1
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
2
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
3
|
Chen YC, Chang CC, Hsu WL, Chuang ST. Dairy cattle with bovine leukaemia virus RNA show significantly increased leukocyte counts. Vet J 2020; 257:105449. [PMID: 32546356 DOI: 10.1016/j.tvjl.2020.105449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/25/2020] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
Infection with bovine leukaemia virus (BLV), a retrovirus, causes dysfunction of the immune system and can have a marked economic impact on dairy industries due to decreased milk production and reduced lifespan in affected dairy cattle. The presence of proviral DNA has been the major diagnostic indicator of BLV infection. However in the course of BLV infection, the viral genome can be dormant, without detectable gene expression, resulting in limited impact on infected animals. At present, there is limited knowledge regarding haematological indices in dairy cattle that could indicate activation of the BLV genome and suggest reactivated BLV infection. In this study, BLV infection and BLV genome reactivation were evaluated based on the presence of BLV DNA and BLV env gene transcripts, respectively. BLV RNA transcription was confirmed. Among 93 whole blood samples obtained from asymptomatic dairy cattle, the prevalence of BLV proviral DNA and transcripts was 93.5% (n = 87/93) and 83.9% (n = 78/93), respectively. Between groups with and without BLV, the mean counts of white blood cells and lymphocytes in whole blood were significantly associated with the presence of BLV RNA (P < 0.05), but not with BLV proviral DNA. These results shed light on the activation status of the BLV genome and should be taken into account when evaluating the possible impact of BLV on cattle.
Collapse
Affiliation(s)
- Y C Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402, Taiwan
| | - C C Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402, Taiwan
| | - W L Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402, Taiwan.
| | - S T Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402, Taiwan.
| |
Collapse
|
4
|
Khoury G, Darcis G, Lee MY, Bouchat S, Van Driessche B, Purcell DFJ, Van Lint C. The Molecular Biology of HIV Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:187-212. [PMID: 30030794 DOI: 10.1007/978-981-13-0484-2_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HIV remains incurable due to the existence of a reservoir of cells that harbor intact integrated genomes of the virus in the absence of viral replication. This population of infected cells remains invisible to the immune system and is not targeted by the drugs used in the current antiretroviral therapies (cART). Reversal of latency by the use of inhibitors of chromatin-remodeling enzymes has been studied extensively in an attempt to purge this reservoir of latent HIV but has thus far not shown any success in clinical trials. The full complexity of latent HIV infection has still not been appreciated, and the gaps in knowledge prevent development of adequate small-molecule compounds that can effectively perturb this reservoir. In this review, we will examine the role of epigenetic silencing of HIV transcription, posttranscriptional regulation, and mRNA processing in promoting HIV-1 latency.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gilles Darcis
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
5
|
Fauquenoy S, Robette G, Kula A, Vanhulle C, Bouchat S, Delacourt N, Rodari A, Marban C, Schwartz C, Burny A, Rohr O, Van Driessche B, Van Lint C. Repression of Human T-lymphotropic virus type 1 Long Terminal Repeat sense transcription by Sp1 recruitment to novel Sp1 binding sites. Sci Rep 2017; 7:43221. [PMID: 28256531 PMCID: PMC5335701 DOI: 10.1038/srep43221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Human T-lymphotropic Virus type 1 (HTLV-1) infection is characterized by viral latency in the majority of infected cells and by the absence of viremia. These features are thought to be due to the repression of viral sense transcription in vivo. Here, our in silico analysis of the HTLV-1 Long Terminal Repeat (LTR) promoter nucleotide sequence revealed, in addition to the four Sp1 binding sites previously identified, the presence of two additional potential Sp1 sites within the R region. We demonstrated that the Sp1 and Sp3 transcription factors bound in vitro to these two sites and compared the binding affinity for Sp1 of all six different HTLV-1 Sp1 sites. By chromatin immunoprecipitation experiments, we showed Sp1 recruitment in vivo to the newly identified Sp1 sites. We demonstrated in the nucleosomal context of an episomal reporter vector that the Sp1 sites interfered with both the sense and antisense LTR promoter activities. Interestingly, the Sp1 sites exhibited together a repressor effect on the LTR sense transcriptional activity but had no effect on the LTR antisense activity. Thus, our results demonstrate the presence of two new functional Sp1 binding sites in the HTLV-1 LTR, which act as negative cis-regulatory elements of sense viral transcription.
Collapse
Affiliation(s)
- Sylvain Fauquenoy
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Gwenaëlle Robette
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Anna Kula
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Nadège Delacourt
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Céline Marban
- Biomaterials and Bioengineering, Inserm UMR 1121, Faculty of Dentistry, University of Strasbourg, France
| | - Christian Schwartz
- Institut Universitaire de Technologie Louis Pasteur, University of Strasbourg, Schiltigheim, France
- Laboratory of Dynamic of Host-Pathogen Interactions (DHPI), EA7292, University of Strasbourg, Strasbourg, France
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Rohr
- Institut Universitaire de Technologie Louis Pasteur, University of Strasbourg, Schiltigheim, France
- Laboratory of Dynamic of Host-Pathogen Interactions (DHPI), EA7292, University of Strasbourg, Strasbourg, France
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| |
Collapse
|
6
|
Darcis G, Van Driessche B, Van Lint C. HIV Latency: Should We Shock or Lock? Trends Immunol 2017; 38:217-228. [PMID: 28073694 DOI: 10.1016/j.it.2016.12.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Combinatory antiretroviral therapy (cART) increases the survival and quality of life of HIV-1-infected patients. However, interruption of therapy almost invariably leads to the re-emergence of detectable viral replication because HIV-1 persists in viral latent reservoirs. Improved understanding of the molecular mechanisms involved in HIV-1 latency has paved the way for innovative strategies that attempt to purge latent virus. In this article we discuss the results of the broadly explored 'shock and kill' strategy, and also highlight the major hurdles facing this approach. Finally, we present recent innovative works suggesting that locking out latent proviruses could be a potential alternative therapeutic strategy.
Collapse
Affiliation(s)
- Gilles Darcis
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; Service des Maladies Infectieuses, Université de Liège, Centre Hospitalier Universitaire (CHU) de Liège, Domaine Universitaire du Sart-Tilman, B35, 4000 Liège, Belgium
| | - Benoit Van Driessche
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| |
Collapse
|
7
|
Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Sci Rep 2016; 6:31125. [PMID: 27545598 PMCID: PMC4992882 DOI: 10.1038/srep31125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Bovine leukemia virus latency is a viral strategy used to escape from the host immune system and contribute to tumor development. However, a highly expressed BLV micro-RNA cluster has been reported, suggesting that the BLV silencing is not complete. Here, we demonstrate the in vivo recruitment of RNA polymerase III to the BLV miRNA cluster both in BLV-latently infected cell lines and in ovine BLV-infected primary cells, through a canonical type 2 RNAPIII promoter. Moreover, by RPC6-knockdown, we showed a direct functional link between RNAPIII transcription and BLV miRNAs expression. Furthermore, both the tumor- and the quiescent-related isoforms of RPC7 subunits were recruited to the miRNA cluster. We showed that the BLV miRNA cluster was enriched in positive epigenetic marks. Interestingly, we demonstrated the in vivo recruitment of RNAPII at the 3′LTR/host genomic junction, associated with positive epigenetic marks. Functionally, we showed that the BLV LTR exhibited a strong antisense promoter activity and identified cis-acting elements of an RNAPII-dependent promoter. Finally, we provided evidence for an in vivo collision between RNAPIII and RNAPII convergent transcriptions. Our results provide new insights into alternative ways used by BLV to counteract silencing of the viral 5′LTR promoter.
Collapse
|
8
|
Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology 2016; 13:33. [PMID: 27141823 PMCID: PMC4855707 DOI: 10.1186/s12977-016-0267-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1. The mechanisms by which these viruses provoke cellular transformation remain opaque. In both viruses little or no transcription is observed from the 5′LTR in tumors, however the proviruses are not transcriptionally silent. In the case of BLV a cluster of RNA polymerase III transcribed microRNAs are highly expressed, while the HTLV-1 antisense transcript HBZ is consistently found in all tumors examined. Results Here, using RNA-seq, we demonstrate that the BLV provirus also constitutively expresses antisense transcripts in all leukemic and asymptomatic samples examined. The first transcript (AS1) can be alternately polyadenylated, generating a transcript of ~600 bp (AS1-S) and a less abundant transcript of ~2200 bp (AS1-L). Alternative splicing creates a second transcript of ~400 bp (AS2). The coding potential of AS1-S/L is ambiguous, with a small open reading frame of 264 bp, however the transcripts are primarily retained in the nucleus, hinting at a lncRNA-like role. The AS1-L transcript overlaps the BLV microRNAs and using high throughput sequencing of RNA-ligase-mediated (RLM) 5′RACE, we show that the RNA-induced silencing complex (RISC) cleaves AS1-L. Furthermore, experiments using altered BLV proviruses with the microRNAs either deleted or inverted point to additional transcriptional interference between the two viral RNA species. Conclusions The identification of novel viral antisense transcripts shows the BLV provirus to be far from silent in tumors. Furthermore, the consistent expression of these transcripts in both leukemic and nonmalignant clones points to a vital role in the life cycle of the virus and its tumorigenic potential. Additionally, the cleavage of the AS1-L transcript by the BLV encoded microRNAs and the transcriptional interference between the two viral RNA species suggest a shared role in the regulation of BLV. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0267-8) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C. Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. Development 2016; 142:3416-28. [PMID: 26443638 DOI: 10.1242/dev.121871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus. Using frog, chick and mice, we analyzed the regulation of Prdm12 and found that its expression in the caudal neural tube is dependent on retinoic acid and Pax6, and that it is restricted to p1 progenitors, due to the repressive action of Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains. Functional studies in the frog, including genome-wide identification of its targets by RNA-seq and ChIP-Seq, reveal that vertebrate Prdm12 proteins act as a general determinant of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. This probably occurs by recruiting the methyltransferase G9a, an activity that is not displayed by the amphioxus Prdm12 protein. Together, these findings indicate that Prdm12 promotes V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes, and suggest that this function might have only been acquired after the split of the vertebrate and cephalochordate lineages.
Collapse
Affiliation(s)
- Aurore Thélie
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Simon Desiderio
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Julie Hanotel
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Ian Quigley
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Anthony Rodari
- Laboratory of Molecular Virology, ULB, IBMM, Gosselies B-6041, Belgium
| | - Mark D Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sadia Kricha
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - François Lahaye
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Jenifer Croce
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jesús Ordoño Fernandez
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Barbara Bolle
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Alessandra Pierani
- Génétique et développement du cortex cerebral, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tomas Pieler
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, 37077 Göttingen, Germany
| | - Carine Van Lint
- Laboratory of Molecular Virology, ULB, IBMM, Gosselies B-6041, Belgium
| | - Kristine A Henningfeld
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, 37077 Göttingen, Germany
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Claude Van Campenhout
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| |
Collapse
|
10
|
Bovine leukemia virus: a major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol 2014; 163:103-14. [PMID: 25554478 DOI: 10.1016/j.vetimm.2014.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/27/2014] [Accepted: 11/26/2014] [Indexed: 11/22/2022]
Abstract
Bovine leukemia virus (BLV) infection is widespread in the US dairy industry and the majority of producers do not actively try to manage or reduce BLV incidence within their herds. However, BLV is estimated to cost the dairy industry hundreds of millions of dollars annually and this is likely a conservative estimate. BLV is not thought to cause animal distress or serious pathology unless infection progresses to leukemia or lymphoma. However, a wealth of research supports the notion that BLV infection causes widespread abnormal immune function. BLV infection can impact cells of both the innate and adaptive immune system and alter proper functioning of uninfected cells. Despite strong evidence of abnormal immune signaling and functioning, little research has investigated the large-scale effects of BLV infection on host immunity and resistance to other infectious diseases. This review focuses on mechanisms of immune suppression associated with BLV infection, specifically aberrant signaling, proliferation and apoptosis, and the implications of switching from BLV latency to activation. In addition, this review will highlight underdeveloped areas of research relating to BLV infection and how it causes immune suppression.
Collapse
|
11
|
Moratorio G, Fischer S, Bianchi S, Tomé L, Rama G, Obal G, Carrión F, Pritsch O, Cristina J. A detailed molecular analysis of complete bovine leukemia virus genomes isolated from B-cell lymphosarcomas. Vet Res 2013; 44:19. [PMID: 23506507 PMCID: PMC3618307 DOI: 10.1186/1297-9716-44-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/30/2013] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that the majority of cancers result from multiple cellular events leading to malignancy after a prolonged period of clinical latency, and that the immune system plays a critical role in the control of cancer progression. Bovine leukemia virus (BLV) is an oncogenic member of the Retroviridae family. Complete genomic sequences of BLV strains isolated from peripheral blood mononuclear cells (PBMC) from cattle have been previously reported. However, a detailed characterization of the complete genome of BLV strains directly isolated from bovine tumors is much needed in order to contribute to the understanding of the mechanisms of leukemogenesis induced by BLV in cattle. In this study, we performed a molecular characterization of BLV complete genomes from bovine B-cell lymphosarcoma isolates. A nucleotide substitution was found in the glucocorticoid response element (GRE) site of the 5' long terminal repeat (5'LTR) of the BLV isolates. All amino acid substitutions in Tax previously found to be related to stimulate high transcriptional activity of 5'LTR were not found in these studies. Amino acid substitutions were found in the nucleocapsid, gp51 and G4 proteins. Premature stop-codons in R3 were observed. Few mutations or amino acid substitutions may be needed to allow BLV provirus to achieve silencing. Substitutions that favor suppression of viral expression in malignant B cells might be a strategy to circumvent effective immune attack.
Collapse
Affiliation(s)
- Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A 2013; 110:2306-11. [PMID: 23345446 DOI: 10.1073/pnas.1213842110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.
Collapse
|
13
|
Poly(ADP-ribose) polymerase 1 promotes transcriptional repression of integrated retroviruses. J Virol 2012; 87:2496-507. [PMID: 23255787 DOI: 10.1128/jvi.01668-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a cellular enzyme with a fundamental role in DNA repair and the regulation of chromatin structure, processes involved in the cellular response to retroviral DNA integration. However, the function of PARP-1 in retroviral DNA integration is controversial, probably due to the functional redundancy of the PARP family in mammalian cells. We evaluated the function of PARP-1 in retroviral infection using the chicken B lymphoblastoid cell line DT40. These cells lack significant PARP-1 functional redundancy and efficiently support the postentry early events of the mammalian-retrovirus replication cycle. We observed that DT40 PARP-1(-/-) cells were 9- and 6-fold more susceptible to infection by human immunodeficiency virus type 1 (HIV-1)- and murine leukemia virus (MLV)-derived viral vectors, respectively, than cells expressing PARP-1. Production of avian Rous-associated virus type 1 was also impaired by PARP-1. However, the susceptibilities of these cell lines to infection by the nonretrovirus vesicular stomatitis virus were indistinguishable. Real-time PCR analysis of the HIV-1 life cycle demonstrated that PARP-1 did not impair reverse transcription, nuclear import of the preintegration complex, or viral DNA integration, suggesting that PARP-1 regulates a postintegration step. In support of this hypothesis, pharmacological inhibition of the epigenetic mechanism of transcriptional silencing increased retroviral expression in PARP-1-expressing cells, suppressing the differences observed. Further analysis of the implicated molecular mechanism indicated that PARP-1-mediated retroviral silencing requires the C-terminal region, but not the enzymatic activity, of the protein. In sum, our data indicate a novel role of PARP-1 in the transcriptional repression of integrated retroviruses.
Collapse
|