1
|
Gong L, Liu X, Yang X, Yu Z, Chen S, Xing C, Liu X. EPOP Restricts PRC2.1 Targeting to Chromatin by Directly Modulating Enzyme Complex Dimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612337. [PMID: 39314288 PMCID: PMC11419040 DOI: 10.1101/2024.09.10.612337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polycomb repressive complex 2 (PRC2) mediates developmental gene repression as two classes of holocomplexes, PRC2.1 and PRC2.2. EPOP is an accessory subunit specific to PRC2.1, which also contains PCL proteins. Unlike other accessory subunits that collectively facilitate PRC2 targeting, EPOP was implicated in an enigmatic inhibitory role, together with its interactor Elongin BC. We report an unusual molecular mechanism whereby EPOP regulates PRC2.1 by directly modulating its oligomerization state. EPOP disrupts the PRC2.1 dimer and weakens its chromatin association, likely by disabling the avidity effect conferred by the dimeric complex. Congruently, an EPOP mutant specifically defective in PRC2 binding enhances genome-wide enrichments of MTF2 and H3K27me3 in mouse epiblast-like cells. Elongin BC is largely dispensable for the EPOP-mediated inhibition of PRC2.1. EPOP defines a distinct subclass of PRC2.1, which uniquely maintains an epigenetic program by preventing the over-repression of key gene regulators along the continuum of early differentiation.
Collapse
|
2
|
Dehghanian F, Bovio PP, Gather F, Probst S, Naghsh-Nilchi A, Vogel T. ZFP982 confers mouse embryonic stem cell characteristics by regulating expression of Nanog, Zfp42, and Dppa3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119686. [PMID: 38342310 DOI: 10.1016/j.bbamcr.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran; Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Patrick Piero Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fabian Gather
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Basics in Neuromodulation (Neuromodul Basics), Freiburg, Germany.
| |
Collapse
|
3
|
Bharti H, Han S, Chang HW, Reinberg D. Polycomb repressive complex 2 accessory factors: rheostats for cell fate decision? Curr Opin Genet Dev 2024; 84:102137. [PMID: 38091876 DOI: 10.1016/j.gde.2023.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024]
Abstract
Epigenetic reprogramming during development is key to cell identity and the activities of the Polycomb repressive complexes are vital for this process. We focus on polycomb repressive complex 2 (PRC2), which catalyzes H3K27me1/2/3 and safeguards cellular integrity by ensuring proper gene repression. Notably, various accessory factors associate with PRC2, strongly influencing cell fate decisions, and their deregulation contributes to various illnesses. Yet, the exact role of these factors during development and carcinogenesis is not fully understood. Here, we present recent progress toward addressing these points and an analysis of the expression levels of PRC2 accessory factors in various tissues and developmental stages to highlight their abundance and roles. Last, we evaluate their contribution to cancer-specific phenotypes, providing insight into novel anticancer therapies.
Collapse
Affiliation(s)
- Hina Bharti
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sungwook Han
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Han-Wen Chang
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
5
|
Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. Int J Mol Sci 2021; 22:ijms22094592. [PMID: 33925600 PMCID: PMC8123877 DOI: 10.3390/ijms22094592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 12/03/2022] Open
Abstract
Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can also be studied and then applied therapeutically. In the future, greater efforts are needed to explore how ESC-differentiated glutamatergic neurons can be used as a neuronal model for the study of Alzheimer’s disease (AD) mechanistically, to identify possible therapeutic strategies for treating AD, including tissue replacement, and to screen for drugs that can be used to treat AD patients. With all of the modern technology that is available, translational medicine should begin to benefit patients soon.
Collapse
|
6
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
7
|
A transcriptomic study of Williams-Beuren syndrome associated genes in mouse embryonic stem cells. Sci Data 2019; 6:262. [PMID: 31695049 PMCID: PMC6834640 DOI: 10.1038/s41597-019-0281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation. Measurement(s) | transcription profiling assay • regulation of transcription, DNA-templated | Technology Type(s) | microarray assay • gene overexpression | Factor Type(s) | WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2 | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.10003127
Collapse
|
8
|
Meisig J, Blüthgen N. The gene regulatory network of mESC differentiation: a benchmark for reverse engineering methods. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0222. [PMID: 29786557 DOI: 10.1098/rstb.2017.0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/30/2023] Open
Abstract
A large body of data have accumulated that characterize the gene regulatory network of stem cells. Yet, a comprehensive and integrative understanding of this complex network is lacking. Network reverse engineering methods that use transcriptome data to derive these networks may help to uncover the topology in an unbiased way. Many methods exist that use co-expression to reconstruct networks. However, it remains unclear how these methods perform in the context of stem cell differentiation, as most systematic assessments have been made for regulatory networks of unicellular organisms. Here, we report a systematic benchmark of different reverse engineering methods against functional data. We show that network pruning is critical for reconstruction performance. We also find that performance is similar for algorithms that use different co-expression measures, i.e. mutual information or correlation. In addition, different methods yield very different network topologies, highlighting the challenge of interpreting these resulting networks as a whole.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Johannes Meisig
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University Berlin, Philippstr. 13/Haus 18, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany .,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University Berlin, Philippstr. 13/Haus 18, 10115 Berlin, Germany
| |
Collapse
|
9
|
Yachie-Kinoshita A, Onishi K, Ostblom J, Langley MA, Posfai E, Rossant J, Zandstra PW. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions. Mol Syst Biol 2018; 14:e7952. [PMID: 29378814 PMCID: PMC5787708 DOI: 10.15252/msb.20177952] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cells (PSCs) exist in multiple stable states, each with specific cellular properties and molecular signatures. The mechanisms that maintain pluripotency, or that cause its destabilization to initiate development, are complex and incompletely understood. We have developed a model to predict stabilized PSC gene regulatory network (GRN) states in response to input signals. Our strategy used random asynchronous Boolean simulations (R-ABS) to simulate single-cell fate transitions and strongly connected components (SCCs) strategy to represent population heterogeneity. This framework was applied to a reverse-engineered and curated core GRN for mouse embryonic stem cells (mESCs) and used to simulate cellular responses to combinations of five signaling pathways. Our simulations predicted experimentally verified cell population compositions and input signal combinations controlling specific cell fate transitions. Extending the model to PSC differentiation, we predicted a combination of signaling activators and inhibitors that efficiently and robustly generated a Cdx2+Oct4- cells from naïve mESCs. Overall, this platform provides new strategies to simulate cell fate transitions and the heterogeneity that typically occurs during development and differentiation.
Collapse
Affiliation(s)
- Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,The Systems Biology Institute, Minato, Tokyo, Japan
| | - Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Matthew A Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada .,The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Medicine by Design, A Canada First Research Excellence Program at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Abstract
Two studies published in this issue of Molecular Cell (Beringer et al., 2016; Liefke et al., 2016) characterize the novel interaction of EPOP with Elongin BC in regulating gene transcription at both H3K4me3-broad active and H3K27me3 Polycomb-repressed chromatin domains.
Collapse
|
11
|
Beringer M, Pisano P, Di Carlo V, Blanco E, Chammas P, Vizán P, Gutiérrez A, Aranda S, Payer B, Wierer M, Di Croce L. EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells. Mol Cell 2017; 64:645-658. [PMID: 27863225 DOI: 10.1016/j.molcel.2016.10.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
The cellular plasticity of pluripotent stem cells is thought to be sustained by genomic regions that display both active and repressive chromatin properties. These regions exhibit low levels of gene expression, yet the mechanisms controlling these levels remain unknown. Here, we describe Elongin BC as a binding factor at the promoters of bivalent sites. Biochemical and genome-wide analyses show that Elongin BC is associated with Polycomb Repressive Complex 2 (PRC2) in pluripotent stem cells. Elongin BC is recruited to chromatin by the PRC2-associated factor EPOP (Elongin BC and Polycomb Repressive Complex 2 Associated Protein, also termed C17orf96, esPRC2p48, E130012A19Rik), a protein expressed in the inner cell mass of the mouse blastocyst. Both EPOP and Elongin BC are required to maintain low levels of expression at PRC2 genomic targets. Our results indicate that keeping the balance between activating and repressive cues is a more general feature of chromatin in pluripotent stem cells than previously appreciated.
Collapse
Affiliation(s)
- Malte Beringer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paola Pisano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valerio Di Carlo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paul Chammas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Pedro Vizán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Michael Wierer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Liefke R, Karwacki-Neisius V, Shi Y. EPOP Interacts with Elongin BC and USP7 to Modulate the Chromatin Landscape. Mol Cell 2017; 64:659-672. [PMID: 27863226 DOI: 10.1016/j.molcel.2016.10.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Gene regulatory networks are pivotal for many biological processes. In mouse embryonic stem cells (mESCs), the transcriptional network can be divided into three functionally distinct modules: Polycomb, Core, and Myc. The Polycomb module represses developmental genes, while the Myc module is associated with proliferative functions, and its mis-regulation is linked to cancer development. Here, we show that, in mESCs, the Polycomb repressive complex 2 (PRC2)-associated protein EPOP (Elongin BC and Polycomb Repressive Complex 2-associated protein; a.k.a. C17orf96, esPRC2p48, and E130012A19Rik) co-localizes at chromatin with members of the Myc and Polycomb module. EPOP interacts with the transcription elongation factor Elongin BC and the H2B deubiquitinase USP7 to modulate transcriptional processes in mESCs similar to MYC. EPOP is commonly upregulated in human cancer, and its loss impairs the proliferation of several human cancer cell lines. Our findings establish EPOP as a transcriptional modulator, which impacts both Polycomb and active gene transcription in mammalian cells.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Violetta Karwacki-Neisius
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Takamatsu G, Katagiri C, Tomoyuki T, Shimizu-Okabe C, Nakamura W, Nakamura-Higa M, Hayakawa T, Wakabayashi S, Kondo T, Takayama C, Matsushita M. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons. Biochem Biophys Res Commun 2016; 482:1327-1333. [PMID: 27939885 DOI: 10.1016/j.bbrc.2016.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Class I histone deacetylase (HDAC) inhibitors are believed to have positive effects on neurite outgrowth, synaptic plasticity, and neurogenesis in adult brain. However, the downstream molecular targets of class I HDAC inhibitors in neurons are not clear. Although class I HDAC inhibitors are thought to broadly promote transcription of many neuronal genes through enhancement of histone acetylation, the affected gene set may include unidentified genes that are essential for neuronal survival and function. To identify novel genes that are targets of class I HDAC inhibitors, we used a microarray to screen transcripts from neuronal cultures and evaluated changes in protein and mRNA expression following treatment with four HDAC inhibitors. We identified tescalcin (Tesc) as the most strongly up-regulated gene following treatment with class I HDAC inhibitors in neurons. Moreover, hippocampal neurons overexpressing TESC showed a greater than 5-fold increase in the total length of neurites and number of branch points compared with controls. These findings highlight a potentially important role for TESC in mediating the neuroprotective effect of class I HDAC inhibitors. TESC may also be involved in the development of brain and neurodegenerative diseases through epigenetic mechanisms.
Collapse
Affiliation(s)
- Gakuya Takamatsu
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tsumuraya Tomoyuki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Wakako Nakamura
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Mariko Nakamura-Higa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tomoko Hayakawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, 569-8686 Osaka, Japan
| | - Tsuyoshi Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan.
| |
Collapse
|
14
|
Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71. Sci Rep 2015; 5:11126. [PMID: 26057209 PMCID: PMC4460895 DOI: 10.1038/srep11126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022] Open
Abstract
Regulatory networks for differentiation and pluripotency in embryonic stem (ES) cells have long been suggested to be mutually exclusive. However, with the identification of many new components of these networks ranging from epigenetic, transcriptional, and translational to even post-translational mechanisms, the cellular states of pluripotency and early differentiation might not be strictly bi-modal, but differentiating stem cells appear to go through phases of simultaneous expression of stemness and differentiation genes. Translational regulators such as RNA binding proteins (RBPs) and micro RNAs (miRNAs) might be prime candidates for guiding a cell from pluripotency to differentiation. Using Trim71, one of two members of the Tripartite motif (Trim) protein family with RNA binding activity expressed in murine ES cells, we demonstrate that Trim71 is not involved in regulatory networks of pluripotency but regulates neural differentiation. Loss of Trim71 in mES cells leaves stemness and self-maintenance of these cells intact, but many genes required for neural development are up-regulated at the same time. Concordantly, Trim71(-/-) mES show increased neural marker expression following treatment with retinoic acid. Our findings strongly suggest that Trim71 keeps priming steps of differentiation in check, which do not pre-require a loss of the pluripotency network in ES cells.
Collapse
|
15
|
Liefke R, Shi Y. The PRC2-associated factor C17orf96 is a novel CpG island regulator in mouse ES cells. Cell Discov 2015; 1:15008. [PMID: 27462409 PMCID: PMC4860827 DOI: 10.1038/celldisc.2015.8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
CpG islands (CGIs) are key DNA regulatory elements in the vertebrate genome and are often found at gene promoters. In mammalian embryonic stem (ES) cells, CGIs are decorated by either the active or repressive histone marks, H3K4me3 and H3K27me3, respectively, or by both modifications ('bivalent domains'), but their precise regulation is incompletely understood. Remarkably, we find that the polycomb repressive complex 2 (PRC2)-associated protein C17orf96 (a.k.a. esPRC2p48 and E130012A19Rik) is present at most CGIs in mouse ES cells. At PRC2-rich CGIs, loss of C17orf96 results in an increased chromatin binding of Suz12 and elevated H3K27me3 levels concomitant with gene repression. In contrast, at PRC2-poor CGIs, located at actively transcribed genes, C17orf96 colocalizes with RNA polymerase II and its depletion leads to a focusing of H3K4me3 in the core of CGIs. Our findings thus identify C17orf96 as a novel context-dependent CGI regulator.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Mapping Gene Regulatory Networks in Drosophila Eye Development by Large-Scale Transcriptome Perturbations and Motif Inference. Cell Rep 2014; 9:2290-303. [DOI: 10.1016/j.celrep.2014.11.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/24/2014] [Accepted: 11/22/2014] [Indexed: 11/20/2022] Open
|
17
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
18
|
Vizán P, Beringer M, Ballaré C, Di Croce L. Role of PRC2-associated factors in stem cells and disease. FEBS J 2014; 282:1723-35. [PMID: 25271128 DOI: 10.1111/febs.13083] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
Abstract
The Polycomb group (PcG) of proteins form chromatin-binding complexes with histone-modifying activity. The two main PcG repressive complexes studied (PRC1 and PRC2) are generally associated with chromatin in its repressed state. PRC2 is responsible for methylation of histone H3 at lysine 27 (H3K27me3), an epigenetic mark that is linked with numerous biological processes, including development, adult homeostasis and cancer. The core canonical complex PRC2, which contains the EZH1/2, SUZ12 and EED proteins, may be extended and functionally manipulated through interactions with several other proteins. In this review, we focus on these PRC2-associated proteins. As PRC2 functions are diverse, the variability conferred by these sub-stoichiometrically associated members may help to understand specific changes in PRC2 activity, chromatin recruitment and distribution required for gene repression.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Pinto JP, Machado RSR, Xavier JM, Futschik ME. Targeting molecular networks for drug research. Front Genet 2014; 5:160. [PMID: 24926314 PMCID: PMC4045242 DOI: 10.3389/fgene.2014.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/14/2014] [Indexed: 01/18/2023] Open
Abstract
The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects), as well as list pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.
Collapse
Affiliation(s)
- José P Pinto
- SysBioLab, Centre for Molecular and Structural Biomedicine, Universidade do Algarve Faro, Portugal
| | - Rui S R Machado
- SysBioLab, Centre for Molecular and Structural Biomedicine, Universidade do Algarve Faro, Portugal
| | - Joana M Xavier
- SysBioLab, Centre for Molecular and Structural Biomedicine, Universidade do Algarve Faro, Portugal
| | - Matthias E Futschik
- SysBioLab, Centre for Molecular and Structural Biomedicine, Universidade do Algarve Faro, Portugal ; Centre of Marine Sciences, Universidade do Algarve Faro, Portugal
| |
Collapse
|
20
|
Lee Y, Ghosh D, Zhang Y. Regression hidden Markov modeling reveals heterogeneous gene expression regulation: a case study in mouse embryonic stem cells. BMC Genomics 2014; 15:360. [PMID: 24884369 PMCID: PMC4144088 DOI: 10.1186/1471-2164-15-360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/06/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Studies have shown the strong association between histone modification levels and gene expression levels. The detailed relationships between the two can vary substantially due to differential regulation, and hence a simple regression model may not be adequate. We apply a regression hidden Markov model (regHMM) to further investigate the potential multiple relationships between genes and histone methylation levels in mouse embryonic stem cells. RESULTS Seven histone methylation levels are used in the study. Averaged histone modifications over non-overlapping 200 bp windows on the range transcription starting site (TSS) ± 1 Kb are used as predictors, and in total 70 explanatory variables are generated. Based on regHMM results, genes segregated into two groups, referred to as State 1 and State 2, have distinct association strengths. Genes in State 1 are better explained by histone methylation levels with R(2)=.72 while those in State 2 have weaker association strength with R(2)=.38. The regression coefficients in the two states are not very different in magnitude except in the intercept,.25 and 1.15 for State 1 and State 2, respectively. We found specific GO categories that may be attributed to the different relationships. The GO categories more frequently observed in State 2 match those of housekeeping genes, such as cytoplasm, nucleus, and protein binding. In addition, the housekeeping gene expression levels are significantly less explained by histone methylation in mouse embryonic stem cells, which is consistent with the constitutive expression patterns that would be expected. CONCLUSION Gene expression levels are not universally affected by histone methylation levels, and the relationships between the two differ by the gene functions. The expression levels of the genes that perform the most common housekeeping genes' GO categories are less strongly associated with histone methylation levels. We suspect that additional biological factors may also be strongly associated with the gene expression levels in State 2. We discover that the effect of the presence of CpG island in TSS ± 1 Kb is larger in State 2.
Collapse
Affiliation(s)
| | - Debashis Ghosh
- Department of Statistics, Penn State University, University Park, PA 16802, USA.
| | | |
Collapse
|
21
|
Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification. Proc Natl Acad Sci U S A 2014; 111:2488-93. [PMID: 24550272 DOI: 10.1073/pnas.1400648111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Understanding the composition of epigenetic regulators remains an important challenge in chromatin biology. Traditional biochemical analysis of chromatin-associated complexes requires their release from DNA under conditions that can also disrupt key interactions. Here we develop a complementary approach (BioTAP-XL), in which cross-linking (XL) enhances the preservation of protein interactions and also allows the analysis of DNA targets under the same tandem affinity purification (BioTAP) regimen. We demonstrate the power of BioTAP-XL through analysis of human EZH2, a core subunit of polycomb repressive complex 2 (PRC2). We identify and validate two strong interactors, C10orf12 and C17orf96, which display enrichment with EZH2-BioTAP at levels similar to canonical PRC2 components (SUZ12, EED, MTF2, JARID2, PHF1, and AEBP2). ChIP-seq analysis of BioTAP-tagged C10orf12 or C17orf96 revealed the similarity of each binding pattern with the location of EZH2 and the H3K27me3-silencing mark, validating their physical interaction with PRC2 components. Interestingly, analysis by mass spectrometry of C10orf12 and C17orf96 interactions revealed that these proteins may be mutually exclusive PRC2 subunits that fail to interact with each other or with JARID2 and AEBP2. C10orf12, in addition, shows a strong and unexpected association with components of the EHMT1/2 complex, thus potentially connecting PRC2 to another histone methyltransferase. Similarly, results from CBX4-BioTAP protein pulldowns are consistent with reports of a diversity of PRC1 complexes. Our results highlight the importance of reciprocal analyses of multiple subunits and suggest that iterative use of BioTAP-XL has strong potential to reveal networks of chromatin-based interactions in higher organisms.
Collapse
|
22
|
Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma'ayan A. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat045. [PMID: 23794736 PMCID: PMC3689438 DOI: 10.1093/database/bat045] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE
Collapse
Affiliation(s)
- Huilei Xu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1215, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|