1
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Pong CH, Hall RM. An X1α plasmid from a Salmonella enterica serovar Ohio isolate carrying a novel IS26-bounded tet(C) pseudo-compound transposon. Plasmid 2021; 114:102561. [PMID: 33485833 DOI: 10.1016/j.plasmid.2021.102561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022]
Abstract
The sequence of a conjugative plasmid, pSRC22-2, found in a multiply antibiotic resistant Salmonella enterica serovar Ohio isolate SRC22 originally cultured from swine in 1999, was determined. Plasmid pSRC22-2 has a copy number of approximately 40 and transfers tetracycline resistance at very high frequency. It was typed as IncX1 using the three typing schemes proposed for X-type plasmids, which utilize the replication region, iteron region and taxC conjugation gene and pSRC22-2 belongs to the X1α subgroup. The plasmid backbone, derived by removing mobile elements, is shared with pOLA52, which was the first fully sequenced IncX1 plasmid, and five other X1α plasmids. The pSRC22-2 backbone is interrupted by a complete copy of an IS903 isoform, partial copies of IS1 and IS903 on either side of a 5930 bp IS26-bounded pseudo-compound transposon (PCT), and a novel 256 bp miniature inverted repeat transposable element (MITE). The MITE belongs to the Tn3 family and was named MITESen1. The PCT, which carries a tet(C) tetracycline resistance determinant, is bounded by copies of a novel IS26 variant, IS26-v4, and was designated PTn6184. Comparison of PTn6184 with other tet(C)-carrying PCTs revealed that it can be derived from the largest, PTntet(C), via a two-step process that re-orders the central fragment and involves both an IS26-mediated event and homologous recombination. IS26-v4, which encodes a variant transposase, Tnp26 G184D, has appeared in only 46 entries in the GenBank non-redundant database.
Collapse
Affiliation(s)
- Carol H Pong
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| |
Collapse
|
4
|
Zheng R, Wu S, Sun C. MerF is a novel regulator of deep-sea Pseudomonas stutzeri flagellum biogenesis and motility. Environ Microbiol 2020; 23:110-125. [PMID: 33047460 DOI: 10.1111/1462-2920.15275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
MerF, a proposed bacterial mercury transporter, was surprisingly found to play key roles in the flagellum biogenesis and motility but not mercuric resistance of the deep-sea bacterium Pseudomonas stutzeri 273 in our previous study. However, the mechanism behind this interesting discovery has not been elucidated. Here, we firstly applied the combined transcriptomic and proteomic analysis to the P. stutzeri 273 wild type and merF deletion mutant. The results showed that expressions of extracellular flagellar components and FliS, a key factor controlling the biogenesis of extracellular flagellar filament, were significantly downregulated in the merF deletion mutant. In combination of genetic and biochemical methods, MerF was further demonstrated to regulate the expression of fliS via directly binding to its promoter, which is consistent with the discovery that MerF is essential for bacterial flagellum biogenesis and motility. Importantly, the expression of merF and fliS could be simultaneously upregulated by different heavy metals and MerF homologues exist in both bacterial and archaeal domains. To the best of our knowledge, this is the first report linking the heavy metal transporter and the flagellum biogenesis and motility in microorganisms, which provides a good model to investigate the unexplored adaptation strategies of deep-sea microbes against harsh conditions.
Collapse
Affiliation(s)
- Rikuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Tang L, Zhou YJ, Zhu S, Liang GD, Zhuang H, Zhao MF, Chang XY, Li HN, Liu Z, Guo ZR, Liu WQ, He X, Wang CX, Zhao DD, Li JJ, Mu XQ, Yao BQ, Li X, Li YG, Duo LB, Wang L, Johnston RN, Zhou J, Zhao JB, Liu GR, Liu SL. E. coli diversity: low in colorectal cancer. BMC Med Genomics 2020; 13:59. [PMID: 32252754 PMCID: PMC7133007 DOI: 10.1186/s12920-020-0704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli are mostly commensals but also contain pathogenic lineages. It is largely unclear whether the commensal E. coli as the potential origins of pathogenic lineages may consist of monophyletic or polyphyletic populations, elucidation of which is expected to lead to novel insights into the associations of E. coli diversity with human health and diseases. METHODS Using genomic sequencing and pulsed field gel electrophoresis (PFGE) techniques, we analyzed E. coli from the intestinal microbiota of three groups of healthy individuals, including preschool children, university students, and seniors of a longevity village, as well as colorectal cancer (CRC) patients, to probe the commensal E. coli populations for their diversity. RESULTS We delineated the 2280 fresh E. coli isolates from 185 subjects into distinct genome types (genotypes) by PFGE. The genomic diversity of the sampled E. coli populations was so high that a given subject may have multiple genotypes of E. coli, with the general diversity within a host going up from preschool children through university students to seniors. Compared to the healthy subjects, the CRC patients had the lowest diversity level among their E. coli isolates. Notably, E. coli isolates from CRC patients could suppress the growth of E. coli bacteria isolated from healthy controls under nutrient-limited culture conditions. CONCLUSIONS The coexistence of multiple E. coli lineages in a host may help create and maintain a microbial environment that is beneficial to the host. As such, the low diversity of E. coli bacteria may be associated with unhealthy microenvironment in the intestine and hence facilitate the pathogenesis of diseases such as CRC.
Collapse
Affiliation(s)
- Le Tang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Departments of Ecosystems and Public Health, University of Calgary, Calgary, Canada
| | - Yu-Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Present address: Department of Immunology, Capital Medical University, Beijing, China
| | - Songling Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Gong-Da Liang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Man-Fei Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Xiao-Yun Chang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hai-Ning Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Present address: Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Rong Guo
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Wei-Qiao Liu
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.,Present address: Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Xiaoyan He
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Chun-Xiao Wang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Dan-Dan Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Jia-Jing Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xiao-Qin Mu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bing-Qing Yao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xia Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Bo Duo
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Wang
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Randal N Johnston
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Jin Zhou
- Department of Hematology of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Bo Zhao
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Gui-Rong Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China. .,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China. .,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China. .,Department of Microbiology, Peking University Health Sciences Center, Beijing, China. .,Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China. .,Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Abstract
Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA. Flagellin, the agent of prokaryotic flagellar motion, is very widely distributed and is the H antigen of serology. Flagellin molecules have a variable region that confers serotype specificity, encoded by the middle of the gene, and also conserved regions encoded by the two ends of the gene. We collected all available prokaryotic flagellin protein sequences and found the variable region diversity to be at two levels. In each species investigated, there are hypervariable region (HVR) forms without detectable homology in protein sequences between them. There is also considerable variation within HVR forms, indicating that some have been diverging for thousands of years and that interphylum horizontal gene transfers make a major contribution to the evolution of such atypical diversity. IMPORTANCE Bacterial and archaeal flagellins are remarkable in having a shared region with variation in housekeeping proteins and a region with extreme diversity, perhaps greater than for any other protein. Analysis of the 113,285 available full-gene sequences of flagellin genes from published bacterial and archaeal sequences revealed the nature and enormous extent of flagellin diversity. There were 35,898 unique amino acid sequences that were resolved into 187 clusters. Analysis of the Escherichia coli and Salmonella enterica flagellins revealed that the variation occurs at two levels. The first is the division of the variable regions into sequence forms that are so divergent that there is no meaningful alignment even within species, and these corresponded to the E. coli or S. enterica H-antigen groups. The second level is variation within these groups, which is extensive in both species. Shared sequence would allow PCR of the variable regions and thus strain-level analysis of microbiome DNA.
Collapse
|
7
|
Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing. J Clin Microbiol 2018; 56:JCM.00190-18. [PMID: 29593058 DOI: 10.1128/jcm.00190-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli.
Collapse
|
8
|
Leimbach A, Poehlein A, Vollmers J, Görlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 2017; 18:359. [PMID: 28482799 PMCID: PMC5422975 DOI: 10.1186/s12864-017-3739-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. Results We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. Conclusions This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Leimbach
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Boll EJ, Marti R, Hasman H, Overballe-Petersen S, Stegger M, Ng K, Knøchel S, Krogfelt KA, Hummerjohann J, Struve C. Turn Up the Heat-Food and Clinical Escherichia coli Isolates Feature Two Transferrable Loci of Heat Resistance. Front Microbiol 2017; 8:579. [PMID: 28439262 PMCID: PMC5383660 DOI: 10.3389/fmicb.2017.00579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Heat treatment is a widely used process to reduce bacterial loads in the food industry or to decontaminate surfaces, e.g., in hospital settings. However, there are situations where lower temperatures must be employed, for instance in case of food production such as raw milk cheese or for decontamination of medical devices such as thermo-labile flexible endoscopes. A recently identified locus of heat resistance (LHR) has been shown to be present in and confer heat resistance to a variety of Enterobacteriaceae, including Escherichia coli isolates from food production settings and clinical ESBL-producing E. coli isolates. Here, we describe the presence of two distinct LHR variants within a particularly heat resistant E. coli raw milk cheese isolate. We demonstrate for the first time in this species the presence of one of these LHRs on a plasmid, designated pFAM21805, also encoding type 3 fimbriae and three bacteriocins and corresponding self-immunity proteins. The plasmid was highly transferable to other E. coli strains, including Shiga-toxin-producing strains, and conferred LHR-dependent heat resistance as well as type 3 fimbriae-dependent biofilm formation capabilities. Selection for and acquisition of this “survival” plasmid by pathogenic organisms, e.g., in food production environments, may pose great concern and emphasizes the need to screen for the presence of LHR genes in isolates.
Collapse
Affiliation(s)
- Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Roger Marti
- Agroscope, Division of Food Microbial Systems, Microbiological Safety of Foods of Animal Origin GroupBern, Switzerland
| | - Henrik Hasman
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | | | - Marc Stegger
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Kim Ng
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Susanne Knøchel
- Department of Food Science, University of CopenhagenCopenhagen, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Joerg Hummerjohann
- Agroscope, Division of Food Microbial Systems, Microbiological Safety of Foods of Animal Origin GroupBern, Switzerland
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| |
Collapse
|
10
|
De Maayer P, Cowan DA. Flashy flagella: flagellin modification is relatively common and highly versatile among the Enterobacteriaceae. BMC Genomics 2016; 17:377. [PMID: 27206480 PMCID: PMC4875605 DOI: 10.1186/s12864-016-2735-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022] Open
Abstract
Background Post-translational glycosylation of the flagellin protein is relatively common among Gram-negative bacteria, and has been linked to several phenotypes, including flagellar biosynthesis and motility, biofilm formation, host immune evasion and manipulation and virulence. However to date, despite extensive physiological and genetic characterization, it has never been reported for the peritrichously flagellate Enterobacteriaceae. Results Using comparative genomic approaches we analyzed 2,000 representative genomes of Enterobacteriaceae, and show that flagellin glycosylation islands are relatively common and extremely versatile among members of this family. Differences in the G + C content of the FGIs and the rest of the genome and the presence of mobile genetic elements provide evidence of horizontal gene transfer occurring within the FGI loci. These loci therefore encode highly variable flagellin glycan structures, with distinct sugar backbones, heavily substituted with formyl, methyl, acetyl, lipoyl and amino groups. Additionally, an N-lysine methylase, FliB, previously identified only in the enterobacterial pathogen Salmonella enterica, is relatively common among several distinct taxa within the family. These flagellin methylase island loci (FMIs), in contrast to the FGI loci, appear to be stably maintained within these diverse lineages. Conclusions The prevalence and versatility of flagellin modification loci, both glycosylation and methylation loci, suggests they play important biological roles among the Enterobacteriaceae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2735-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria, 0002, Pretoria, South Africa. .,Department of Microbiology, University of Pretoria, 0002, Pretoria, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, 0002, Pretoria, South Africa
| |
Collapse
|
11
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
More than a locomotive organelle: flagella in Escherichia coli. Appl Microbiol Biotechnol 2015; 99:8883-90. [DOI: 10.1007/s00253-015-6946-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
13
|
Hickling DR, Sun TT, Wu XR. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0016-2012. [PMID: 26350322 PMCID: PMC4566164 DOI: 10.1128/microbiolspec.uti-0016-2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Indexed: 02/07/2023] Open
Abstract
The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the important structural and functional abnormalities that predispose the urinary tract to microbial infections.
Collapse
Affiliation(s)
- Duane R Hickling
- Division of Urology, Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Tung-Tien Sun
- Departments of Cell Biology, Biochemistry and Molecular Pharmacology, Departments of Dermatology and Urology, New York University School of Medicine, New York, NY, 10016
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
14
|
Ma Q, Chen X, Liu C, Mao X, Zhang H, Ji F, Wu C, Xu Y. Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1121-30. [DOI: 10.1007/s11427-014-4734-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/11/2014] [Indexed: 12/15/2022]
|
15
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
16
|
De Maayer P, Chan WY, Blom J, Venter SN, Duffy B, Smits THM, Coutinho TA. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics 2012; 13:625. [PMID: 23151240 PMCID: PMC3505739 DOI: 10.1186/1471-2164-13-625] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/11/2012] [Indexed: 11/21/2022] Open
Abstract
Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1) of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS). A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS), conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse environments.
Collapse
Affiliation(s)
- Pieter De Maayer
- Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 2012; 7:1283-1296. [PMID: 23075447 PMCID: PMC3996552 DOI: 10.2217/fmb.12.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Josephine Bryant
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Claire Chewapreecha
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Stephen D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|