
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Karola Gasteiger
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Winczura
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB/UMR E3 CEA-UJF, INAC, CEA, Grenoble, France
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| |
Collapse
|
16
|
Wallace SS. DNA glycosylases search for and remove oxidized DNA bases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:691-704. [PMID: 24123395 PMCID: PMC3997179 DOI: 10.1002/em.21820] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 05/19/2023]
Abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
Collapse
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics The Markey Center for Molecular Genetics The University of Vermont Stafford Hall, 95 Carrigan Drive Burlington, VT 05405-0068, USA Tel: (802) 656-2164; Fax: (802) 656-8749
| |
Collapse
|
17
|
Winhusen T, Walker J, Brigham G, Lewis D, Somoza E, Theobald J, Somoza V. Preliminary evaluation of a model of stimulant use, oxidative damage and executive dysfunction. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2013; 39:227-34. [PMID: 23808868 DOI: 10.3109/00952990.2013.798663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Illicit stimulant use increases oxidative stress and oxidative stress has been found to be associated with deficits in memory, attention and problem-solving. OBJECTIVE To test a model of the association among oxidative DNA damage, a severe form of oxidative stress, and stimulant use, executive function and stimulant-use outcomes. METHODS Six sites evaluating 12-step facilitation for stimulant abusers obtained peripheral blood samples from methamphetamine-dependent (n = 45) and cocaine-dependent (n = 120) participants. The blood samples were submitted to a comet assay to assess oxidative DNA damage. Executive Dysfunction was assessed with the Frontal Systems Behavior Scale (FrSBe), which is a reliable and valid self-report assessment of executive dysfunction, disinhibition and apathy. Stimulant-use measures included self-reported stimulant use and stimulant urine drug screens (UDS). RESULTS While more recent cocaine use (<30 days abstinence) was associated with greater oxidative DNA damage (W = 2.4, p < 0.05, d = 0.36), the results did not support the hypothesized relationship between oxidative DNA damage, executive dysfunction and stimulant use outcomes for cocaine-dependent patients. Support for the model was found for methamphetamine-dependent patients, with oxidative DNA damage significantly greater in methamphetamine-dependent patients with executive dysfunction (W = 2.2, p < 0.05, d = 0.64) and with executive dysfunction being a significant mediator of oxidative DNA damage and stimulant use during active treatment (ab = 0.089, p < 0.05). As predicted, neither disinhibition nor apathy were significant mediators of oxidative damage and future stimulant use. CONCLUSION These findings provide preliminary support for a model in which oxidative damage resulting from methamphetamine use results in executive dysfunction, which in turn increases vulnerability to future stimulant use.
Collapse
Affiliation(s)
- Theresa Winhusen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:71-91. [PMID: 22749143 DOI: 10.1016/b978-0-12-387665-2.00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
Collapse
|
19
|
Imamura K, Averill A, Wallace SS, Doublié S. Structural characterization of viral ortholog of human DNA glycosylase NEIL1 bound to thymine glycol or 5-hydroxyuracil-containing DNA. J Biol Chem 2011; 287:4288-98. [PMID: 22170059 DOI: 10.1074/jbc.m111.315309] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublié, S. (2009) J. Biol. Chem. 284, 26174-26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
20
|
Redrejo-Rodríguez M, Saint-Pierre C, Couve S, Mazouzi A, Ishchenko AA, Gasparutto D, Saparbaev M. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways. PLoS One 2011; 6:e21039. [PMID: 21799731 PMCID: PMC3143120 DOI: 10.1371/journal.pone.0021039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022] Open
Abstract
Background Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. Methodology/Principal Findings Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5′ next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. Conclusions/Significance This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Christine Saint-Pierre
- Laboratoire Lésions des Acides Nucléiques, SCIB/UMR E3 CEA-UJF, INAC, CEA, Grenoble, France
| | - Sophie Couve
- Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Abdelghani Mazouzi
- Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Alexander A. Ishchenko
- Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB/UMR E3 CEA-UJF, INAC, CEA, Grenoble, France
- * E-mail: (DG); (MS)
| | - Murat Saparbaev
- Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
- * E-mail: (DG); (MS)
| |
Collapse
|