1
|
Li CY, Sandhu S, Ken ML. RNA ensembles from in vitro to in vivo: Toward predictive models of RNA cellular function. Curr Opin Struct Biol 2024; 89:102915. [PMID: 39401473 DOI: 10.1016/j.sbi.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 11/29/2024]
Abstract
Deepening our understanding of RNA biology and accelerating development of RNA-based therapeutics go hand-in-hand-both requiring a transition from qualitative descriptions of RNA structure to quantitative models capable of predicting RNA behaviors, and from a static to an ensemble view. Ensembles are determined from their free energy landscapes, which define the relative populations of conformational states and the energetic barriers separating them. Experimental determination of RNA ensembles over the past decade has led to powerful predictive models of RNA behavior in vitro. It has also been shown during this time that the cellular environment redistributes RNA ensembles, changing the abundances of functionally relevant conformers relative to in vitro contexts with subsequent functional RNA consequences. However, recent studies have demonstrated that testing models built from in vitro ensembles with highly quantitative measurements of RNA cellular function, aided by emerging computational methodologies, enables predictive modelling of cellular activity and biological discovery.
Collapse
Affiliation(s)
- Catherine Y Li
- The Scripps Research Institute, Graduate Program, La Jolla, CA, USA
| | - Shawn Sandhu
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Megan L Ken
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA.
| |
Collapse
|
2
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
3
|
Graham TGW, Ferrie JJ, Dailey GM, Tjian R, Darzacq X. Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA). eLife 2022; 11:e76870. [PMID: 35976226 PMCID: PMC9531946 DOI: 10.7554/elife.76870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Single-molecule imaging provides a powerful way to study biochemical processes in live cells, yet it remains challenging to track single molecules while simultaneously detecting their interactions. Here, we describe a novel property of rhodamine dyes, proximity-assisted photoactivation (PAPA), in which one fluorophore (the 'sender') can reactivate a second fluorophore (the 'receiver') from a dark state. PAPA requires proximity between the two fluorophores, yet it operates at a longer average intermolecular distance than Förster resonance energy transfer (FRET). We show that PAPA can be used in live cells both to detect protein-protein interactions and to highlight a subpopulation of labeled protein complexes in which two different labels are in proximity. In proof-of-concept experiments, PAPA detected the expected correlation between androgen receptor self-association and chromatin binding at the single-cell level. These results establish a new way in which a photophysical property of fluorophores can be harnessed to study molecular interactions in single-molecule imaging of live cells.
Collapse
Affiliation(s)
- Thomas GW Graham
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - John Joseph Ferrie
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Krafčík D, Ištvánková E, Džatko Š, Víšková P, Foldynová-Trantírková S, Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int J Mol Sci 2021; 22:6042. [PMID: 34205000 PMCID: PMC8199861 DOI: 10.3390/ijms22116042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
Collapse
Affiliation(s)
- Daniel Krafčík
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (D.K.); (E.I.); (Š.D.); (P.V.)
| |
Collapse
|
6
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
7
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
8
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
9
|
Krafcikova M, Dzatko S, Caron C, Granzhan A, Fiala R, Loja T, Teulade-Fichou MP, Fessl T, Hänsel-Hertsch R, Mergny JL, Foldynova-Trantirkova S, Trantirek L. Monitoring DNA-Ligand Interactions in Living Human Cells Using NMR Spectroscopy. J Am Chem Soc 2019; 141:13281-13285. [PMID: 31394899 DOI: 10.1021/jacs.9b03031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies on DNA-ligand interactions in the cellular environment are problematic due to the lack of suitable biophysical tools. To address this need, we developed an in-cell NMR-based approach for monitoring DNA-ligand interactions inside the nuclei of living human cells. Our method relies on the acquisition of NMR data from cells electroporated with preformed DNA-ligand complexes. The impact of the intracellular environment on the integrity of the complexes is assessed based on in-cell NMR signals from unbound and ligand-bound forms of a given DNA target. This technique was tested on complexes of two model DNA fragments and four ligands, namely, a representative DNA minor-groove binder (netropsin) and ligands binding DNA base-pairing defects (naphthalenophanes). In the latter case, we demonstrate that two of the three in vitro-validated ligands retain their ability to form stable interactions with their model target DNA in cellulo, whereas the third one loses this ability due to off-target interactions with genomic DNA and cellular metabolites. Collectively, our data suggest that direct evaluation of the behavior of drug-like molecules in the intracellular environment provides important insights into the development of DNA-binding ligands with desirable biological activity and minimal side effects resulting from off-target binding.
Collapse
Affiliation(s)
- Michaela Krafcikova
- Central European Institute of Technology, Masaryk University , Brno 62500 , Czech Republic.,Institute of Biophysics , v.v.i., ASCR, Brno 62500 , Czech Republic
| | - Simon Dzatko
- Central European Institute of Technology, Masaryk University , Brno 62500 , Czech Republic
| | - Coralie Caron
- CNRS UMR9187, INSERM U1196, Institut Curie , PSL Research University , Orsay 91405 , France.,CNRS UMR9187, INSERM U1196, Université Paris Sud , Université Paris Saclay , Orsay 91405 , France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie , PSL Research University , Orsay 91405 , France.,CNRS UMR9187, INSERM U1196, Université Paris Sud , Université Paris Saclay , Orsay 91405 , France
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University , Brno 62500 , Czech Republic
| | - Tomas Loja
- Central European Institute of Technology, Masaryk University , Brno 62500 , Czech Republic
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie , PSL Research University , Orsay 91405 , France.,CNRS UMR9187, INSERM U1196, Université Paris Sud , Université Paris Saclay , Orsay 91405 , France
| | - Tomas Fessl
- Faculty of Science , University of South Bohemia , Ceske Budejovice CZ-370 05 , Czech Republic
| | - Robert Hänsel-Hertsch
- Cancer Research UK Cambridge Institute , University of Cambridge , Cambridge CB2 0RE , United Kingdom
| | - Jean-Louis Mergny
- CNRS UMR9187, INSERM U1196, Institut Curie , PSL Research University , Orsay 91405 , France.,CNRS UMR9187, INSERM U1196, Université Paris Sud , Université Paris Saclay , Orsay 91405 , France.,Institute of Biophysics , v.v.i., ASCR, Brno 62500 , Czech Republic
| | | | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University , Brno 62500 , Czech Republic.,Institute of Biophysics , v.v.i., ASCR, Brno 62500 , Czech Republic
| |
Collapse
|
10
|
Endesfelder U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem 2019; 63:187-196. [PMID: 31197072 PMCID: PMC6610453 DOI: 10.1042/ebc20190002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Bacteria as single-cell organisms are important model systems to study cellular mechanisms and functions. In recent years and with the help of advanced fluorescence microscopy techniques, immense progress has been made in characterizing and quantifying the behavior of single bacterial cells on the basis of molecular interactions and assemblies in the complex environment of live cultures. Importantly, single-molecule imaging enables the in vivo determination of the stoichiometry and molecular architecture of subcellular structures, yielding detailed, quantitative, spatiotemporally resolved molecular maps and unraveling dynamic heterogeneities and subpopulations on the subcellular level. Nevertheless, open challenges remain. Here, we review the past and current status of the field, discuss example applications and give insights into future trends.
Collapse
Affiliation(s)
- Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
11
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
12
|
Giassa IC, Rynes J, Fessl T, Foldynova-Trantirkova S, Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett 2018; 592:1997-2011. [PMID: 29679394 DOI: 10.1002/1873-3468.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
Abstract
Conventional biophysical and chemical biology approaches for delineating relationships between the structure and biological function of nucleic acids (NAs) abstract NAs from their native biological context. However, cumulative experimental observations have revealed that the structure, dynamics and interactions of NAs might be strongly influenced by a broad spectrum of specific and nonspecific physical-chemical environmental factors. This consideration has recently sparked interest in the development of novel tools for structural characterization of NAs in the native cellular context. Here, we review the individual methods currently being employed for structural characterization of NA structure in a native cellular environment with a focus on recent advances and developments in the emerging fields of in-cell NMR and electron paramagnetic resonance spectroscopy and in-cell single-molecule FRET of NAs.
Collapse
Affiliation(s)
- Ilektra-Chara Giassa
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Saha M, Nandy P, Chakraborty M, Das P, Das S. The importance of pK a in an analysis of the interaction of compounds with DNA. Biophys Chem 2018; 236:15-21. [PMID: 29525503 DOI: 10.1016/j.bpc.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/27/2018] [Accepted: 02/04/2018] [Indexed: 01/29/2023]
Abstract
pKa of a compound is crucial for determining the contributions of different forms of it towards overall binding with DNA. Hence it is important to use correct pKa values in DNA interaction studies. This study takes a look at the importance of pKa values to realize binding of compounds with DNA. Since pKa of a compound determined in the presence of DNA is quite different from that determined in its absence hence, presence of different forms of a compound during interaction with DNA is different from that realized if the determination of pKa is done in normal aqueous solution in absence of DNA. Hence, calculations determining contributions of different forms of a compound interacting with DNA are affected accordingly. Two simple analogues of anthracyclines, alizarin and purpurin, were used to investigate the influence DNA has on pKa values. Indeed, they were different in presence of DNA than when determined in normal aqueous solution. pKa1 for alizarin and purpurin determined in the absence and presence of calf thymus DNA were used in equations that determine contributions of two forms (neutral and anionic) towards overall binding with DNA. The study concludes that correct pKa values, determined correctly i.e. under appropriate conditions, must be used for DNA binding experiments to evaluate contributions of individual forms.
Collapse
Affiliation(s)
- Mouli Saha
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Promita Nandy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Piyal Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Saurabh Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
14
|
Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 2018. [PMID: 29517770 DOI: 10.1038/nprot.2017.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that RNA G-quadruplexes have important roles in various processes such as transcription, translation, regulation of telomere length, and formation of telomeric heterochromatin. Investigation of RNA G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these RNA molecules. We recently demonstrated that the sensitivity and simplicity of 19F NMR can be used to directly observe higher-order telomeric G-quadruplexes of labeled RNA molecules in vitro and in living cells, as well as their interactions with ligands and proteins. This protocol describes detailed procedures for preparing 19F-labeled RNA, the evaluation of 19F-labeled RNA G-quadruplexes in vitro and in living Xenopus laevis oocytes by 19F NMR spectroscopy, the quantitative characterization of thermodynamic properties of the G-quadruplexes, and monitoring of RNA G-quadruplex interactions with ligand molecules and proteins. This approach has several advantages over existing techniques. First, it is relatively easy to prepare 19F-labeled RNA molecules by introducing a 3,5-bis(trifluoromethyl) benzene moiety into its 5' terminus. Second, the absence of any natural fluorine background signal in RNA and cells results in a simple and clear 19F NMR spectrum and does not suffer from high background signals as does 1H NMR. Finally, the simplicity and sensitivity of 19F NMR can be used to easily distinguish different RNA G-quadruplex conformations under various conditions, even in living cells, and to obtain the precise thermodynamic parameters of higher-order G-quadruplexes. This protocol can be completed in 2 weeks.
Collapse
|
15
|
Lerner E, Cordes T, Ingargiol A, Alhadid Y, Chung S, Michalet X, Weiss S. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 2018; 359:eaan1133. [PMID: 29348210 PMCID: PMC6200918 DOI: 10.1126/science.aan1133] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Antonino Ingargiol
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yazan Alhadid
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Plitzko JM, Schuler B, Selenko P. Structural Biology outside the box-inside the cell. Curr Opin Struct Biol 2017; 46:110-121. [PMID: 28735108 DOI: 10.1016/j.sbi.2017.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Recent developments in cellular cryo-electron tomography, in-cell single-molecule Förster resonance energy transfer-spectroscopy, nuclear magnetic resonance-spectroscopy and electron paramagnetic resonance-spectroscopy delivered unprecedented insights into the inner workings of cells. Here, we review complementary aspects of these methods and provide an outlook toward joint applications in the future.
Collapse
Affiliation(s)
- Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Selenko
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Laboratory, Robert-Roessle Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
17
|
Füchtbauer AF, Preus S, Börjesson K, McPhee SA, Lilley DMJ, Wilhelmsson LM. Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations. Sci Rep 2017; 7:2393. [PMID: 28539582 PMCID: PMC5443824 DOI: 10.1038/s41598-017-02453-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.
Collapse
Affiliation(s)
- Anders Foller Füchtbauer
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Søren Preus
- Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Scott A McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - L Marcus Wilhelmsson
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden.
| |
Collapse
|
18
|
Ma J, Yanez-Orozco IS, Rezaei Adariani S, Dolino D, Jayaraman V, Sanabria H. High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J Vis Exp 2017. [PMID: 28570518 DOI: 10.3791/55623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A protocol on how to perform high-precision interdye distance measurements using Förster resonance energy transfer (FRET) at the single-molecule level in multiparameter fluorescence detection (MFD) mode is presented here. MFD maximizes the usage of all "dimensions" of fluorescence to reduce photophysical and experimental artifacts and allows for the measurement of interdye distance with an accuracy up to ~1 Å in rigid biomolecules. This method was used to identify three conformational states of the ligand-binding domain of the N-methyl-D-aspartate (NMDA) receptor to explain the activation of the receptor upon ligand binding. When comparing the known crystallographic structures with experimental measurements, they agreed within less than 3 Å for more dynamic biomolecules. Gathering a set of distance restraints that covers the entire dimensionality of the biomolecules would make it possible to provide a structural model of dynamic biomolecules.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | | | - Drew Dolino
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University;
| |
Collapse
|
19
|
Bujak Ł, Ishii T, Sharma DK, Hirata S, Vacha M. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures. NANOSCALE 2017; 9:1511-1519. [PMID: 28067372 DOI: 10.1039/c6nr08740j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Förster resonant energy transfer (FRET) is a nonradiative process by which the energy of light absorbed by a donor molecule is transferred to an acceptor molecule over a distance of several nanometers. FRET plays a crucial role in photosynthesis and nature-inspired artificial light-harvesting systems that are being explored for use in energy conversion applications. Localized plasmons of metal nanoparticles can potentially lead to a significant increase of FRET efficiency and effective donor-acceptor distance. Here, we prepare hybrid nanostructures composed of a gold nanorod and donor and acceptor molecules covalently attached to its surface, and study them on the level of a single nanoparticle by simultaneous dark-field scattering, fluorescence imaging and spectroscopy. The single-particle approach enables selective excitation of the longitudinal plasmon of the gold nanorod by polarization of the excitation light. The emission intensity of the acceptor molecules can be controllably and reversibly modulated over a wide range by the polarization angle, thus enabling a selective turn-on of the FRET process and control over the emission color of the hybrid nanostructure. Numerical simulations show that the interactions of the donor and acceptor molecules with the plasmon lead to an increase of the energy transfer efficiency by a factor of ∼65. These findings represent the concept of a novel colour switching approach and could pave the way for innovative applications in optoelectronics and nanophotonics.
Collapse
Affiliation(s)
- Łukasz Bujak
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.
| | - Tatsuya Ishii
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.
| | - Dharmendar Kumar Sharma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shuzo Hirata
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
20
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
21
|
Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel RK. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Sustarsic M, Kapanidis AN. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr Opin Struct Biol 2015; 34:52-9. [DOI: 10.1016/j.sbi.2015.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
|
23
|
Tuson HH, Biteen JS. Unveiling the inner workings of live bacteria using super-resolution microscopy. Anal Chem 2014; 87:42-63. [PMID: 25380480 DOI: 10.1021/ac5041346] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah H Tuson
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
24
|
Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D. Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling. J Am Chem Soc 2014; 136:13458-65. [PMID: 25163412 DOI: 10.1021/ja5079392] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein structure investigations are usually carried out in vitro under conditions far from their native environment in the cell. Differences between in-cell and in vitro structures of proteins can be generated by crowding effects, local pH changes, specific and nonspecific protein and ligand binding events, and chemical modifications. Double electron-electron resonance (DEER), in conjunction with site-directed spin-labeling, has emerged in the past decade as a powerful technique for exploring protein conformations in frozen solutions. The major challenges facing the application of this methodology to in-cell measurements are the instabilities of the standard nitroxide spin labels in the cell environment and the limited sensitivity at conventional X-band frequencies. We present a new approach for in-cell DEER distance measurement in human cells, based on the use of: (i) reduction resistant Gd(3+) chelates as spin labels, (ii) high frequency (94.9 GHz) for sensitivity enhancement, and (iii) hypo-osmotic shock for efficient delivery of the labeled protein into the cell. The proof of concept is demonstrated on doubly labeled ubiquitin in HeLa cells.
Collapse
Affiliation(s)
- Andrea Martorana
- Department of Chemical Physics and ‡Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot, Israel 7610001
| | | | | | | | | | | |
Collapse
|
25
|
Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3257-61. [PMID: 24740866 DOI: 10.1002/smll.201400265] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/20/2014] [Indexed: 05/23/2023]
Abstract
Based on soft-touch atomic force microscopy, a method is described to reconstruct the secondary structure of single extended biomolecules, without the need for crystallization. The method is tested by accurately reproducing the dimensions of the B-DNA crystal structure. Importantly, intramolecular variations in groove depth of the DNA double helix are resolved, which would be inaccessible for methods that rely on ensemble-averaging.
Collapse
Affiliation(s)
- Alice Pyne
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Optimized delivery of fluorescently labeled proteins in live bacteria using electroporation. Histochem Cell Biol 2014; 142:113-24. [PMID: 24696085 PMCID: PMC4072925 DOI: 10.1007/s00418-014-1213-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 10/31/2022]
Abstract
Studying the structure and dynamics of proteins in live cells is essential to understanding their physiological activities and mechanisms, and to validating in vitro characterization. Improvements in labeling and imaging technologies are starting to allow such in vivo studies; however, a number of technical challenges remain. Recently, we developed an electroporation-based protocol for internalization, which allows biomolecules labeled with organic fluorophores to be introduced at high efficiency into live E. coli (Crawford et al. in Biophys J 105 (11):2439-2450, 2013). Here, we address important challenges related to internalization of proteins, and optimize our method in terms of (1) electroporation buffer conditions; (2) removal of dye contaminants from stock protein samples; and (3) removal of non-internalized molecules from cell suspension after electroporation. We illustrate the usability of the optimized protocol by demonstrating high-efficiency internalization of a 10-kDa protein, the ω subunit of RNA polymerase. Provided that suggested control experiments are carried out, any fluorescently labeled protein of up to 60 kDa could be internalized using our method. Further, we probe the effect of electroporation voltage on internalization efficiency and cell viability and demonstrate that, whilst internalization increases with increased voltage, cell viability is compromised. However, due to the low number of damaged cells in our samples, the major fraction of loaded cells always corresponds to non-damaged cells. By taking care to include only viable cells into analysis, our method allows physiologically relevant studies to be performed, including in vivo measurements of protein diffusion, localization and intramolecular dynamics via single-molecule Förster resonance energy transfer.
Collapse
|
27
|
RUEDAS-RAMA MJ, ALVAREZ-PEZ JM, ORTE A. SOLVING SINGLE BIOMOLECULES BY ADVANCED FRET-BASED SINGLE-MOLECULE FLUORESCENCE TECHNIQUES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of Förster resonance energy transfer (FRET) has undergone a renaissance in the last two decades, especially in the study of structure of biomolecules, biomolecular interactions, and dynamics. Thanks to powerful advances in single-molecule fluorescence (SMF) techniques, seeing molecules at work is a reality, which has helped to build up the mindset of molecular machines. In the last few years, many technical developments have broadened the applications of SMF-FRET, expanding the amount of information that can be recovered from individual molecules. Here, we focus on the non-standard SMF-FRET techniques, such as two-color coincidence detection (TCCD), alternating laser excitation (ALEX), multiparameter fluorescence detection (MFD); the addition of fluorescence lifetime as an orthogonal dimension in single-molecule experiments; or the development of novel and improved methods of analysis constituting to a set of advanced methodologies that may become routine tools in a close future. [Formula: see text]Special Issue Comment: This review about advanced single-molecule FRET techniques is specially related to the review by Jørgensen and Hatzakis,6 who detail experimetal strategies to solve the activity of single enzymes. The advanced techniques described in our paper may serve as interesting alternatives when applied to enzyme studies. Our manuscript is also related to the reviews in this Special Issue that deal with model solving.22,130
Collapse
Affiliation(s)
- M. J. RUEDAS-RAMA
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| | - J. M. ALVAREZ-PEZ
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| | - A. ORTE
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
| |
Collapse
|
28
|
Plochowietz A, Crawford R, Kapanidis AN. Characterization of organic fluorophores forin vivoFRET studies based on electroporated molecules. Phys Chem Chem Phys 2014; 16:12688-94. [DOI: 10.1039/c4cp00995a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We optimized electroporation conditions and characterized photostability and brightness of organic fluorophores for single-cell FRET studies in live bacteria.
Collapse
Affiliation(s)
| | - R. Crawford
- Clarendon Laboratory
- Department of Physics
- Oxford, UK
| | | |
Collapse
|
29
|
Mannello F, Ligi D, Magnani M. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev Proteomics 2013; 9:635-48. [PMID: 23256674 DOI: 10.1586/epr.12.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traditional technologies to investigate system biology are limited by the detection of parameters resulting from the averages of large populations of cells, missing cells produced in small numbers, and attempting to uniform the heterogeneity. The advent of proteomics and genomics at a single-cell level has set the basis for an outstanding improvement in analytical technology and data acquisition. It has been well demonstrated that cellular heterogeneity is closely related to numerous stochastic transcriptional events leading to variations in patterns of expression among single genetically identical cells. The new-generation technology of single-cell analysis is able to better characterize a cell's population, identifying and differentiating outlier cells, in order to provide both a single-cell experiment and a corresponding bulk measurement, through the identification, quantification and characterization of all system biology aspects (genomics, transcriptomics, proteomics, metabolomics, degradomics and fluxomics). The movement of omics into single-cell analysis represents a significant and outstanding shift.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo, Via O Ubaldini 7, 61029 Urbino (PU), Italy.
| | | | | |
Collapse
|