1
|
Verma S, Pathak RU, Mishra RK. Genomic organization of the autonomous regulatory domain of eyeless locus in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2021; 11:6375946. [PMID: 34570231 PMCID: PMC8664461 DOI: 10.1093/g3journal/jkab338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
In Drosophila, expression of eyeless (ey) gene is restricted to the developing eyes and central nervous system. However, the flanking genes, myoglianin (myo), and bent (bt) have different temporal and spatial expression patterns as compared to the ey. How distinct regulation of ey is maintained is mostly unknown. Earlier, we have identified a boundary element intervening myo and ey genes (ME boundary) that prevents the crosstalk between the cis-regulatory elements of myo and ey genes. In the present study, we further searched for the cis-elements that define the domain of ey and maintain its expression pattern. We identify another boundary element between ey and bt, the EB boundary. The EB boundary separates the regulatory landscapes of ey and bt genes. The two boundaries, ME and EB, show a long-range interaction as well as interact with the nuclear architecture. This suggests functional autonomy of the ey locus and its insulation from differentially regulated flanking regions. We also identify a new Polycomb Response Element, the ey-PRE, within the ey domain. The expression state of the ey gene, once established during early development is likely to be maintained with the help of ey-PRE. Our study proposes a general regulatory mechanism by which a gene can be maintained in a functionally independent chromatin domain in gene-rich euchromatin.
Collapse
Affiliation(s)
- Shreekant Verma
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
2
|
Schember I, Halfon MS. Identification of new Anopheles gambiae transcriptional enhancers using a cross-species prediction approach. INSECT MOLECULAR BIOLOGY 2021; 30:410-419. [PMID: 33866636 PMCID: PMC8266755 DOI: 10.1111/imb.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The success of transgenic mosquito vector control approaches relies on well-targeted gene expression, requiring the identification and characterization of a diverse set of mosquito promoters and transcriptional enhancers. However, few enhancers have been characterized in Anopheles gambiae to date. Here, we employ the SCRMshaw method we previously developed to predict enhancers in the A. gambiae genome, preferentially targeting vector-relevant tissues such as the salivary glands, midgut and nervous system. We demonstrate a high overall success rate, with at least 8 of 11 (73%) tested sequences validating as enhancers in an in vivo xenotransgenic assay. Four tested sequences drive expression in either the salivary gland or the midgut, making them directly useful for probing the biology of these infection-relevant tissues. The success of our study suggests that computational enhancer prediction should serve as an effective means for identifying A. gambiae enhancers with activity in tissues involved in malaria propagation and transmission.
Collapse
Affiliation(s)
- Isabella Schember
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203
- NY State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 14203
- Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
3
|
Matharu NK, Yadav S, Kumar M, Mishra RK. Role of vertebrate GAGA associated factor (vGAF) in early development of zebrafish. Cells Dev 2021; 166:203682. [PMID: 33994355 DOI: 10.1016/j.cdev.2021.203682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Homeotic genes and their genomic organization show remarkable conservation across bilaterians. Consequently, the regulatory mechanisms, which control hox gene expression, are also highly conserved. The crucial presence of conserved GA rich motifs between Hox genes has been previously observed but what factor binds to these is still unknown. Previously we have reported that the vertebrate homologue of Drosophila Trl-GAF preferentially binds to GA rich regions in Evx2-hoxd13 intergenic region of vertebrate HoxD cluster. In this study, we show that the vertebrate-GAF (v-GAF) binds at known cis-regulatory elements in the HoxD complex of zebrafish and mouse. We further used morpholino based knockdown and CRISPR-cas9 knockout technique to deplete the v-GAF in zebrafish. We checked expression of the HoxD genes and found gain of the HoxD4 gene in GAF knockout embryos. Further, we partially rescued the morphological phenotypes in GAF depleted embryos by providing GAF mRNA. Our results show that GAF binds at intergenic regions of the HoxD complex and is important for maintaining the spatial domains of HoxD4 expression during embryonic development.
Collapse
Affiliation(s)
- Navneet K Matharu
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Sonu Yadav
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Megha Kumar
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcCSIR), India.
| |
Collapse
|
4
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
5
|
Ruiz JL, Ranford-Cartwright LC, Gómez-Díaz E. The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression. NAR Genom Bioinform 2021; 3:lqaa113. [PMID: 33987532 PMCID: PMC8092447 DOI: 10.1093/nargab/lqaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Lisa C Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
6
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
7
|
Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S. IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 2017; 8:103601-103612. [PMID: 29262587 PMCID: PMC5732753 DOI: 10.18632/oncotarget.22063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Interleukin-22 (IL-22) is a well-known tumor related inflammatory factor that is associated with variety of cancers. HOXB-AS5, a long non-coding RNA located in HOX gene clusters, has been elevated in breast cancer (BC) tissues. Herein, IL-22 and HOXB-AS5 were upregulated in the serum and tissues of BC patients and were associated with clinical stages. Furthermore, we also investigated the effects of IL-22-HOXB-AS5 pathway on progression of BC, and the results suggested that IL-22 and HOXB-AS5 synergistically promoted MDA-MB-231 cell growth, migration and invasion and activated the PI3K-AKT-mTOR pathway. These findings demonstrated that the IL-22-HOXB-AS5-PI3K/AKT functional axes may serve as potential molecule biomarkers for diagnosis and therapy evaluation or targeted therapeutic strategy in BC.
Collapse
Affiliation(s)
- Jiang Rui
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhao Chunming
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Gao Binbin
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shao Na
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Wang Shengxi
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Song Wei
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
8
|
Chakraborty C, Bandyopadhyay S, Agoramoorthy G. India's Computational Biology Growth and Challenges. Interdiscip Sci 2016; 8:263-76. [PMID: 27465042 DOI: 10.1007/s12539-016-0179-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | | | | |
Collapse
|
9
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
10
|
Wells MB, Andrew DJ. "Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi". Parasit Vectors 2015; 8:617. [PMID: 26627194 PMCID: PMC4667400 DOI: 10.1186/s13071-015-1229-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/23/2015] [Indexed: 12/02/2022] Open
Abstract
Background Anopheles mosquitoes are vectors for malaria, a disease with continued grave outcomes for human health. Transmission of malaria from mosquitoes to humans occurs by parasite passage through the salivary glands (SGs). Previous studies of mosquito SG architecture have been limited in scope and detail. Methods We developed a simple, optimized protocol for fluorescence staining using dyes and/or antibodies to interrogate cellular architecture in Anopheles stephensi adult SGs. We used common biological dyes, antibodies to well-conserved structural and organellar markers, and antibodies against Anopheles salivary proteins to visualize many individual SGs at high resolution by confocal microscopy. Results These analyses confirmed morphological features previously described using electron microscopy and uncovered a high degree of individual variation in SG structure. Our studies provide evidence for two alternative models for the origin of the salivary duct, the structure facilitating parasite transport out of SGs. We compare SG cellular architecture in An. stephensi and Drosophila melanogaster, a fellow Dipteran whose adult SGs are nearly completely unstudied, and find many conserved features despite divergence in overall form and function. Anopheles salivary proteins previously observed at the basement membrane were localized either in SG cells, secretory cavities, or the SG lumen. Our studies also revealed a population of cells with characteristics consistent with regenerative cells, similar to muscle satellite cells or midgut regenerative cells. Conclusions This work serves as a foundation for linking Anopheles stephensi SG cellular architecture to function and as a basis for generating and evaluating tools aimed at preventing malaria transmission at the level of mosquito SGs. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1229-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., G-10 Hunterian, Baltimore, MD, 21205, USA.
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., G-10 Hunterian, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Bai Y, Fang N, Gu T, Kang Y, Wu J, Yang D, Zhang H, Suo Z, Ji S. HOXA11 gene is hypermethylation and aberrant expression in gastric cancer. Cancer Cell Int 2014; 14:79. [PMID: 25788862 PMCID: PMC4364045 DOI: 10.1186/s12935-014-0079-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant DNA methylation is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor genes and other genes in diverse human cancers. Gastric carcinoma is one of the tumors with a high frequency of aberrant methylation in promoter region. Hence we investigated the promoter methylation status and expression level of HOXA11 gene which may involve in GC development. Methods Thirty-two surgical excised gastric cancer specimens, twelve paired adjacent non-cancerous specimens and seven normal gastric mucosas were examined. The methylation status and expression level of HOXA11 gene were determined by bisulfite sequencing polymerase chain reaction (BSP), real-time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) respectively. HOXA11 expression was knocked-down with siRNA to mimic HOXA11 gene hypermethylation and ability of cell proliferation and migration was determinate. In addition, we analyzed and correlated the findings with clinicopathological features. Results The methylation level of HOXA11 gene in gastric cancer tissues and adjacent non-cancerous tissues were higher than those in normal gastric mucosa (P < 0.05). The methylation level was higher in TNM III and IV patients of GC than those in TNM I and II patients (P < 0.05). The expression of HOXA11 mRNA and protein decreased in normal gastric mucosa, peri-cancer tissue and GC (P < 0.05). HOXA11 expression was inversely correlated with DNA methylation (P < 0.05). Knocked-down of HOXA11 expression with siRNA in BGC-823 cells enhanced cell proliferation compared with control, but no significant different was observed in migration ability. Conclusion Hypermethylation and decreased expression of HOXA11 gene may be involved in the carcinogenesis and development of GC and may provide useful information for the prediction of the malignant behaviors of GC. And the expression of HOXA11 is impaired by DNA methylation. However, repression of HOXA11 expression promoted BGC-823 cell proliferation.
Collapse
Affiliation(s)
- Yinguo Bai
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China ; Department of Biochemistry and Molecular Biology, Medical School of Henan University, Kaifeng 475004, Henan Province, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, Medical School of Henan University, Kaifeng 475004, Henan Province, China
| | - Tingxun Gu
- Department of Biochemistry and Molecular Biology, Medical School of Henan University, Kaifeng 475004, Henan Province, China
| | - Yuhua Kang
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Jiang Wu
- Department of pathology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Desheng Yang
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Hui Zhang
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Medical School of Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
13
|
Matharu NK, Mishra RK. Mining the cis-regulatory elements of Hox clusters. Methods Mol Biol 2014; 1196:121-31. [PMID: 25151161 DOI: 10.1007/978-1-4939-1242-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hox clusters have served as a favorite system to study the role of cis-regulatory elements at multiple layers of gene regulation. Organization and regulation of Hox genes show remarkable conservation and determine the anterior-posterior body axis across the bilaterians. Identification of a variety of regulatory regions within the complex and around it, embedded primarily in the noncoding part of the corresponding genomic region that can spread 100-150 kb, is a challenging problem. Multiple experimental and computational tools need to be employed to investigate functional features of such elements. Here we discuss parallel approaches to mine the most plausible regulatory information from the noncoding sequences of Hox clusters, among diverse species.
Collapse
Affiliation(s)
- Navneet Kaur Matharu
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, India
| | | |
Collapse
|
14
|
Ahanger SH, Shouche YS, Mishra RK. Functional sub-division of the Drosophila genome via chromatin looping: the emerging importance of CP190. Nucleus 2013; 4:115-22. [PMID: 23333867 DOI: 10.4161/nucl.23389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization.
Collapse
|