1
|
Buttanri A, Kasapoğlu AG, Öner BM, Aygören AS, Muslu S, İlhan E, Yildirim E, Aydin M. Predicting the role of β-GAL genes in bean under abiotic stress and genome-wide characterization of β-GAL gene family members. PROTOPLASMA 2024:10.1007/s00709-024-01998-z. [PMID: 39441340 DOI: 10.1007/s00709-024-01998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Β-Gals are a subgroup of the glycoside hydrolase (GH) family of enzymes, which possess the Glyco_hydro_35 (GH35) domain. Although studies have been conducted on the β-Gal gene family in numerous plant species, no such research has been conducted on beans. The purpose of this study was to determine the gene expression levels of β-Gal genes in the leaf tissue of P. vulgaris under salt and drought stress using quantitative real-time polymerase chain reaction (qRT-PCR) and to perform a comprehensive analysis of β-Gal gene family members using bioinformatics tools. In the bean genome, 25 Pvul-βGAL proteins with amino acid numbers ranging from 291 to 1119, molecular weights from 32.94 to 126.56 kDa, and isoelectric points from 5.46 to 9.08 were identified. Both segmental and tandem duplication have occurred in β-Gal genes in the bean genome, and Pvul-BGAL genes have been subject to negative selection in the evolutionary process. For a deeper comprehension of the evolutionary proximity of Pvul-BGAL genes, a phylogenetic tree and synteny map were drawn together with Arabidopsis thaliana and Glycine max β-Gal genes. The expression profiles of β-Gal genes in different tissues of the bean were determined in silico. In addition, the expression profiles of β-Gal genes in the leaves of bean plants subjected to drought and salt stress were analyzed, and the role of β-Gal genes in salt and drought stress was estimated. In this study, the role of β-Gal gene family in abiotic stress response and the characterization of β-Gal genes in beans were determined for the first time and will provide a basis for future functional genomics studies.
Collapse
Affiliation(s)
- Azize Buttanri
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ayşe Gül Kasapoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Burak Muhammed Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ahmed Sidar Aygören
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Selman Muslu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Emre İlhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Ata-Teknokent, GeneXCell Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Ertan Yildirim
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
- Department of Garden Plants, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Husaini AM, Haq SAU, Jiménez AJL. Understanding saffron biology using omics- and bioinformatics tools: stepping towards a better Crocus phenome. Mol Biol Rep 2022; 49:5325-5340. [PMID: 35106686 PMCID: PMC8807023 DOI: 10.1007/s11033-021-07053-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Saffron is a unique plant in many aspects, and its cellular processes are regulated at multiple levels. The genetic makeup in the form of eight chromosome triplets (2n = 3x = 24) with a haploid genetic content (genome size) of 3.45 Gbp is decoded into different types of RNA by transcription. The RNA then translates into peptides and functional proteins, sometimes involving post-translational modifications too. The interactions of the genome, transcriptome, proteome and other regulatory molecules ultimately result in the complex set of primary and secondary metabolites of saffron metabolome. These complex interactions manifest in the form of a set of traits 'phenome' peculiar to saffron. The phenome responds to the environmental changes occurring in and around saffron and modify its response in respect of growth, development, disease response, stigma quality, apocarotenoid biosynthesis, and other processes. Understanding these complex relations between different yet interconnected biological activities is quite challenging in saffron where classical genetics has a very limited role owing to its sterility, and the absence of a whole-genome sequence. Omics-based technologies are immensely helpful in overcoming these limitations and developing a better understanding of saffron biology. In addition to creating a comprehensive picture of the molecular mechanisms involved in apocarotenoid synthesis, stigma biogenesis, corm activity, and flower development, omics-technologies will ultimately lead to the engineering of saffron plants with improved phenome.
Collapse
Affiliation(s)
- Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, Jammu and Kashmir, 190025, India.
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, Jammu and Kashmir, 190025, India
| | - Alberto José López Jiménez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
3
|
La HV, Chu HD, Tran CD, Nguyen KH, Le QTN, Hoang CM, Cao BP, Pham ATC, Nguyen BD, Nguyen TQ, Van Nguyen L, Ha CV, Le HT, Le HH, Le TD, Tran LSP. Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments. Gene 2022; 819:146210. [PMID: 35104577 DOI: 10.1016/j.gene.2022.146210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.
Collapse
Affiliation(s)
- Hong Viet La
- Faculty of Biology and Agricultural Technology, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province 280000, Viet Nam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam.
| | - Cuong Duy Tran
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Quynh Thi Ngoc Le
- Faculty of Chemistry and Environment, Thuy loi University, Dong Da District, Hanoi City 122300, Viet Nam
| | - Chinh Minh Hoang
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bang Phi Cao
- Hung Vuong University, Phu Tho Province 35000, Viet Nam
| | - Anh Tuyen Cong Pham
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bach Duc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Trung Quoc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Loc Van Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hien Thi Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam
| | - Ham Huy Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam; Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| |
Collapse
|
4
|
PID: An integrative and comprehensive platform of plant intron. Comput Biol Chem 2021; 93:107528. [PMID: 34111777 DOI: 10.1016/j.compbiolchem.2021.107528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/07/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
Intron is a non-coding sequence of a broken gene and participates in important biological processes, such as transcription regulation, alternative splicing, and nuclear export. With the development of plant genomes, a comprehensive platform for intron analysis in plants must be established. Plant Intron Database (PID), a publicly available searchable database, was developed to efficiently store, query, analyze, and integrate intron resources in plants. The information of intron, exon, and gene can be searched by key words in PID. Users cannot only view intron length distribution pie chart and 5' and 3' splice site sequence feature maps in a statistical interface but can also browse intron information in a graphical visualization interface through JBrowse. ViroBlast for sequence homology searches, Intron detection and sequence interception tools were also provided. PID contains annotated genes from 118 sequenced plants, 24,782,048 introns, 30,843,049 exons, and 414 visual maps. This tool will greatly accelerate research on the distribution, length characteristics, and functions of introns in plants. PID is accessible at http://biodb.sdau.edu.cn/PID/index.php.
Collapse
|
5
|
Lu F, Wei Z, Luo Y, Guo H, Zhang G, Xia Q, Wang Y. SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Res 2020; 48:D749-D755. [PMID: 31642484 PMCID: PMC7145608 DOI: 10.1093/nar/gkz919] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
SilkDB is an open-accessibility database and powerful platform that provides comprehensive information on the silkworm (Bombyx mori) genome. Since SilkDB 2.0 was released 10 years ago, vast quantities of data about multiple aspects of the silkworm have been generated, including genome, transcriptome, Hi-C and pangenome. To visualize data at these different biological levels, we present SilkDB 3.0 (https://silkdb.bioinfotoolkits.net), a visual analytic tool for exploring silkworm data through an interactive user interface. The database contains a high-quality chromosome-level assembly of the silkworm genome, and its coding sequences and gene sets are more accurate than those in the previous version. SilkDB 3.0 provides a view of the information for each gene at the levels of sequence, protein structure, gene family, orthology, synteny, genome organization and gives access to gene expression information, genetic variation and genome interaction map. A set of visualization tools are available to display the abundant information in the above datasets. With an improved interactive user interface for the integration of large data sets, the updated SilkDB 3.0 database will be a valuable resource for the silkworm and insect research community.
Collapse
Affiliation(s)
- Fang Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Zhaoyuan Wei
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yongjiang Luo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hailong Guo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Guoqing Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. THE NEW PHYTOLOGIST 2020; 225:1297-1310. [PMID: 31556121 DOI: 10.1111/nph.16221] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.
Collapse
Affiliation(s)
- Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Philipp Gebhardt
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, 6708PB, the Netherlands
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), D-60438, Frankfurt am Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Differential interaction of Or proteins with the PSY enzymes in saffron. Sci Rep 2020; 10:552. [PMID: 31953512 PMCID: PMC6969158 DOI: 10.1038/s41598-020-57480-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023] Open
Abstract
Colored apocarotenoids accumulate at high concentrations in few plant species, where display a role in attraction of pollinators and seed dispersers. Among these apocarotenoids, crocins accumulate at high concentrations in the stigma of saffron and are responsible for the organoleptic and medicinal properties of this spice. Phytoene synthase and Orange protein are key for carotenoid biosynthesis and accumulation. We previously isolated four phytoene synthase genes from saffron with differential roles in carotenoid and apocarotenoid biosynthesis. However, the implications of Orange genes in the regulation of apocarotenoid accumulation are unknown. Here, we have identified two Orange genes from saffron, with different expression patterns. CsOr-a was mainly expressed in vegetative tissues and was induced by light and repressed by heat stress. Both CsOr-a and CsOr-b were expressed in stigmas but showed a different profile during the development of this tissue. The interactions of CsOr-a and CsOr-b were tested with all the four phytoene synthase proteins from saffron and with CsCCD2. None interactions were detected with CCD2 neither with the phytoene synthase 2, involved in apocarotenoid biosynthesis in saffron. The obtained results provide evidence of different mechanisms regulating the phytoene synthase enzymes in saffron by Orange for carotenoid and apocarotenoid accumulation in saffron.
Collapse
|
8
|
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 2019; 111:1929-1945. [DOI: 10.1016/j.ygeno.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
9
|
Global Investigation of Cytochrome P450 Genes in the Chicken Genome. Genes (Basel) 2019; 10:genes10080617. [PMID: 31416226 PMCID: PMC6723978 DOI: 10.3390/genes10080617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450 (CYP) superfamily enzymes are broadly involved in a variety of physiological and toxicological processes. However, genome-wide analysis of this superfamily has never been investigated in the chicken genome. In this study, genome-wide analyses identified 45 chicken CYPs (cCYPs) from the chicken genome, and their classification and evolutionary relationships were investigated by phylogenetic, conserved protein motif, and gene structure analyses. The comprehensive evolutionary data revealed several remarkable characteristics of cCYPs, including the highly divergent and rapid evolution of the cCYPs, and the loss of cCYP2AF in the chicken genome. Furthermore, the cCYP expression profile was investigated by RNA-sequencing. The differential expression of cCYPs in developing embryos revealed the involvement of cCYPs in embryonic development. The significantly regulated cCYPs suggested its potential role in hepatic metabolism. Additionally, 11 cCYPs, including cCYP2AC1, cCYP2C23a, and cCYP2C23b, were identified as estrogen-responsive genes, which indicates that these cCYPs are involved in the estrogen-signaling pathway. Meanwhile, an expression profile analysis highlights the divergent role of different cCYPs. These data expand our view of the phylogeny and evolution of cCYPs, provide evolutionary insight, and can help elucidate the roles of cCYPs in physiological and toxicological processes in chicken.
Collapse
|
10
|
Nawaz MA, Lin X, Chan TF, Imtiaz M, Rehman HM, Ali MA, Baloch FS, Atif RM, Yang SH, Chung G. Characterization of Cellulose Synthase A (CESA) Gene Family in Eudicots. Biochem Genet 2018; 57:248-272. [PMID: 30267258 DOI: 10.1007/s10528-018-9888-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
Cellulose synthase A (CESA) is a key enzyme involved in the complex process of plant cell wall biosynthesis, and it remains a productive subject for research. We employed systems biology approaches to explore structural diversity of eudicot CESAs by exon-intron organization, mode of duplication, synteny, and splice site analyses. Using a combined phylogenetics and comparative genomics approach coupled with co-expression networks we reconciled the evolution of cellulose synthase gene family in eudicots and found that the basic forms of CESA proteins are retained in angiosperms. Duplications have played an important role in expansion of CESA gene family members in eudicots. Co-expression networks showed that primary and secondary cell wall modules are duplicated in eudicots. We also identified 230 simple sequence repeat markers in 103 eudicot CESAs. The 13 identified conserved motifs in eudicots will provide a basis for gene identification and functional characterization in other plants. Furthermore, we characterized (in silico) eudicot CESAs against senescence and found that expression levels of CESAs decreased during leaf senescence.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275, China
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, 14280, Bolu, Turkey
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
11
|
Yan B, Xu X, Gu Y, Zhao Y, Zhao X, He L, Zhao C, Li Z, Xu J. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome 2018; 61:735-743. [PMID: 30092654 DOI: 10.1139/gen-2018-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the only rate-limiting step in the pathway of plant oil (TAG) biosynthesis and is involved in plant development. In this study, five DGAT family members were identified from maize genome database. Phylogenetic analysis classified the ZmDGATs into type-I, II, and III clusters. Conserved functional domain analysis revealed that the proteins encoded by ZmDGAT1 contained conserved MBOAT domains, while two ZmDGAT2-encoding proteins harbored LPLAT domains. qRT-PCR analysis showed that ZmDGAT genes exhibited very high relative expression in developing seeds, especially at the early stage of seed development. Under various abiotic stress conditions, differential responses of ZmDGAT genes were observed. An overall significant induction of ZmDGAT genes under cold stress in leaves and a quick and strong response to osmotic stresses in roots were highlighted. This study provides useful information for understanding the roles of DGATs in oil accumulation and stress responses in higher plants.
Collapse
Affiliation(s)
- Bowei Yan
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.,b Institute for Comprehensive Utilization of Agricultural and Animal Husbandry, Heilongjiang Academy of Land Reclamation sciences, Harbin, 150000, Heilongjiang, China
| | - Xiaoxuan Xu
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yingnan Gu
- c Remote Sensing Technology Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Ying Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xunchao Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lin He
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Changjiang Zhao
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zuotong Li
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jingyu Xu
- a Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| |
Collapse
|
12
|
Waschburger E, Kulcheski FR, Veto NM, Margis R, Margis-Pinheiro M, Turchetto-Zolet AC. Genome-wide analysis of the Glycerol-3-Phosphate Acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genet Mol Biol 2018; 41:355-370. [PMID: 29583156 PMCID: PMC5913721 DOI: 10.1590/1678-4685-gmb-2017-0076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.
Collapse
Affiliation(s)
- Edgar Waschburger
- Graduação em Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Nicole Moreira Veto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Gumi AM, Guha PK, Mazumder A, Jayaswal P, Mondal TK. Characterization of OglDREB2A gene from African rice ( Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress. 3 Biotech 2018; 8:91. [PMID: 29430353 PMCID: PMC5796934 DOI: 10.1007/s13205-018-1098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
In this study, AP2 DNA-binding domain-containing transcription factor, OglDREB2A, was cloned from the African rice (Oryza glaberrima) and compared with 3000 rice genotypes. Further, the phylogenetic and various structural analysis was performed using in silico approaches. Further, to understand its allelic variation in rice, SNPs and indels were detected among the 3000 rice genotypes which indicated that while coding region is highly conserved, yet noncoding regions such as UTR and intron contained most of the variation. Phylogenetic analysis of the OglDREB2A sequence in different Oryza as well as in diverse eudicot species revealed that DREB from various Oryza species were diversed much earlier than other genes. Further, structural features and in silico analyses provided insights into different properties of OglDREB2A protein. The neutrality test on the coding region of OglDREB2A from different genotypes of O. glaberrima showed the lack of selection in this gene. Among the different developmental stages, it was upregulated at tillering and flag leaf under salinity treatment indicating its positive role in seedling and reproductive stage tolerance. Real-time PCR analysis also indicated the conserve expression pattern of this gene under salinity stress across the three different Oryza species having different degree of salinity tolerance.
Collapse
Affiliation(s)
- Abubakar Mohammad Gumi
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Pritam Kanti Guha
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Abhishek Mazumder
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Pawan Jayaswal
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
14
|
PrLPAAT4, a Putative Lysophosphatidic Acid Acyltransferase from Paeonia rockii, Plays an Important Role in Seed Fatty Acid Biosynthesis. Molecules 2017; 22:molecules22101694. [PMID: 28994730 PMCID: PMC6151692 DOI: 10.3390/molecules22101694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Lysophosphatidic acid acyltransferases (LPAATs) are essential for the acylation of lysophosphatidic acid (LPA) and the synthesis of phosphatidic acid (PA), a key intermediate in the synthesis of membrane phospholipids and storage lipids. Here, a putative lysophosphatidic acid acyltransferase gene, designated PrLPAAT4, was isolated from seed unsaturated fatty acid (UFA)-rich P. rockii. The complete PrLPAAT4 cDNA contained a 1116-bp open reading frame (ORF), encoding a 42.9 kDa protein with 371 amino acid residues. Bioinformatic analysis indicates that PrLPAAT4 is a plasma membrane protein belonging to acyl-CoA:1-acylglycerol-sn-3-phosphate acyltranferases (AGPAT) family. PrLPAAT4 shared high sequence similarity with its homologs from Citrus clementina, Populus trichocarpa, Manihot esculenta, and Ricinus communis. In Arabidopsis, overexpression of PrLPAAT4 resulted in a significant increase in the content of oleic acid (OA) and total fatty acids (FAs) in seeds. AtDGAT1, AtGPAT9, and AtOleosin, involved in TAG assembly, were upregulated in PrLPAAT4-overexpressing lines. These results indicated that PrLPAAT4 functions may be as a positive regulator in seed FA biosynthesis.
Collapse
|
15
|
Functional divergence and origin of the DAG-like gene family in plants. Sci Rep 2017; 7:5688. [PMID: 28720816 PMCID: PMC5515838 DOI: 10.1038/s41598-017-05961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
The nuclear-encoded DAG-like (DAL) gene family plays critical roles in organelle C-to-U RNA editing in Arabidopsis thaliana. However, the origin, diversification and functional divergence of DAL genes remain unclear. Here, we analyzed the genomes of diverse plant species and found that: DAL genes are specific to spermatophytes, all DAL genes share a conserved gene structure and protein similarity with the inhibitor I9 domain of subtilisin genes found in ferns and mosses, suggesting that DAL genes likely arose from I9-containing proproteases via exon shuffling. Based on phylogenetic inference, DAL genes can be divided into five subfamilies, each composed of putatively orthologous and paralogous genes from different species, suggesting that all DAL genes originated from a common ancestor in early seed plants. Significant type I functional divergence was observed in 6 of 10 pairwise comparisons, indicating that shifting functional constraints have contributed to the evolution of DAL genes. This inference is supported by the finding that functionally divergent amino acids between subfamilies are predominantly located in the DAL domain, a critical part of the RNA editosome. Overall, these findings shed light on the origin of DAL genes in spermatophytes and outline functionally important residues involved in the complexity of the RNA editosome.
Collapse
|
16
|
Ogunola OF, Hawkins LK, Mylroie E, Kolomiets MV, Borrego E, Tang JD, Williams WP, Warburton ML. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance. PLoS One 2017; 12:e0181265. [PMID: 28715485 PMCID: PMC5513560 DOI: 10.1371/journal.pone.0181265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/28/2017] [Indexed: 12/04/2022] Open
Abstract
Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin production by A. flavus. Lipoxygenases (LOXs) are a group of non-heme iron containing dioxygenase enzymes that catalyze oxygenation of polyunsaturated fatty acids (PUFAs). LOX derived oxylipins play critical roles in plant defense against pathogens including A. flavus. The objectives of this study were to summarize sequence diversity and expression patterns for all LOX genes in the maize genome, and map their effect on aflatoxin accumulation via linkage and association mapping. In total, 13 LOX genes were identified, characterized, and mapped. The sequence of one gene, ZmLOX10, is reported from 5 inbred lines. Genes ZmLOX1/2, 5, 8, 9, 10 and 12 (GRMZM2G156861, or V4 numbers ZM00001D042541 and Zm00001D042540, GRMZM2G102760, GRMZM2G104843, GRMZM2G017616, GRMZM2G015419, and GRMZM2G106748, respectively) fell under previously published QTL in one or more mapping populations and are linked to a measurable reduction of aflatoxin in maize grains. Association mapping results found 28 of the 726 SNPs tested were associated with reduced aflatoxin levels at p ≤ 9.71 x 10-4 according to association statistics. These fell within or near nine of the ZmLOX genes. This work confirms the importance of some lipoxygenases for resistance to aflatoxin accumulation and may be used to direct future genetic selection in maize.
Collapse
Affiliation(s)
- Oluwaseun F. Ogunola
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States of America
| | - Leigh K. Hawkins
- USDA-ARS Corn Host Plant Resistance Research Unit, Starkville, MS, United States of America
| | - Erik Mylroie
- USDA-ARS Corn Host Plant Resistance Research Unit, Starkville, MS, United States of America
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Juliet D. Tang
- USDA FS Forest Products Laboratory, Durability and Wood Protection, Starkville, MS, United States of America
| | - W. Paul Williams
- USDA-ARS Corn Host Plant Resistance Research Unit, Starkville, MS, United States of America
| | - Marilyn L. Warburton
- USDA-ARS Corn Host Plant Resistance Research Unit, Starkville, MS, United States of America
| |
Collapse
|
17
|
Evolutionary expansion and structural functionalism of the ancient family of profilin proteins. Gene 2017; 626:70-86. [PMID: 28501628 DOI: 10.1016/j.gene.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023]
Abstract
Structure and functional similarities of a recent protein's orthologs with its ancient counterpart are largely determined by the configuration of evolutionary preservation of amino acids. The emergence of genome sequencing databases allowed dissecting the evolutionarily important gene families at a comprehensive and genome-wide scale. The profilin multi-gene family is an ancient, universal, and functionally diverged across kingdoms, which regulates various aspects of cellular development in both prokarya and eukarya, especially cell-wall maintenance through actin sequestering, nucleation and cytokinesis. We performed a meta-analysis of the evolutionary expansion, structural conservation, evolution of function motifs, and transcriptional biases of profilin proteins across kingdoms. An exhaustive search of various genome databases of cyanobacteria, fungi, animalia and plantae kingdoms revealed 172 paralogous/orthologous profilins those were phylogenetically clustered in various groups. Orthologous gene comparisons indicated that segmental and tandem duplication events under strong purifying selection are predominantly responsible for their convoluted structural divergences. Evidently, structural divergences were more prevalent in the paralogs than orthologs, and evolutionary variations in the exon/intron architecture were accomplished by 'exon/intron-gain' and insertion/deletion during sequence-exonization. Remarkably, temporal expression evolution of profilin paralogs/homeologs during cotton fiber domestication provides evolutionary impressions of the selection of highly diverged transcript abundance notably in the fiber morpho-evolution. These results provide global insights into the profilin evolution, their structural design across taxa; and their future utilization in translational research.
Collapse
|
18
|
Zhang QY, Niu LX, Yu R, Zhang XX, Bai ZZ, Duan K, Gao QH, Zhang YL. Cloning, Characterization, and Expression Analysis of a Gene Encoding a Putative Lysophosphatidic Acid Acyltransferase from Seeds of Paeonia rockii. Appl Biochem Biotechnol 2016; 182:721-741. [PMID: 27987185 DOI: 10.1007/s12010-016-2357-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Tree peony (Paeonia section Moutan DC.) is an excellent woody oil crop, and the cloning and functional analysis of genes related to fatty acid (FA) metabolism from this organism has not been reported. Lysophosphatidic acid acyltransferase (LPAAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. This project reports a putative lysophosphatidic acid acyltransferase gene PrLPAAT1 isolated from Paeonia rockii. Our data indicated that PrLPAAT1 has 1047 nucleotides and encodes a putative 38.8 kDa protein with 348 amino acid residues. Bioinformatic analysis demonstrated that PrLPAAT1 contains two transmembrane domains (TMDs). Subcellular localization analysis confirmed that PrLPAAT1 is a plasma membrane protein. Phylogenetic analysis revealed that PrLPAAT1 shared 74.3 and 65.5% amino acid sequence identities with the LPAAT1 sequences from columbine and grape, respectively. PrLPAAT1 belongs to AGPAT family, and may have acyltransferase activity. PrLPAAT1 was ubiquitously expressed in diverse tissues, and PrLPAAT1 expression was higher in the flower and developing seed. PrLPAAT1 is probably an important component in the FA accumulation process, especially during the early stages of seed development. PrLPAAT1 overexpression using a seed-specific promoter increased total FA content and the main FA accumulation in Arabidopsis transgenic plants.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Xiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhang-Zhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403, China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403, China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Wang Y, Xu L, Thilmony R, You FM, Gu YQ, Coleman-Derr D. PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Res 2016; 45:1015-1020. [PMID: 27742820 PMCID: PMC5210635 DOI: 10.1093/nar/gkw935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
PIECE (Plant Intron Exon Comparison and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron–exon organization and provides valuable insights into the evolution of gene structure in plant genomes. Recently, we updated PIECE to a new version, PIECE 2.0 (http://probes.pw.usda.gov/piece or http://aegilops.wheat.ucdavis.edu/piece). PIECE 2.0 contains annotated genes from 49 sequenced plant species as compared to 25 species in the previous version. In the current version, we also added several new features: (i) a new viewer was developed to show phylogenetic trees displayed along with the structure of individual genes; (ii) genes in the phylogenetic tree can now be also grouped according to KOG (The annotation of Eukaryotic Orthologous Groups) and KO (KEGG Orthology) in addition to Pfam domains; (iii) information on intronless genes are now included in the database; (iv) a statistical summary of global gene structure information for each species and its comparison with other species was added; and (v) an improved GSDraw tool was implemented in the web server to enhance the analysis and display of gene structure. The updated PIECE 2.0 database will be a valuable resource for the plant research community for the study of gene structure and evolution.
Collapse
Affiliation(s)
- Yi Wang
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.,USDA-ARS, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.,USDA-ARS, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Roger Thilmony
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden R6M 1Y5 MB, Canada
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA .,USDA-ARS, Plant Gene Expression Center, Albany, CA 94710, USA
| |
Collapse
|
20
|
Martinez M. Computational Tools for Genomic Studies in Plants. Curr Genomics 2016; 17:509-514. [PMID: 28217007 PMCID: PMC5282602 DOI: 10.2174/1389202917666160520103447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 12/03/2022] Open
Abstract
In recent years, the genomic sequence of numerous plant species including the main crop species has been determined. Computational tools have been developed to deal with the issue of which plant has been sequenced and where is the sequence hosted. In this mini-review, the databases for genome projects, the databases created to host species/clade projects and the databases developed to perform plant comparative genomics are revised. Because of their importance in modern research, an in-depth analysis of the plant comparative genomics databases has been performed. This comparative analysis is focused in the common and specific computational tools developed to achieve the particular objectives of each database. Besides, emerging high-performance bioinformatics tools specific for plant research are commented. What kind of computational approaches should be implemented in next years to efficiently analyze plant genomes is discussed.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
21
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 PMCID: PMC5127155 DOI: 10.1590/1678-4685-gmb-2016-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was
characterized in plants, a number of studies have focused on understanding the role
of DGAT activity in plant triacylglycerol (TAG) biosynthesis.
DGAT enzyme is essential in controlling TAGs synthesis and is
encoded by different genes. DGAT1 and DGAT2 are the
two major types of DGATs and have been well characterized in many
plants. On the other hand, the DGAT3 and WS/DGAT
have received less attention. In this study, we present the first general view of the
presence of putative DGAT3 and
WS/DGAT in several plant species and report on
the diversity and evolution of these genes and its relationships with the two main
DGAT genes (DGAT1 and DGAT2).
According to our analyses DGAT1, DGAT2, DGAT3 and
WS/DGAT are very divergent genes and may have
distinct origin in plants. They also present divergent expression patterns in
different organs and tissues. The maintenance of several types of genes encoding DGAT
enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis.
Evolutionary history studies of DGATs coupled with their expression patterns help us
to decipher their functional role in plants, helping to drive future biotechnological
studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 DOI: 10.1590/1678-4685-gmb-2016-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 05/24/2023] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG) biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2). According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Chen J, Jing Y, Zhang X, Li L, Wang P, Zhang S, Zhou H, Wu J. Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Sci Rep 2016; 6:32013. [PMID: 27554066 PMCID: PMC4995503 DOI: 10.1038/srep32013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023] Open
Abstract
Glutamate-like receptors (GLRs) is a highly conserved family of ligand-gated ion channels, which have been associated with various physiological and developmental processes. Here, we investigated the evolutionary pattern of GLRs in plants. We observed that tandem duplications occupied the largest proportion of the plant GLR gene family expansion. Based on a phylogenetic tree, we suggested a new subfamily, GLR4, which is widespread in angiosperm but absence on Brassicales. Meanwhile, because GLR1 and GLR2 subfamilies were potential sister clades, we combined them into the GLR1&2 subfamily. A comparative analysis of plant GLR subfamilies revealed that selective forces shaped the GLR1&2 repertoires in the stems of eudicotyledons with distinct functional preferences. Moreover, GLR1&2 formed a species-specific highwoody-expanded subfamily, with preferential expression in the cambial-enriched and shoot apical meristem fractions of the highwood species. Together, these findings lay the foundation for evolutionary analysis of plant GLRs over the entire plant timescale and identified unique targets for manipulating the woody-growth behaviours of plant GLRs.
Collapse
Affiliation(s)
- Jianqing Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Jing
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiting Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Ma MY, Lan XR, Niu DK. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase. PeerJ 2016; 4:e2272. [PMID: 27547574 PMCID: PMC4974935 DOI: 10.7717/peerj.2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
25
|
Amarasinghe S, Watson-Haigh NS, Gilliham M, Roy S, Baumann U. The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Mol Phylogenet Evol 2016; 100:135-147. [DOI: 10.1016/j.ympev.2016.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
|
26
|
Watanabe KA, Ma K, Homayouni A, Rushton PJ, Shen QJ. Transcript structure and domain display: a customizable transcript visualization tool. Bioinformatics 2016; 32:2024-5. [PMID: 27153680 DOI: 10.1093/bioinformatics/btw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/12/2016] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. AVAILABILITY AND IMPLEMENTATION TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html CONTACT : jeffery.shen@unlv.nevada.edu.
Collapse
Affiliation(s)
- Kenneth A Watanabe
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Kaiwang Ma
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA School of Medical Technology & Engineering, Henan University of Science & Technology, Luoyang, 471003, China
| | - Arielle Homayouni
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
27
|
Kaur S, Dhugga KS, Gill K, Singh J. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.). PLoS One 2016; 11:e0147046. [PMID: 26771740 PMCID: PMC4714848 DOI: 10.1371/journal.pone.0147046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.
Collapse
Affiliation(s)
- Simerjeet Kaur
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Kanwarpal S. Dhugga
- Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America
| | - Kulvinder Gill
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
- * E-mail:
| |
Collapse
|
28
|
Chorev M, Guy L, Carmel L. JuncDB: an exon-exon junction database. Nucleic Acids Res 2016; 44:D101-9. [PMID: 26519469 PMCID: PMC4702826 DOI: 10.1093/nar/gkv1142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intron positions upon the mRNA transcript are sometimes remarkably conserved even across distantly related eukaryotic species. This has made the comparison of intron-exon architectures across orthologous transcripts a very useful tool for studying various evolutionary processes. Moreover, the wide range of functions associated with introns may confer biological meaning to evolutionary changes in gene architectures. Yet, there is currently no database that offers such comparative information. Here, we present JuncDB (http://juncdb.carmelab.huji.ac.il/), an exon-exon junction database dedicated to the comparison of architectures between orthologous transcripts. It covers nearly 40,000 sets of orthologous transcripts spanning 88 eukaryotic species. JuncDB offers a user-friendly interface, access to detailed information, instructive graphical displays of the comparative data and easy ways to download data to a local computer. In addition, JuncDB allows the analysis to be carried out either on specific genes, or at a genome-wide level for any selected group of species.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Lotem Guy
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance. PLoS One 2015; 10:e0126185. [PMID: 26090679 PMCID: PMC4475072 DOI: 10.1371/journal.pone.0126185] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait.
Collapse
Affiliation(s)
- Leigh K. Hawkins
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - J. Erik Mylroie
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Dafne A. Oliveira
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, 39762, United States of America
| | - J. Spencer Smith
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Seval Ozkan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, 39762, United States of America
| | - Gary L. Windham
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - W. Paul Williams
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| | - Marilyn L. Warburton
- USDA-ARS Corn Host Plant Resistance Research Unit, Mississippi State, Starkville, MS, United States of America
| |
Collapse
|
30
|
Qiao X, Li M, Li L, Yin H, Wu J, Zhang S. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC PLANT BIOLOGY 2015; 15:12. [PMID: 25604453 PMCID: PMC4310194 DOI: 10.1186/s12870-014-0401-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs), which act as important transcriptional regulatory proteins in eukaryotes, play a central role in controlling the expression of heat-responsive genes. At present, the genomes of Chinese white pear ('Dangshansuli') and five other Rosaceae fruit crops have been fully sequenced. However, information about the Hsfs gene family in these Rosaceae species is limited, and the evolutionary history of the Hsfs gene family also remains unresolved. RESULTS In this study, 137 Hsf genes were identified from six Rosaceae species (Pyrus bretschneideri, Malus × domestica, Prunus persica, Fragaria vesca, Prunus mume, and Pyrus communis), 29 of which came from Chinese white pear, designated as PbHsf. Based on the structural characteristics and phylogenetic analysis of these sequences, the Hsf family genes could be classified into three main groups (classes A, B, and C). Segmental and dispersed duplications were the primary forces underlying Hsf gene family expansion in the Rosaceae. Most of the PbHsf duplicated gene pairs were dated back to the recent whole-genome duplication (WGD, 30-45 million years ago (MYA)). Purifying selection also played a critical role in the evolution of Hsf genes. Transcriptome data demonstrated that the expression levels of the PbHsf genes were widely different. Six PbHsf genes were upregulated in fruit under naturally increased temperature. CONCLUSION A comprehensive analysis of Hsf genes was performed in six Rosaceae species, and 137 full length Hsf genes were identified. The results presented here will undoubtedly be useful for better understanding the complexity of the Hsf gene family and will facilitate functional characterization in future studies.
Collapse
Affiliation(s)
- Xin Qiao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Meng Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Leiting Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hao Yin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. ACTA ACUST UNITED AC 2014; 31:1296-7. [PMID: 25504850 PMCID: PMC4393523 DOI: 10.1093/bioinformatics/btu817] [Citation(s) in RCA: 2358] [Impact Index Per Article: 235.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/07/2014] [Indexed: 11/16/2022]
Abstract
Summary: Visualizing genes’ structure and annotated features helps biologists to investigate their function and evolution intuitively. The Gene Structure Display Server (GSDS) has been widely used by more than 60 000 users since its first publication in 2007. Here, we reported the upgraded GSDS 2.0 with a newly designed interface, supports for more types of annotation features and formats, as well as an integrated visual editor for editing the generated figure. Moreover, a user-specified phylogenetic tree can be added to facilitate further evolutionary analysis. The full source code is also available for downloading. Availability and implementation: Web server and source code are freely available at http://gsds.cbi.pku.edu.cn. Contact: gaog@mail.cbi.pku.edu.cn or gsds@mail.cbi.pku.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bo Hu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - An-Yuan Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - He Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, People's Republic of China, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China and Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
32
|
Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genomics 2014; 290:151-71. [DOI: 10.1007/s00438-014-0904-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
33
|
Akkuratov EE, Walters L, Saha-Mandal A, Khandekar S, Crawford E, Zirbel CL, Leisner S, Prakash A, Fedorova L, Fedorov A. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence. Gene 2014; 548:81-90. [DOI: 10.1016/j.gene.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022]
|
34
|
Li M, Li L, Dunwell JM, Qiao X, Liu X, Zhang S. Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. BMC Genomics 2014; 15:444. [PMID: 24906560 PMCID: PMC4072886 DOI: 10.1186/1471-2164-15-444] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022] Open
Abstract
Background Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved. Results In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus × domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data. Conclusions 23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30–45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-444) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Christoff AP, Turchetto-Zolet AC, Margis R. Uncovering legumain genes in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:100-109. [PMID: 24388520 DOI: 10.1016/j.plantsci.2013.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 06/03/2023]
Abstract
Legumains are Asn specific cysteine proteases physiologically related to the biosynthesis of vacuolar components, degradation of storage proteins and programmed cell death. The present work identifies and characterizes the genic family of legumains in rice (Oryza sativa), which comprises five different loci. Rice legumains (OsaLegs) were ubiquitously detected in all plant tissues analyzed. However, phylogenetic analyses and gene expression studies demonstrated greater association of OsaLeg2 and OsaLeg3 to seed-related legumains, whereas OsaLeg1, 4 and 5 would act as vegetative-related proteases. Additionally, OsaLeg1 mRNA is strongly induced in senescent leaves. All rice legumain genes respond in different ways to environmental conditions such as wounding, salt and abscisic acid treatments. Mainly, wounding is capable of inducing all the four expressed genes OsaLeg1, 2, 3 and 4. Alternative splicing isoforms, with potential to generate pre-activated OsaLeg1 and OsaLeg2 nonvacuolar enzymes under different environmental situations were also observed.
Collapse
Affiliation(s)
- Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Brazil; Centro de Biotecnologia e Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
36
|
Bush SJ, Castillo-Morales A, Tovar-Corona JM, Chen L, Kover PX, Urrutia AO. Presence-absence variation in A. thaliana is primarily associated with genomic signatures consistent with relaxed selective constraints. Mol Biol Evol 2013; 31:59-69. [PMID: 24072814 PMCID: PMC3879440 DOI: 10.1093/molbev/mst166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive role for gene and exon presence–absence variation (PAV). To shed light on the possible functional relevance of polymorphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density. Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them.
Collapse
Affiliation(s)
- Stephen J Bush
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | | | |
Collapse
|