1
|
Rehman ZU, Najmi A, Zoghebi K. Insights into the Effects of Ligand Binding on Leucyl-tRNA Synthetase Inhibitors for Tuberculosis: In Silico Analysis and Isothermal Titration Calorimetry Validation. Biomolecules 2024; 14:711. [PMID: 38927114 PMCID: PMC11201714 DOI: 10.3390/biom14060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Incidences of drug-resistant tuberculosis have become common and are rising at an alarming rate. Aminoacyl t-RNA synthetase has been validated as a newer target against Mycobacterium tuberculosis. Leucyl t-RNA synthetase (LeuRS) is ubiquitously found in all organisms and regulates transcription, protein synthesis, mitochondrial RNA cleavage, and proofreading of matured t-RNA. Leucyl t-RNA synthetase promotes growth and development and is the key enzyme needed for biofilm formation in Mycobacterium. Inhibition of this enzyme could restrict the growth and development of the mycobacterial population. A database consisting of 2734 drug-like molecules was screened against leucyl t-RNA synthetase enzymes through virtual screening. Based on the docking scores and MMGBSA energy values, the top three compounds were selected for molecular dynamics simulation. The druggable nature of the top three hits was confirmed by predicting their pharmacokinetic parameters. The top three hits-compounds 1035 (ZINC000001543916), 1054 (ZINC000001554197), and 2077 (ZINC000008214483)-were evaluated for their binding affinity toward leucyl t-RNA synthetase by an isothermal titration calorimetry study. The inhibitory activity of these compounds was tested against antimycobacterial activity, biofilm formation, and LeuRS gene expression potential. Compound 1054 (Macimorelin) was found to be the most potent molecule, with better antimycobacterial activity, enzyme binding affinity, and significant inhibition of biofilm formation, as well as inhibition of the LeuRS gene expression. Compound 1054, the top hit compound, has the potential to be used as a lead to develop successful leucyl t-RNA synthetase inhibitors.
Collapse
Affiliation(s)
- Zia Ur Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.N.); (K.Z.)
| | | | | |
Collapse
|
2
|
Baloyi NN, Tugizimana F, Sitole LJJ. Metabolomics assessment of vitamin D impact in Pam3CSK4 stimulation. Mol Omics 2022; 18:397-407. [DOI: 10.1039/d1mo00377a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis, a causative agent of tuberculosis, is amongst the leading causes of mycobacterial mortality worldwide. Although several studies have proposed the possible therapeutic role of vitamin D in antimycobacterial...
Collapse
|
3
|
Lin WX, Zheng QQ, Guo L, Cheng Y, Song YZ. [Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:913-920. [PMID: 28774368 PMCID: PMC7390053 DOI: 10.7499/j.issn.1008-8830.2017.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Infantile liver failure syndrome type 1 (ILFS1) is a Mendelian disease due to biallelic mutations in the cytoplasmic leucyl-tRNA synthetase gene (LARS). This study aimed to report the clinical and molecular features of the first non-caucasian ILFS1 patient, providing reliable evidences for the definite diagnosis of ILFS1. The 2 years and 9 months old male patient was referred to the hospital with hepatosplenomegaly over 1 year. At age 17 months, he was found to have hepatosplenomegaly and anemia. Since then, he had been managed in different hospitals. The laboratory tests showed liver dysfunction, hypoproteinemia, coagulopathy and anemia, along with histologically-confirmed cirrhosis and fatty liver; however, the etiology remained undetermined. The subsequent SLC25A13 mutation analysis by means of prevalent mutation screening and Sanger sequencing only revealed a paternally-inherited mutation c.1658G>A, and no aberrant SLC25A13 transcripts could be detected from the maternal allele on cDNA cloning analysis, ruling out the possibility of citrin deficiency. Further target exome high-throughout sequencing of genes relevant to genetic liver diseases detected a paternal c.2133_2135del (p.L712del) and a maternal c.1183G>A (p.D395N) mutation in LARS gene. This finding was then confirmed by Sanger sequencing, and ILFS1 was thus definitely diagnosed. The child has been followed up till age 4 years, and his condition became stabilized.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
4
|
Lin WX, Zheng QQ, Guo L, Cheng Y, Song YZ. [Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:913-920. [PMID: 28774368 PMCID: PMC7390053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 11/12/2023]
Abstract
Infantile liver failure syndrome type 1 (ILFS1) is a Mendelian disease due to biallelic mutations in the cytoplasmic leucyl-tRNA synthetase gene (LARS). This study aimed to report the clinical and molecular features of the first non-caucasian ILFS1 patient, providing reliable evidences for the definite diagnosis of ILFS1. The 2 years and 9 months old male patient was referred to the hospital with hepatosplenomegaly over 1 year. At age 17 months, he was found to have hepatosplenomegaly and anemia. Since then, he had been managed in different hospitals. The laboratory tests showed liver dysfunction, hypoproteinemia, coagulopathy and anemia, along with histologically-confirmed cirrhosis and fatty liver; however, the etiology remained undetermined. The subsequent SLC25A13 mutation analysis by means of prevalent mutation screening and Sanger sequencing only revealed a paternally-inherited mutation c.1658G>A, and no aberrant SLC25A13 transcripts could be detected from the maternal allele on cDNA cloning analysis, ruling out the possibility of citrin deficiency. Further target exome high-throughout sequencing of genes relevant to genetic liver diseases detected a paternal c.2133_2135del (p.L712del) and a maternal c.1183G>A (p.D395N) mutation in LARS gene. This finding was then confirmed by Sanger sequencing, and ILFS1 was thus definitely diagnosed. The child has been followed up till age 4 years, and his condition became stabilized.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
5
|
Ye Q, Ji QQ, Yan W, Yang F, Wang ED. Acetylation of lysine ϵ-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli. J Biol Chem 2017; 292:10709-10722. [PMID: 28455447 DOI: 10.1074/jbc.m116.770826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Previous proteomic analyses have shown that aminoacyl-tRNA synthetases in many organisms can be modified by acetylation of Lys. In this present study, leucyl-tRNA synthetase and arginyl-tRNA synthetase from Escherichia coli (EcLeuRS and EcArgRS) were overexpressed and purified and found to be acetylated on Lys residues by MS. Gln scanning mutagenesis revealed that Lys619, Lys624, and Lys809 in EcLeuRS and Lys126 and Lys408 in EcArgRS might play important roles in enzyme activity. Furthermore, we utilized a novel protein expression system to obtain enzymes harboring acetylated Lys at specific sites and investigated their catalytic activity. Acetylation of these Lys residues could affect their aminoacylation activity by influencing amino acid activation and/or the affinity for tRNA. In vitro assays showed that acetyl-phosphate nonenzymatically acetylates EcLeuRS and EcArgRS and suggested that the sirtuin class deacetylase CobB might regulate acetylation of these two enzymes. These findings imply a potential regulatory role for Lys acetylation in controlling the activity of aminoacyl-tRNA synthetases and thus protein synthesis.
Collapse
Affiliation(s)
- Qing Ye
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Quan-Quan Ji
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Wei Yan
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Fang Yang
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and .,the School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
6
|
Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 2016; 27:370-386. [PMID: 28017531 DOI: 10.1016/j.bmcl.2016.11.084] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Modern chemotherapy has significantly improved patient outcomes against drug-sensitive tuberculosis. However, the rapid emergence of drug-resistant tuberculosis, together with the bacterium's ability to persist and remain latent present a major public health challenge. To overcome this problem, research into novel anti-tuberculosis targets and drug candidates is thus of paramount importance. This review article provides an overview of tuberculosis highlighting the recent advances and tools that are employed in the field of anti-tuberculosis drug discovery. The predominant focus is on anti-tuberculosis agents that are currently in the pipeline, i.e. clinical trials.
Collapse
|
7
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
8
|
Ji QQ, Fang ZP, Ye Q, Ruan ZR, Zhou XL, Wang ED. C-terminal Domain of Leucyl-tRNA Synthetase from Pathogenic Candida albicans Recognizes both tRNASer and tRNALeu. J Biol Chem 2015; 291:3613-25. [PMID: 26677220 DOI: 10.1074/jbc.m115.699777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 11/06/2022] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.
Collapse
Affiliation(s)
- Quan-Quan Ji
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and
| | - Zhi-Peng Fang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and
| | - Qing Ye
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and
| | - Zhi-Rong Ruan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and
| | - Xiao-Long Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, 200031 Shanghai, China and School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, 200031 Shanghai, China
| |
Collapse
|
9
|
Yan W, Ye Q, Tan M, Chen X, Eriani G, Wang ED. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module. J Biol Chem 2015; 290:12256-67. [PMID: 25817995 DOI: 10.1074/jbc.m115.639492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNA(Leu), which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNA(Leu) D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS.
Collapse
Affiliation(s)
- Wei Yan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing Ye
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Min Tan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xi Chen
- the College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Gilbert Eriani
- the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, Strasbourg 67084, France, and
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, the School of Life Science and Technology, Shanghai Tech University, 319 Yue Yang Road, Shanghai 200031,China,
| |
Collapse
|
10
|
Ruan ZR, Fang ZP, Ye Q, Lei HY, Eriani G, Zhou XL, Wang ED. Identification of lethal mutations in yeast threonyl-tRNA synthetase revealing critical residues in its human homolog. J Biol Chem 2014; 290:1664-78. [PMID: 25416776 DOI: 10.1074/jbc.m114.599886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zhi-Peng Fang
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing Ye
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hui-Yan Lei
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Xiao-Long Zhou
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China,
| | - En-Duo Wang
- From the Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, the School of Life Science and Technology, ShanghaiTech University, 320 Yue Yang Road, Shanghai 200031, China, and
| |
Collapse
|
11
|
Huang Q, Zhou XL, Hu QH, Lei HY, Fang ZP, Yao P, Wang ED. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity. RNA (NEW YORK, N.Y.) 2014; 20:1440-50. [PMID: 25051973 PMCID: PMC4138327 DOI: 10.1261/rna.044404.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/30/2014] [Indexed: 05/24/2023]
Abstract
Leucyl-tRNA synthetases (LeuRSs) catalyze the linkage of leucine with tRNA(Leu). LeuRS contains a catalysis domain (aminoacylation) and a CP1 domain (editing). CP1 is inserted 35 Å from the aminoacylation domain. Aminoacylation and editing require CP1 to swing to the coordinated conformation. The neck between the CP1 domain and the aminoacylation domain is defined as the CP1 hairpin. The location of the CP1 hairpin suggests a crucial role in the CP1 swing and domain-domain interaction. Here, the CP1 hairpin of Homo sapiens cytoplasmic LeuRS (hcLeuRS) was deleted or substituted by those from other representative species. Lack of a CP1 hairpin led to complete loss of aminoacylation, amino acid activation, and tRNA binding; however, the mutants retained post-transfer editing. Only the CP1 hairpin from Saccharomyces cerevisiae LeuRS (ScLeuRS) could partly rescue the hcLeuRS functions. Further site-directed mutagenesis indicated that the flexibility of small residues and the charge of polar residues in the CP1 hairpin are crucial for the function of LeuRS.
Collapse
Affiliation(s)
- Qian Huang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Long Zhou
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin-Hua Hu
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Yan Lei
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Peng Fang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Yao
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | - En-Duo Wang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
12
|
Hu QH, Liu RJ, Fang ZP, Zhang J, Ding YY, Tan M, Wang M, Pan W, Zhou HC, Wang ED. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2014; 3:2475. [PMID: 23959225 PMCID: PMC3747510 DOI: 10.1038/srep02475] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, as a potent anti-pneumococcal agent that inhibits S. pneumoniae LeuRS (SpLeuRS) activity. We show using kinetic, biochemical analyses combined with the crystal structure of ZCL039-AMP in complex with the separated SpLeuRS editing domain, that ZCL039 binds to the LeuRS editing active site which requires the presence of tRNA(Leu), and employs an uncompetitive inhibition mechanism. Further docking models establish that ZCL039 clashes with the eukaryal/archaeal specific insertion I4ae helix within editing domains. These findings demonstrate the potential of benzoxaboroles as effective LeuRS inhibitors for pneumococcus infection therapy, and provide future structure-guided drug design and optimization.
Collapse
Affiliation(s)
- Qing-Hua Hu
- 1] State Key Laboratory of Molecular Biology, Center for RNA research, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fang ZP, Wang M, Ruan ZR, Tan M, Liu RJ, Zhou M, Zhou XL, Wang ED. Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNA(Leu) in the archaeal mode. Nucleic Acids Res 2014; 42:5109-24. [PMID: 24500203 PMCID: PMC4005665 DOI: 10.1093/nar/gku108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Leucyl-tRNA (transfer RNA) synthetase (LeuRS) is a multi-domain enzyme, which is divided into bacterial and archaeal/eukaryotic types. In general, one specific LeuRS, the domains of which are of the same type, exists in a single cell compartment. However, some species, such as the haloalkaliphile Natrialba magadii, encode two cytoplasmic LeuRSs, NmLeuRS1 and NmLeuRS2, which are the first examples of naturally occurring chimeric enzymes with different domains of bacterial and archaeal types. Furthermore, N. magadii encodes typical archaeal tRNALeus. The tRNA recognition mode, aminoacylation and translational quality control activities of these two LeuRSs are interesting questions to be addressed. Herein, active NmLeuRS1 and NmLeuRS2 were successfully purified after gene expression in Escherichia coli. Under the optimized aminoacylation conditions, we discovered that they distinguished cognate NmtRNALeu in the archaeal mode, whereas the N-terminal region was of the bacterial type. However, NmLeuRS1 exhibited much higher aminoacylation and editing activity than NmLeuRS2, suggesting that NmLeuRS1 is more likely to generate Leu-tRNALeu for protein biosynthesis. Moreover, using NmLeuRS1 as a model, we demonstrated misactivation of several non-cognate amino acids, and accuracy of protein synthesis was maintained mainly via post-transfer editing. This comprehensive study of the NmLeuRS/tRNALeu system provides a detailed understanding of the coevolution of aminoacyl-tRNA synthetases and tRNA.
Collapse
Affiliation(s)
- Zhi-Peng Fang
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Perli E, Giordano C, Pisano A, Montanari A, Campese AF, Reyes A, Ghezzi D, Nasca A, Tuppen HA, Orlandi M, Di Micco P, Poser E, Taylor RW, Colotti G, Francisci S, Morea V, Frontali L, Zeviani M, d'Amati G. The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells. EMBO Mol Med 2014; 6:169-82. [PMID: 24413190 PMCID: PMC3927953 DOI: 10.1002/emmm.201303198] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/16/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNA(Ile) gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these "mild" mutations or with the "severe" m.3243A>G mutation in the mt-tRNA(L)(eu(UUR)) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNA(Leu(UUR)) with high affinity and stability and, with lower affinity, with mt-tRNA(Ile). Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations.
Collapse
Affiliation(s)
- Elena Perli
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
- Pasteur Institute-Cenci Bolognetti FoundationRome, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
| | - Annalinda Pisano
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
- Department of Internal Medicine and Medical Specialties, Sapienza University of RomeRome, Italy
| | - Arianna Montanari
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
- Pasteur Institute-Cenci Bolognetti FoundationRome, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of RomeRome, Italy
| | - Antonio F Campese
- Department of Molecular Medicine, Sapienza University of RomeRome, Italy
| | | | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCSMilan, Italy
| | - Alessia Nasca
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology IRCCSMilan, Italy
| | - Helen A Tuppen
- Wellcome Trust Center for Mitochondrial Research, Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, UK
| | - Maurizia Orlandi
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
- Department of Molecular Medicine, Sapienza University of RomeRome, Italy
| | - Patrizio Di Micco
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRome, Italy
| | - Elena Poser
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRome, Italy
| | - Robert W Taylor
- Wellcome Trust Center for Mitochondrial Research, Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, UK
| | - Gianni Colotti
- National Research Council of Italy, Institute of Molecular Biology and PathologyRome, Italy
| | - Silvia Francisci
- Pasteur Institute-Cenci Bolognetti FoundationRome, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of RomeRome, Italy
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and PathologyRome, Italy
| | - Laura Frontali
- Pasteur Institute-Cenci Bolognetti FoundationRome, Italy
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of RomeRome, Italy
| | | | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza University of RomeRome, Italy
- Pasteur Institute-Cenci Bolognetti FoundationRome, Italy
| |
Collapse
|