1
|
Homer A, Knoll A, Gruber U, Seitz O. Light harvesting FIT DNA hybridization probes for brightness-enhanced RNA detection. Chem Sci 2025; 16:846-853. [PMID: 39650216 PMCID: PMC11622247 DOI: 10.1039/d4sc06729k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Fluorogenic hybridization probes are essential tools in modern molecular biology techniques. They allow detection of specific nucleic acid molecules without the need to separate target-bound from unbound probes. To enable detection of targets at low concentration, fluorogenic probes should have high brightness. Here, we report the development of RNA hybridization probes (RNA FIT probes) that use smart quenching and a light harvesting principle to enhance the brightness of fluorescence signaling. The signaling mechanism is based on FRET between brightly emitting donor dyes and a fluorescent base surrogate, such as quinoline blue (QB) or thiazole orange (TO). In the single-stranded state, QB/TO nucleotides fluoresce weakly and quench the fluorescence of the donor dyes. Upon target recognition, QB/TO stack with adjacent base pairs, resulting in enhanced fluorescence quantum yields. The donor dyes are blue-shifted by only 5-20 nm relative to the QB/TO nucleotides, allowing simultaneous excitation of both dye groups with efficient energy transfer. The combined photon absorption results in exceptionally bright FIT probes. This feature facilitated the detection of RNA target in undiluted cell lysates. The present study examines the utilization of probes to detect mRNA targets in live T cells using flow cytometry.
Collapse
Affiliation(s)
- Amal Homer
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Andrea Knoll
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Uschi Gruber
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
2
|
Stengel D, Özdal ZD, Truszkowska M, Saleh A, Seybold A, Bernkop-Schnürch A. Limited cellular uptake of liposomes: Might thiolated phospholipids hold the key? Int J Pharm 2024; 667:124812. [PMID: 39424086 DOI: 10.1016/j.ijpharm.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
AIM It was the aim of this study to evaluate the impact of surface thiolation on cellular uptake of liposomes. METHODS Liposomes were prepared via the thin lipid film method, incorporating cholesterol, dipalmitoylphosphatidylcholin (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol). The characterization of liposomes included size, polydispersity index, surface morphology, zeta potential and stability in simulated gastric and intestinal fluid. Hemocompatibility and cytotoxicity of liposomes were investigated. Cellular uptake studies were performed on Caco-2, HEK, HeLa and SW620 cells, involving both quantitative analysis through flow cytometry and qualitative evaluation via confocal microscopy. Additionally, we investigated the impact of an oxidizing agent on thiol-dependent uptake. RESULTS Non-thiolated and thiolated liposomes exhibited a size of 149 nm to 274 nm and a PDI between 0.3 and 0.45. Liposomes were stable in simulated intestinal and gastric fluid. Hemocompatibility studies and cytocompatibility studies of liposomes showed negligible toxic effects of liposomes. Cellular uptake of thiolated liposomes was 1.8-, 2.1-, 5.4- and 1.4-fold enhanced in comparison to non-thiolated liposomes on Caco-2, HEK, HELA and SW620 cells, respectively. The results were qualitatively verified by confocal microscopy. Thiol dependent uptake was influenced by oxidizing agents on HeLa cells. CONCLUSION Surface thiolation represents a promising approach to enhance cellular uptake of liposomes.
Collapse
Affiliation(s)
- Daniel Stengel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Zeliha Duygu Özdal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Martyna Truszkowska
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari, 93231, Southeast Sulawesi, Republic of Indonesia
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Zamolo S, Zakharova E, Boursinhac L, Hollfelder F, Darbre T, Reymond JL. Peptide dendrimers transfecting CRISPR/Cas9 plasmid DNA: optimization and mechanism. RSC Chem Biol 2024; 5:891-900. [PMID: 39211473 PMCID: PMC11352961 DOI: 10.1039/d4cb00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Gene editing by CRISPR/Cas9 offers great therapeutic opportunities but requires delivering large plasmid DNA (pDNA) into cells, a task for which transfection reagents are better suited than viral vectors. Here we performed a structure-activity relationship study of Z22, a d-enantiomeric, arginine containing, lipidated peptide dendrimer developed for pDNA transfection of a CRISPR/Cas9 plasmid co-expressing GFP. While all dendrimer analogs tested bound pDNA strongly and internalized their cargo into cells, d-chirality proved essential for transfection by avoiding proteolysis of the dendrimer structure required for endosome escape and possibly crossing of the nuclear envelope. Furthermore, a cysteine residue at the core of Z22 proved non-essential and was removed to yield the more active analog Z34. This dendrimer shows >83% GFP transfection efficiency in HEK cells with no detrimental effect on cell viability and promotes functional CRISPR/Cas9 mediated gene editing. It is accessible by solid-phase peptide synthesis and therefore attractive for further development.
Collapse
Affiliation(s)
- Susanna Zamolo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Elena Zakharova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Lise Boursinhac
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Tamis Darbre
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
4
|
González-Martínez I, Cerro-Herreros E, Moreno N, García-Rey A, Espinosa-Espinosa J, Carrascosa-Sàez M, Piqueras-Losilla D, Arzumanov A, Seoane-Miraz D, Jad Y, Raz R, Wood MJ, Varela MA, Llamusí B, Artero R. Peptide-conjugated antimiRs improve myotonic dystrophy type 1 phenotypes by promoting endogenous MBNL1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102024. [PMID: 37744174 PMCID: PMC10514136 DOI: 10.1016/j.omtn.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.
Collapse
Affiliation(s)
- Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Andrea García-Rey
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Marc Carrascosa-Sàez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Diego Piqueras-Losilla
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrey Arzumanov
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
5
|
Singh G, Monga V. Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications. Bioorg Chem 2023; 141:106860. [PMID: 37748328 DOI: 10.1016/j.bioorg.2023.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
Nucleic acid represents the ideal drug candidate for protein targets that are hard to target or against which drug development is not easy. Peptide nucleic acids (PNAs) are synthesized by attaching modified peptide backbones generally derived from repetitive N-2-aminoethyl glycine units in place of the regular phosphodiester backbone and represent synthetic impersonator of nucleic acids that offers an exciting research field due to their fascinating spectrum of biotechnological, diagnostic and potential therapeutic applications. The semi-rigid peptide nucleic acid backbone serves as a nearly-perfect template for attaching complimentary base pairs on DNA or RNA in a sequence-dependent manner as described by Watson-Crick models. PNAs and their analogues are endowed with exceptionally high affinity and specificity for receptor sites, essentially due to their polyamide backbone's uncharged and flexible nature. The present review compiled various strategies to modify the polypeptide backbone for improving the target selectivity and stability of the PNAs in the body. The investigated biological activities carried out on PNAs have also been summarized in the present review.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
6
|
Swenson C, Argueta-Gonzalez HS, Sterling SA, Robichaux R, Knutson SD, Heemstra JM. Forced Intercalation Peptide Nucleic Acid Probes for the Detection of an Adenosine-to-Inosine Modification. ACS OMEGA 2023; 8:238-248. [PMID: 36643573 PMCID: PMC9835161 DOI: 10.1021/acsomega.2c03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The deamination of adenosine to inosine is an important modification in nucleic acids that functionally recodes the identity of the nucleobase to a guanosine. Current methods to analyze and detect this single nucleotide change, such as sequencing and PCR, typically require time-consuming or costly procedures. Alternatively, fluorescent "turn-on" probes that result in signal enhancement in the presence of target are useful tools for real-time detection and monitoring of nucleic acid modification. Here we describe forced-intercalation PNA (FIT-PNA) probes that are designed to bind to inosine-containing nucleic acids and use thiazole orange (TO), 4-dimethylamino-naphthalimide (4DMN), and malachite green (MG) fluorogenic dyes to detect A-to-I editing events. We show that incorporation of the dye as a surrogate base negatively affects the duplex stability but does not abolish binding to targets. We then determined that the identity of the adjacent nucleobase and temperature affect the overall signal and fluorescence enhancement in the presence of inosine, achieving an 11-fold increase, with a limit of detection (LOD) of 30 pM. We determine that TO and 4DMN probes are viable candidates to enable selective inosine detection for biological applications.
Collapse
Affiliation(s)
- Colin
S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Sierra A. Sterling
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan Robichaux
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steve D. Knutson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Chowdhury M, Hudson RHE. Exploring Nucleobase Modifications in Oligonucleotide Analogues for Use as Environmentally Responsive Fluorophores and Beyond. CHEM REC 2023; 23:e202200218. [PMID: 36344432 DOI: 10.1002/tcr.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Over the past two decades, it has become abundantly clear that nucleic acid biochemistry, especially with respect to RNA, is more convoluted and complex than previously appreciated. Indeed, the application and exploitation of nucleic acids beyond their predestined role as the medium for storage and transmission of genetic information to the treatment and study of diseases has been achieved. In other areas of endeavor, utilization of nucleic acids as a probe molecule requires that they possess a reporter group. The reporter group of choice is often a luminophore because fluorescence spectroscopy has emerged as an indispensable tool to probe the structural and functional properties of modified nucleic acids. The scope of this review spans research done in the Hudson lab at The University of Western Ontario and is focused on modified pyrimidine nucleobases and their applications as environmentally sensitive fluorophores, base discriminating fluorophores, and in service of antisense applications as well as tantalizing new results as G-quadruplex destabilizing agents. While this review is a focused personal account, particularly influential work of colleagues in the chemistry community will be highlighted. The intention is not to make a comprehensive review, citations to the existing excellent reviews are given, any omission of the wonderful and impactful work being done by others globally is not intentional. Thus, this review will briefly introduce the context of our work, summarize what has been accomplished and finish with the prospects of future developments.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
8
|
Schöllkopf S, Knoll A, Homer A, Seitz O. Double FIT hybridization probes – towards enhancing brightness, turn-on and specificity of RNA detection. Chem Sci 2023; 14:4166-4173. [PMID: 37063796 PMCID: PMC10094420 DOI: 10.1039/d3sc00363a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Efficient fluorogenic hybridization probes combine high brightness and specificity of fluorescence signaling with large turn-on of fluorescence.
Collapse
Affiliation(s)
- Sophie Schöllkopf
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Andrea Knoll
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Amal Homer
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
9
|
Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022; 50:10839-10856. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kruhlak
- Microscopy Core Facility, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Chang LH, Seitz O. RNA-templated chemical synthesis of proapoptotic L- and d-peptides. Bioorg Med Chem 2022; 66:116786. [PMID: 35594647 DOI: 10.1016/j.bmc.2022.116786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acid-programmed reactions find application in drug screening and nucleic acid diagnosis, and offer prospects for a RNA-sensitive prodrug approach. We aim for the development of a nucleic acid-templated reaction providing nucleic acid-linked molecules that can act on intracellular protein targets. Such reactions would be useful for in situ drug synthesis and activity-based DNA-encoded library screening. In this report, we show native chemical ligation-like chemical peptidyl transfer reactions between peptide-PNA conjugates. The reaction proceeds on RNA templates. As a chemical alternative to ribosomal peptide synthesis access to both L- and d-peptides is provided. In reactions affording 9 to 14 amino acid long pro-apoptotic L- and d-peptides, we found that certain PNA sequence motifs and combinations of cell penetrating peptides (CPPs) cause surprisingly high reactivity in absence of a template. Viability measurements demonstrate that the products of templated peptidyl transfer act on HeLa cells and HEK293 cells. Of note, the presence of cysteine, which is required for NCL chemistry, can enhance the bioactivity. The study provides guidelines for the application of peptide-PNA conjugates in templated synthesis and is of interest for in situ drug synthesis and activity-based DNA-encoded library screening.
Collapse
Affiliation(s)
- Li-Hao Chang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
11
|
Abstract
This introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
Collapse
|
12
|
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021; 113:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
RNAs form secondary structures containing double-stranded base paired regions and single-stranded regions. Probing, detecting and modulating RNA structures and dynamics requires the development of molecular sensors that can differentiate the sequence and structure of RNAs present in viruses and cells, as well as in extracellular space. In this review, we summarize the recent progress on the development of chemically modified peptide nucleic acids (PNAs) for the selective recognition of double-stranded RNA (dsRNA) sequences over both single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) sequences. We also briefly discuss the applications of sequence-specific dsRNA-binding PNAs in sensing and stabilizing dsRNA structures and inhibiting dsRNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Liping Deng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
13
|
Zhang X, Wang C, Feng G, Jiang J, Hu J, du Rietz A, Brommesson C, Zhang X, Ma Y, Roberg K, Zhang F, Shen HM, Uvdal K, Hu Z. Tailorable Membrane-Penetrating Nanoplatform for Highly Efficient Organelle-Specific Localization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101440. [PMID: 34173333 DOI: 10.1002/smll.202101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Chunfei Wang
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Gang Feng
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Jianxia Jiang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Jiwen Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Anna du Rietz
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Caroline Brommesson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Xuanjun Zhang
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State, South China University of Technology, Guangzhou, 510640, China
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, SE581 83, Sweden
| | - Fengling Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Han-Ming Shen
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| |
Collapse
|
14
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
15
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
16
|
Volpi S, Rozzi A, Rivi N, Neri M, Knoll W, Corradini R. Submonomeric Strategy with Minimal Protection for the Synthesis of C(2)-Modified Peptide Nucleic Acids. Org Lett 2021; 23:902-907. [PMID: 33417460 PMCID: PMC7880566 DOI: 10.1021/acs.orglett.0c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 11/28/2022]
Abstract
A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, d-Lys- and d-Arg-based backbones were used to obtain positively charged PNAs with high optical purity, as inferred from chiral GC measurements. "Chiral-box" PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.
Collapse
Affiliation(s)
- Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Nicola Rivi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Wolfgang Knoll
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln an der Donau, Austria
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| |
Collapse
|
17
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
18
|
Loibl N, Arenz C, Seitz O. Monitoring Dicer-Mediated miRNA-21 Maturation and Ago2 Loading by a Dual-Colour FIT PNA Probe Set. Chembiochem 2020; 21:2527-2532. [PMID: 32270536 PMCID: PMC7496889 DOI: 10.1002/cbic.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The inhibition of micro RNA (miRNA) maturation by Dicer and loading matured miRNAs into the RNA-induced silencing complex (RISC) is envisioned as a modality for treatment of cancer. Existing methods for evaluating maturation either focus on the conversion of modified precursors or detect mature miRNA. Whereas the former is not applicable to native pre-miRNA, the latter approach underestimates maturation when both nonmatured and matured miRNA molecules are subject to cleavage. We present a set of two orthogonally labelled FIT PNA probes that distinguish between cleaved pre-miRNA and the mature miRNA duplex. The probes allow Dicer-mediated miR21 maturation to be monitored and Ago2-mediated unwinding of the miR21 duplex to be assayed. A two-channel fluorescence readout enables measurement in real-time without the need for specialized instrumentation or further enzyme mediated amplification.
Collapse
Affiliation(s)
- Natalia Loibl
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Christoph Arenz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| |
Collapse
|
19
|
Carregal-Romero S, Fadón L, Berra E, Ruíz-Cabello J. MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21093253. [PMID: 32375361 PMCID: PMC7246754 DOI: 10.3390/ijms21093253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Lucía Fadón
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
| | - Edurne Berra
- Center for Cooperative Research in Bioscience (CIC bioGUNE), Buiding 800, Science and Technology Park of Bizkaia, 48160 Derio, Spain;
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
20
|
Zhou J, Shao Z, Liu J, Duan Q, Wang X, Li J, Yang H. From Endocytosis to Nonendocytosis: The Emerging Era of Gene Delivery. ACS APPLIED BIO MATERIALS 2020; 3:2686-2701. [DOI: 10.1021/acsabm.9b01131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhentao Shao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jia Liu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Qiao Duan
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiang Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|
21
|
Hornung JE, Hellwig N, Göbel MW. Peptide Nucleic Acid Conjugates of Quinone Methide Precursors Alkylate Ribonucleic Acid after Activation with Light. Bioconjug Chem 2020; 31:639-645. [PMID: 31904221 DOI: 10.1021/acs.bioconjchem.9b00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinone methide precursors 2 and 3 were protected with a photoreactive 2-nitrobenzyl group and conjugated to peptide nucleic acids (PNA) using a Huisgen click reaction. After brief irradiation at 365 nm, cross-linking with complementary RNA strands started and was analyzed with an ALFexpress sequencer. When this method was used, the gel temperature had a major influence on apparent rates. Quinone methides are known to form transient as well as stable bonds with nucleotides. Although both were detected at 25 °C, analysis at 57 °C only recorded the stable types of cross-links, suggesting much slower alkylation kinetics. Linker 11 allowed us to attach quinone methides to internal positions of the PNA/RNA duplex and to capture a model of miR-20a with good efficiency.
Collapse
|
22
|
Knoll A, Kankowski S, Schöllkopf S, Meier JC, Seitz O. Chemo-biological mRNA imaging with single nucleotide specificity. Chem Commun (Camb) 2020; 55:14817-14820. [PMID: 31763632 DOI: 10.1039/c9cc06989e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unambiguous imaging of C → U edited mRNA calls for a method that distinguishes a locally high concentration of unbound probe or single nucleotide mismatched target from a locally low concentration of matched mRNA target. To address this issue, we combine FIT probes as a "chemical" detection system with the "biological" MS2 technique. Ratio measurements provide a convenient parameter to discriminate the edited from the unedited state of mRNA encoding for GlyR α2 in HEK cells.
Collapse
Affiliation(s)
- Andrea Knoll
- Humboldt University Berlin, Department of Chemistry, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| | | | | | | | | |
Collapse
|
23
|
Zhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv 2019; 26:328-342. [PMID: 30905189 PMCID: PMC6442206 DOI: 10.1080/10717544.2019.1582730] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Efficient cellular delivery of biologically active molecules is one of the key factors that affect the discovery and development of novel drugs. The plasma membrane is the first barrier that prevents direct translocation of chemic entities, and thus obstructs their efficient intracellular delivery. Generally, hydrophilic small molecule drugs are poor permeability that reduce bioavailability and thus limit the clinic application. The cellular uptake of macromolecules and drug carriers is very inefficient without external assistance. Therefore, it is desirable to develop potent delivery systems for achieving effective intracellular delivery of chemic entities. Apart from of the types of delivery strategies, the composition of the cell membrane is critical for delivery efficiency due to the fact that cellular uptake is affected by the interaction between the chemical entity and the plasma membrane. In this review, we aimed to develop a profound understanding of the interactions between delivery systems and components of the plasma membrane. For the purpose, we attempt to present a broad overview of what delivery systems can be used to enhance the intracellular delivery of poorly permeable chemic entities, and how various delivery strategies are applied according to the components of plasma membrane.
Collapse
Affiliation(s)
- Renshuai Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, P.R. China
| | - Fandong Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Pengwei Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agriculture Sciences, Haikou, P.R. China
| | - Guojun Pan
- School of Life Sciences, Taishan Medical University, Tai’an, P.R. China
| |
Collapse
|
24
|
Saarbach J, Sabale PM, Winssinger N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 2019; 52:112-124. [PMID: 31541865 DOI: 10.1016/j.cbpa.2019.06.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) stands as one of the most successful artificial oligonucleotide mimetics. Salient features include the stability of hybridization complexes (either as duplexes or triplexes), metabolic stability, and ease of chemical modifications. These features have enabled important applications such as antisense agents, gene editing, nucleic acid sensing and as a platform to program the assembly of PNA-tagged molecules. Here, we review recent advances in these areas.
Collapse
Affiliation(s)
- Jacques Saarbach
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M Sabale
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
25
|
Piacenti V, Langella E, Autiero I, Nolan JC, Piskareva O, Adamo MFA, Saviano M, Moccia M. A combined experimental and computational study on peptide nucleic acid (PNA) analogues of tumor suppressive miRNA-34a. Bioorg Chem 2019; 91:103165. [PMID: 31419642 DOI: 10.1016/j.bioorg.2019.103165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a ubiquitous class of non-coding RNAs able to regulate gene expression in diverse biological processes. Widespread miRNAs deregulation was reported in numerous diseases including cancer, with several miRNAs playing oncogenic and/or tumor suppressive role by targeting multiple mRNAs simultaneously. Based on these findings, miRNAs have emerged as promising therapeutic tools for cancer treatment. Herein, for the first time, peptide nucleic acids (PNAs) were studied to develop a new class of molecules able to target 3'UTR on MYCN mRNA without a fully complementary base pairing sequence (as miRNAs). For our proof of concept study we have selected as a model the miRNA-34a, which acts as a tumor suppressor in a number of cancers including neuroblastoma. In particular, miRNA-34a is a direct regulator of MYCN oncogene, whose overexpression is a prominent biomarker for the highly aggressive neuroblastoma phenotype. The design and synthesis of three PNA-based oligomers of different length was described, and their interaction with two binding sites on the target MYCN mRNA was investigated by molecular dynamics simulation, and spectroscopic techniques (CD, UV). Intake assay and confocal microscopy of PNA sequences were also carried out in vitro on neuroblastoma Kelly cells. Despite the presence of multiple mismatches, the PNA/RNA hetero duplexes retain very interesting features in terms of stability, affinity as well as of cellular uptake.
Collapse
Affiliation(s)
- Valerio Piacenti
- RCSI, Dept. of Pharmaceutical & Medicinal Chemistry, 123 St Stephen's Green, Dublin 2, Ireland
| | - Emma Langella
- National Research Council (CNR)-IBB, via Mezzocannone 16, 80134 Naples, Italy
| | - Ida Autiero
- National Research Council (CNR)-IBB, via Mezzocannone 16, 80134 Naples, Italy
| | - John C Nolan
- RCSI, Dept. of Cancer Genetics, York Street, Dublin 2, Ireland
| | - Olga Piskareva
- RCSI, Dept. of Cancer Genetics, York Street, Dublin 2, Ireland
| | - Mauro F A Adamo
- RCSI, Dept. of Pharmaceutical & Medicinal Chemistry, 123 St Stephen's Green, Dublin 2, Ireland
| | - Michele Saviano
- National Research Council (CNR)-IC, via G. Amendola 122/O, 70126 Bari, Italy
| | - Maria Moccia
- National Research Council (CNR)-IC, via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
26
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
27
|
Hashoul D, Shapira R, Falchenko M, Tepper O, Paviov V, Nissan A, Yavin E. Red-emitting FIT-PNAs: "On site" detection of RNA biomarkers in fresh human cancer tissues. Biosens Bioelectron 2019; 137:271-278. [PMID: 31121464 DOI: 10.1016/j.bios.2019.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
Abstract
To date, there are limited approaches for the direct and rapid visualization (on site) of tumor tissues for pathological assessment and for aiding cytoreductive surgery. Herein, we have designed FIT-PNAs (forced-intercalation-peptide nucleic acids) to detect two RNA cancer biomarkers. Firstly, a lncRNA (long noncoding RNA) termed CCAT1, has been shown as an oncogenic lncRNA over-expressed in a variety of cancers. The latter, an mRNA termed KRT20, has been shown to be over-expressed in metastases originating from colorectal cancer (CRC). To these FIT-PNAs, we have introduced the bis-quinoline (BisQ) cyanine dye that emits light in the red region (605-610 nm) of the visible spectrum. Most strikingly, spraying fresh human tissue taken from patients during cytoreductive surgery for peritoneal metastasis of colon cancer with an aqueous solution of CCAT1 FIT-PNA results in bright fluorescence in a matter of minutes. In fresh healthy tissue (from bariatric surgeries), no appreciable fluorescence is detected. In addition, a non-targeted FIT-PNA shows no fluorescent signal after spraying this FIT-PNA on fresh tumor tissue emphasizing the specificity of these molecular sensors. This study is the first to show on-site direct and immediate visualization of an RNA cancer biomarker on fresh human cancer tissues by topical application (spraying) of a molecular sensor.
Collapse
Affiliation(s)
- Dina Hashoul
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Rachel Shapira
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Maria Falchenko
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Odelia Tepper
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Vera Paviov
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Aviram Nissan
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | - Eylon Yavin
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
28
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
29
|
Manicardi A, Gambari R, de Cola L, Corradini R. Preparation of Anti-miR PNAs for Drug Development and Nanomedicine. Methods Mol Biol 2019; 1811:49-63. [PMID: 29926445 DOI: 10.1007/978-1-4939-8582-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptide Nucleic Acids (PNAs) are oligonucleotide mimics that can be used to block the biological action of microRNA, thus affecting gene expression post-transcriptionally. PNAs are obtained with solid-phase peptide synthesis, and can be easily conjugated to other peptides. Conjugation with R8-Peptide or modification of the PNA backbone (at C5 or C2 carbon) with arginine side chains allows efficient cellular uptake. The present protocol describes the synthesis of cationic PNAs that can be used alone as drugs or for efficient co-delivery in suitable inorganic nanocarriers.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Luisa de Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) Université de Strasbourg, Strasbourg, France
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
30
|
Croci S, Manicardi A, Rubagotti S, Bonacini M, Iori M, Capponi PC, Cicoria G, Parmeggiani M, Salvarani C, Versari A, Corradini R, Asti M. 64Cu and fluorescein labeled anti-miRNA peptide nucleic acids for the detection of miRNA expression in living cells. Sci Rep 2019; 9:3376. [PMID: 30833583 PMCID: PMC6399270 DOI: 10.1038/s41598-018-35800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/08/2018] [Indexed: 01/23/2023] Open
Abstract
MiRNAs are single stranded RNAs of 18-22 nucleotides. They are promising diagnostic and prognostic markers for several pathologies including tumors, neurodegenerative, cardiovascular and autoimmune diseases. In the present work the development and characterization of anti-miRNA radiolabeled probes based on peptide nucleic acids (PNAs) for potential non-invasive molecular imaging in vivo of giant cell arteritis are described. MiR-146a and miR-146b-5p were selected as targets because they have been found up-regulated in this disease. Anti-miR and scramble PNAs were synthesized and linked to carboxyfluorescein or DOTA. DOTA-anti-miR PNAs were then labelled with copper-64 (64Cu) to function as non-invasive molecular imaging tools. The affinity of the probes for the targets was assessed in vitro by circular dichroism and melting temperature. Differential uptake of fluorescein and 64Cu labeled anti-miRNA probes was tested on BCPAP and A549 cell lines, expressing different levels of miR-146a and -146b-5p. The experiments showed that the anti-miR-146a PNAs were more effective than the anti-miR-146b-5p PNAs. Anti-miR-146a PNAs could bind both miR-146a and miR-146b-5p. The uptake of fluorescein and 64Cu labeled anti-miR-146a PNAs was higher than that of the negative control scramble PNAs in miRNA expressing cells in vitro. 64Cu-anti-miR-146a PNAs might be further investigated for non-invasive PET imaging of miR-146 overexpressing diseases.
Collapse
Affiliation(s)
- Stefania Croci
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Alex Manicardi
- Department of Chemistry, Live Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, 43124, Italy
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Faculty of Science, Ghent University, Krijgslaan 281-S4, Gent, 9000, Belgium
| | - Sara Rubagotti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Michele Iori
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Pier Cesare Capponi
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Gianfranco Cicoria
- Medical Physics Department, University Hospital "S. Orsola-Malpighi", 40138, Bologna, Italy
| | - Maria Parmeggiani
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, Diagnostic Imaging and Laboratory Medicine Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Roberto Corradini
- Department of Chemistry, Live Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, 43124, Italy
| | - Mattia Asti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
| |
Collapse
|
31
|
Kesy J, Patil KM, Kumar SR, Shu Z, Yong HY, Zimmermann L, Ong AAL, Toh DFK, Krishna MS, Yang L, Decout JL, Luo D, Prabakaran M, Chen G, Kierzek E. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug Chem 2019; 30:931-943. [PMID: 30721034 DOI: 10.1021/acs.bioconjchem.9b00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 μM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.
Collapse
Affiliation(s)
- Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | | | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 636921 , Singapore
| | - Louis Zimmermann
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Jean-Luc Decout
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Dahai Luo
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link , National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
32
|
Chamiolo J, Fang GM, Hövelmann F, Friedrich D, Knoll A, Loewer A, Seitz O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. Chembiochem 2018; 20:595-604. [PMID: 30326174 PMCID: PMC6470956 DOI: 10.1002/cbic.201800526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell‐penetrating peptides (CPPs) and pore‐forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)‐ with DNA‐based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP–FIT PNA conjugates were affected. Live‐cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob‐like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin‐O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA‐based FIT probes were brighter and more responsive than PNA‐based FIT probes. Optimized conditions enabled live‐cell multicolor imaging of three different mRNA target sequences.
Collapse
Affiliation(s)
- Jasmine Chamiolo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Andrea Knoll
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Alexander Loewer
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
33
|
WANG XQ, Ghulam M, ZHU C, QU F. Online Capillary Electrophoresis Reaction for Interaction Study of Amino Acid Modified Peptide Nucleic Acid and Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61129-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Sabale P, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS OMEGA 2018; 3:15343-15352. [PMID: 30556003 PMCID: PMC6289544 DOI: 10.1021/acsomega.8b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
The ability to bind strongly to complementary nucleic acid sequences, invade complex nucleic acid structures, and resist degradation by cellular enzymes has made peptide nucleic acid (PNA) oligomers as very useful hybridization probes in molecular diagnosis. For such applications, the PNA oligomers have to be labeled with appropriate reporters as they lack intrinsic labels that can be used in biophysical assays. Although solid-phase synthesis is commonly used to attach reporters onto PNA, development of milder and modular labeling methods will provide access to PNA oligomers labeled with a wider range of biophysical tags. Here, we describe the establishment of a postsynthetic modification strategy based on bioorthogonal chemical reactions in functionalizing PNA oligomers in solution with a variety of tags. A toolbox composed of alkyne- and azide-modified monomers were site-specifically incorporated into PNA oligomers and postsynthetically click-functionalized with various tags, ranging from sugar, amino acid, biotin, to fluorophores, by using copper(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, and Staudinger ligation reactions. As a proof of utility of this method, fluorescent PNA hybridization probes were developed and used in imaging human telomeres in chromosomes and poly(A) RNAs in cells. Taken together, this simple approach of generating a wide range of functional PNA oligomers will expand the use of PNA in molecular diagnosis.
Collapse
|
35
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
Affiliation(s)
- Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
36
|
Bull GD, Thompson KC. Proton Transfer and Tautomerism in 2-Aminopurine-Thymine and Pyrrolocytosine-Guanine Base Pairs. Biochemistry 2018; 57:4547-4561. [PMID: 30024730 DOI: 10.1021/acs.biochem.8b00521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyrrolocytosine (PC) and 2-aminopurine (2AP) are fluorescent nucleobase analogues of the DNA nucleobases cytosine and adenine, respectively, and form base pairs with guanine and thymine. Both fluorescent nucleobases are used extensively as probes for local structure in nucleic acids as the fluorescence properties of PC and 2AP are very sensitive to changes such as helix formation, although the reasons for this sensitivity are not clear. To address this question, ab initio calculations have been used to calculate energies, at the MP2 and CIS level, of three different tautomer pairings of PC-G, and two of 2AP-T, which can potentially be interconverted by double proton transfer between the bases. Potential energy curves linking the different tautomer pairs have been calculated. For both PC-G and 2AP-T, the most stable tautomer pair in the electronic ground state is that analogous to the natural C-G and A-T base pair. In the case of 2AP-T, an alternative, stable, tautomer base pair was located in the first electronically excited state; however, it lies higher in energy than the tautomer pair analogous to A-T, making conversion to the alternative form unlikely. In contrast, in the case of PC-G, an alternative tautomer base pair is found to be the most stable form in the first electronically excited state, and this form is accessible following initial excitation from the ground state tautomer pair, thus suggesting an alternative deactivation route via double proton transfer may be possible when PC is involved in hydrogen bonding, such as occurs in helical conformations.
Collapse
Affiliation(s)
- Graham D Bull
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck , University of London , Malet Street , Bloomsbury, London WC1E 7HX , U.K
| | - Katherine C Thompson
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck , University of London , Malet Street , Bloomsbury, London WC1E 7HX , U.K
| |
Collapse
|
37
|
Kent OA, Steenbergen C, Das S. In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. J Vis Exp 2018. [PMID: 29985373 DOI: 10.3791/57845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) is small non-coding RNA which inhibits post-transcriptional messenger RNA (mRNA) expression. Human diseases, such as cancer and cardiovascular disease, have been shown to activate tissue and/or cell-specific miRNA expression associated with disease progression. The inhibition of miRNA expression offers the potential for a therapeutic intervention. However, traditional approaches to inhibit miRNAs, employing antagomir oligonucleotides, affect specific miRNA functions upon global delivery. Herein, we present a protocol for the in vivo cardio-specific inhibition of the miR-181 family in a rat model. A miRNA-sponge construct is designed to include 10 repeated anti-miR-181 binding sequences. The cardio-specific α-MHC promoter is cloned into the pEGFP backbone to drive the cardio-specific miR-181 miRNA-sponge expression. To create a stable cell line expressing the miR-181-sponge, myoblast H9c2 cells are transfected with the α-MHC-EGFP-miR-181-sponge construct and sorted by fluorescence-activated cell sorting (FACs) into GFP positive H9c2 cells which are cultured with neomycin (G418). Following stable growth in neomycin, monoclonal cell populations are established by additional FACs and single cell cloning. The resulting myoblast H9c2-miR-181-sponge-GFP cells exhibit a loss of function of miR-181 family members as assessed through the increased expression of miR-181 target proteins and compared to H9c2 cells expressing a scramble non-functional sponge. In addition, we develop a nanovector for the systemic delivery of the miR-181-sponge construct by complexing positively charged liposomal nanoparticles and negatively charged miR-181-sponge plasmids. In vivo imaging of GFP reveals that multiple tail vein injections of a nanovector over a three-week period are able to promote a significant expression of the miR-181-sponge in a cardio-specific manner. Importantly, a loss of miR-181 function is observed in the heart tissue but not in the kidney or the liver. The miRNA-sponge is a powerful method to inhibit tissue-specific miRNA expression. Driving the miRNA-sponge expression from a tissue-specific promoter provides specificity for the miRNA inhibition, which can be confined to a targeted organ or tissue. Furthermore, combining nanovector and miRNA-sponge technologies permits an effective delivery and tissue-specific miRNA inhibition in vivo.
Collapse
Affiliation(s)
- Oliver A Kent
- Princess Margaret Cancer Centre, University of Toronto
| | | | - Samarjit Das
- Department of Pathology, Department of Cardiology, Johns Hopkins University;
| |
Collapse
|
38
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
39
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Elskens J, Manicardi A, Costi V, Madder A, Corradini R. Synthesis and Improved Cross-Linking Properties of C5-Modified Furan Bearing PNAs. Molecules 2017; 22:molecules22112010. [PMID: 29156637 PMCID: PMC6150320 DOI: 10.3390/molecules22112010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, peptide nucleic acid/DNA (PNA:DNA) duplex stability has been improved via backbone modification, often achieved via introducing an amino acid side chain at the α- or γ-position in the PNA sequence. It was previously shown that interstrand cross-linking can further enhance the binding event. In this work, we combined both strategies to fine-tune PNA crosslinking towards single stranded DNA sequences using a furan oxidation-based crosslinking method; for this purpose, γ-l-lysine and γ-l-arginine furan-PNA monomers were synthesized and incorporated in PNA sequences via solid phase synthesis. It was shown that the l-lysine γ-modification had a beneficial effect on crosslink efficiency due to pre-organization of the PNA helix and a favorable electrostatic interaction between the positively-charged lysine and the negatively-charged DNA backbone. Moreover, the crosslink yield could be optimized by carefully choosing the type of furan PNA monomer. This work is the first to describe a selective and biocompatible furan crosslinking strategy for crosslinking of γ-modified PNA sequences towards single-stranded DNA.
Collapse
Affiliation(s)
- Joke Elskens
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Valentina Costi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
41
|
Puah RY, Jia H, Maraswami M, Toh DFK, Ero R, Yang L, Patil KM, Ong AAL, Krishna MS, Sun R, Tong C, Huang M, Chen X, Loh TP, Gao YG, Liu DX, Chen G. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry 2017; 57:149-159. [PMID: 29116759 DOI: 10.1021/acs.biochem.7b00744] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Rya Ero
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | | - Mei Huang
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou 510642, Guangdong, People's Republic of China
| | | |
Collapse
|
42
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
43
|
Kamiya Y, Donoshita Y, Kamimoto H, Murayama K, Ariyoshi J, Asanuma H. Introduction of 2,6-Diaminopurines into Serinol Nucleic Acid Improves Anti-miRNA Performance. Chembiochem 2017; 18:1917-1922. [PMID: 28748559 DOI: 10.1002/cbic.201700272] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that regulate gene expression at the post-transcriptional level by sequence-specific hybridisation. Anti-miRNA oligonucleotides (AMOs) are inhibitors of miRNA activity. Chemical modification of AMOs is required to increase binding affinity and stability in serum and cells. In this study, we synthesised AMOs with our original acyclic nucleic acid, serinol nucleic acid (SNA), backbone and with the artificial nucleobase 2,6-diaminopurine. The AMO composed of only SNA had strong nuclease resistance and blocked endogenous miRNA activity. A significant improvement in anti-miRNA activity of the AMO was achieved by introduction of a 2,6-diaminopurine residues into the SNA backbone. In addition, we found that the enhancement in AMO activity depended on the position of the 2,6-diaminopurine residue in the sequence. The high potency of the SNA-AMOs suggests that these oligomers will be useful as therapeutic reagents for control of miRNA function in patients and as tools for investigating the roles of microRNAs in cells.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Donoshita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Kamimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Keiji Murayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Jumpei Ariyoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Venture Business Laboratory (VBL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
44
|
Li T, Gao W, Liang J, Zha M, Chen Y, Zhao Y, Wu C. Biscysteine-Bearing Peptide Probes To Reveal Extracellular Thiol–Disulfide Exchange Reactions Promoting Cellular Uptake. Anal Chem 2017; 89:8501-8508. [DOI: 10.1021/acs.analchem.7b02084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Li
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Wei Gao
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jingjing Liang
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Mirao Zha
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yaqi Chen
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, State Key Laboratory
of Physical Chemistry of Solid Surfaces, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
45
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
46
|
Gao W, Li T, Wang J, Zhao Y, Wu C. Thioether-Bonded Fluorescent Probes for Deciphering Thiol-Mediated Exchange Reactions on the Cell Surface. Anal Chem 2016; 89:937-944. [PMID: 27976862 DOI: 10.1021/acs.analchem.6b04096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Study on the processes of the thiol-mediated disulfide exchange reactions on the cell surface is not only important to our understanding of extracellular natural bioreduction processes but to the development of novel strategies for the intracellular delivery of synthetic bioactive molecules. However, disulfide-bonded probes have their intrinsic inferiority in exploring the detailed exchange pathway because of the bidirectional reactivity of disulfide bonds toward reactive thiols. In this work, we developed thioether-bonded fluorescent probes that enable us to explore thiol-mediated thioether (and disulfide) exchange reactions on the cell surface through fluorescence recovery and/or cell imaging. We demonstrated that our thioether-bonded probes can be efficiently cleaved through thiol-thioether exchanges with exofacial protein thiols and/or glutathione (GSH) efflux. The exchanges mainly take place on the cell surface, and GSH efflux-mediated exchange reactions can take place without the requirement of pre-exchanges of the probes with cell surface-associated protein thiols. On the basis of our founder methodology, for the first time we demonstrated the interplay of exofacial protein thiols and GSH efflux on the cleavage of external thioether-bonded compounds. Moreover, given that an understanding of the process of GSH efflux and the mechanism on which it relies is crucial to our understanding of the cellular redox homeostasis and the mechanism of multidrug resistance, we expect that our thioether-bonded probes and strategies would greatly benefit the fundamental study of GSH efflux in living cells.
Collapse
Affiliation(s)
- Wei Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Tao Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Jinghui Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005, P.R. China
| |
Collapse
|
47
|
Akisawa T, Yamada K, Nagatsugi F. Synthesis of peptide nucleic acids (PNA) with a crosslinking agent to RNA and effective inhibition of dicer. Bioorg Med Chem Lett 2016; 26:5902-5906. [PMID: 27838183 DOI: 10.1016/j.bmcl.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
Peptide nucleic acids (PNAs) are structural mimics of nucleic acids that form stable hybrids with DNA and RNA. Due to these characteristics, PNAs are widely used as biochemical tools, for example, in antisense/antigene therapy. In this study, we have synthesized PNAs incorporating 2-amino-6-vinylpurine (AVP) for the covalent targeting of single-stranded DNA and RNA, and evaluated their reactivities for these targets. PNA containing AVP at the N-terminal position showed a high reactivity to uracil in RNA and thymine in DNA at the complementary site with AVP. In addition, the crosslinking reactions to pre-miR122 with PNA containing AVP increased the inhibition effect for the Dicer processing of pre-miR122 in vitro.
Collapse
Affiliation(s)
- Takuya Akisawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Ken Yamada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan.
| |
Collapse
|
48
|
Toh DFK, Devi G, Patil KM, Qu Q, Maraswami M, Xiao Y, Loh TP, Zhao Y, Chen G. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Nucleic Acids Res 2016; 44:9071-9082. [PMID: 27596599 PMCID: PMC5100590 DOI: 10.1093/nar/gkw778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Qiuyu Qu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yunyun Xiao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
49
|
Manicardi A, Bertucci A, Rozzi A, Corradini R. A Bifunctional Monomer for On-Resin Synthesis of Polyfunctional PNAs and Tailored Induced-Fit Switching Probes. Org Lett 2016; 18:5452-5455. [PMID: 27768299 DOI: 10.1021/acs.orglett.6b02363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A synthetic strategy for the production of polyfunctional PNAs bearing substituent groups both on the nucleobase and on the backbone C5 carbon of the same monomer is described; this is based on the use of a tris-orthogonally protected monomer and subsequent solid-phase selective functionalization. This strategy can be used for synthesizing PNAs that are not readily accessible by use of preformed modified monomers. As an example, a PNA-based probe that undergoes a switch in its fluorescence emission upon hybridization with a target oligonucleotide, induced by tailor-made movement of two pyrene substituent groups, was synthesized.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Andrea Rozzi
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy
| | - Roberto Corradini
- Department of Chemistry, University of Parma , Parco Area delle Scienze 17/A, Parma 43123, Italy.,I.N.B.B. Consortium , Viale delle Medaglie D'Oro, 305, 00136 Roma, Italy
| |
Collapse
|
50
|
Suchý M, Ettles C, Wisner JA, Matarazzo A, Hudson RHE. Unusual C7- versus Normal 5′-O-Dimethoxytritylation of 6-Arylpyrrolocytidine Analogs. J Org Chem 2016; 81:8415-25. [DOI: 10.1021/acs.joc.6b01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mojmír Suchý
- Department
of Chemistry and ‡The Centre for Advanced Materials and Biomaterials
Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christie Ettles
- Department
of Chemistry and ‡The Centre for Advanced Materials and Biomaterials
Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - James A. Wisner
- Department
of Chemistry and ‡The Centre for Advanced Materials and Biomaterials
Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Augusto Matarazzo
- Department
of Chemistry and ‡The Centre for Advanced Materials and Biomaterials
Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert H. E. Hudson
- Department
of Chemistry and ‡The Centre for Advanced Materials and Biomaterials
Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|