1
|
Piña MDLN, Bauzá A. On the Importance of Halogen and Chalcogen Bonds in the Solid State of Nucleic Acids: A Combined Crystallographic and Theoretical Perspective. Int J Mol Sci 2023; 24:13035. [PMID: 37685843 PMCID: PMC10488009 DOI: 10.3390/ijms241713035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, intra- and intermolecular halogen and chalcogen bonds (HlgBs and ChBs, respectively) present in the solid state of nucleic acids (NAs) have been studied at the RI-MP2/def2-TZVP level of theory. To achieve this, a Protein Data Bank (PDB) survey was carried out, revealing a series of structures in which Br/I or S/Se/Te atoms belonging to nucleobases or pentose rings were involved in noncovalent interactions (NCIs) with electron-rich species. The energetics and directionality of these NCIs were rationalized through a computational study, which included the use of Molecular Electrostatic Potential (MEP) surfaces, the Quantum Theory of Atoms in Molecules (QTAIM), and Non Covalent Interaction plot (NCIplot) and Natural Bonding Orbital (NBO) techniques.
Collapse
Affiliation(s)
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
2
|
Fang Z, Dantsu Y, Chen C, Zhang W, Huang Z. Syntheses of Pyrimidine-Modified Seleno-DNAs as Stable Antisense Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539140. [PMID: 37205589 PMCID: PMC10187239 DOI: 10.1101/2023.05.02.539140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemically modified antisense oligonucleotides (ASO) currently in pre-clinical and clinical experiments mainly focus on the 2'-position derivatizations to enhance stability and targeting affinity. Considering the possible incompatibility of 2'-modifications with RNase H stimulation and activity, we have hypothesized that the atom specific modifications on nucleobases can retain the complex structure and RNase H activity, while enhancing ASO's binding affinity, specificity, and stability against nucleases. Herein we report a novel strategy to explore our hypothesis by synthesizing the deoxynucleoside phosphoramidite building block with the seleno-modification at 5-position of thymidine, as well as its Se-oligonucleotides. Via X-ray crystal structural study, we found that the Se-modification was located in the major groove of nucleic acid duplex and didn't cause the thermal and structural perturbations. Surprisingly, our nucleobase-modified Se-DNAs were exceptionally resistant to nuclease digestion, while compatible with RNase H activity. This affords a novel avenue for potential antisense modification in the form of Se-antisense oligonucleotides (Se-ASO).
Collapse
Affiliation(s)
- Ziyuan Fang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cen Chen
- Firebird Biomolecular Sciences LLC, Alachua, FL 32615, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, 618000, P. R. China
| |
Collapse
|
3
|
Tyagi W, Pandey V, Pokharel YR. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch. Cancer Gene Ther 2022; 30:641-646. [PMID: 35136215 DOI: 10.1038/s41417-022-00430-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
RNAs play several prominent roles in the cellular environment ranging from structural, messengers, translators, and effector molecules. RNA molecules while performing these roles are associated with several chemical modifications occurring post-transcriptionally, responsible for these supporting vital functions. The recent documentation of surface RNA modification with sialic acid residues has sparked advancement to the framework of RNA modifications. Glycan modification of surface RNA which was previously known to modify only proteins and lipids has opened new vistas to explore how these surface RNA modifications affect the cellular responses and phenotype. This paradigm shift in RNA biology with a vision of "glycans being all over the cells" has posed the field with a repertoire of questions and has given headway to the RNA world hypothesis. The review provides a comprehensive overview of glycoRNA discovery with a conceptual understanding of its previous underlying discoveries and their biological consequences with possible insights into the dynamic influence of this modification on their molecular versatility deciding cancer-immunology fate with potential implications of these glycosylation in cellular interaction, signaling, immune regulation, cancer evasion and proliferation.
Collapse
Affiliation(s)
- Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vivek Pandey
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, India.
| |
Collapse
|
4
|
Zhang C, Qin S, Hu B, Lv J, Yang Z, Yan W, Wang J, Huang N, Huang Z. Disruption of nucleobase stacking to restore reactivity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:567-577. [PMID: 30922168 DOI: 10.1080/15257770.2019.1576882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Strong intermolecular interaction can prevent an organic molecule from dissolving in a reaction solution, thereby jeopardizing its reactivity and usefulness. Nucleobases and nucleosides (especially many purines and their derivatives) are notoriously difficult to dissolve in most organic solvents, generally attributed to their strong intermolecular interactions caused by the aromaticity, polarity and hydrogen-bonding. Guided by our computational study and prediction, to address this challenge, we have found that by doping the reaction solution with toluene (an inert aromatic compound), the added solvent molecules are capable of generating the stacking interaction with the solute molecules (e.g., purine derivatives) and disrupting the intermolecular stacking of the solute molecules. Thus, this inert doping can successfully address the insoluble challenge, dissolve the poorly soluble reactants (such as purine phosphoramidites), and restore the amidite reactivity for oligonucleotide synthesis. Our research has offered a simple strategy to efficiently synthesize labile oligonucleotides, via disrupting stacking interaction with inert aromatic molecules.
Collapse
Affiliation(s)
- Chong Zhang
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Shanshan Qin
- b National Institute of Biological Sciences (NIBS) , Beijing , China
| | - Bei Hu
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Jiazhen Lv
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Zhaoyi Yang
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Weizhu Yan
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Jun Wang
- a College of Life Sciences , Sichuan University , Chengdu , China
| | - Niu Huang
- b National Institute of Biological Sciences (NIBS) , Beijing , China
| | - Zhen Huang
- a College of Life Sciences , Sichuan University , Chengdu , China.,c Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
5
|
Radhakrishnan K, Das S, Kundu LM. Synthesis of Size‐Expanded Nucleobase Analogues for Artificial Base‐Pairing Using a Ligand‐Free, Microwave‐Assisted Copper(I)‐Catalyzed Reaction. ChemistrySelect 2018. [DOI: 10.1002/slct.201802455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K Radhakrishnan
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| | - Soumi Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| | - Lal Mohan Kundu
- Department of ChemistryIndian Institute of Technology Guwahati 781039 Assam India
| |
Collapse
|
6
|
Mundlapati VR, Sahoo DK, Ghosh S, Purame UK, Pandey S, Acharya R, Pal N, Tiwari P, Biswal HS. Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins. J Phys Chem Lett 2017; 8:794-800. [PMID: 28145117 DOI: 10.1021/acs.jpclett.6b02931] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Careful protein structure analysis unravels many unknown and unappreciated noncovalent interactions that control protein structure; one such unrecognized interaction in protein is selenium centered hydrogen bonds (SeCHBs). We report, for the first time, SeCHBs involving the amide proton and selenium of selenomethionine (Mse), i.e., amide-N-H···Se H-bonds discerned in proteins. Using mass selective and conformer specific high resolution vibrational spectroscopy, gold standard quantum chemical calculations at CCSD(T), and in-depth protein structure analysis, we establish that amide-N-H···Se and amide-N-H···Te H-bonds are as strong as conventional amide-NH···O and amide-NH···O═C H-bonds despite smaller electronegativity of selenium and tellurium than oxygen. It is in fact, electronegativity, atomic charge, and polarizability of the H-bond acceptor atoms are at play in deciding the strength of H-bonds. The amide-N-H···Se and amide-N-H···Te H-bonds presented here are not only new additions to the ever expanding world of noncovalent interactions, but also are of central importance to design new force-fields for better biomolecular structure simulations.
Collapse
Affiliation(s)
- V Rao Mundlapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanat Ghosh
- Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400005, India
| | - Umesh Kumar Purame
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Shubhant Pandey
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Rudresh Acharya
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Nitish Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Prince Tiwari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
10
|
Abstract
We have developed a simple method to synthesize 6-seleno-2'-deoxyguanosine (SedG) by selectively replacing the 6-oxygen atom with selenium. This selenium-atom-specific modification (SAM) alters the optical properties of the naturally occurring 2'-deoxyguanosine (dG). Unlike the native dG, the UVabsorption of SedG is significantly influenced by the pH of the aqueous solution. Moreover, SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions. Furthermore, SedG has noticeable fluorescence in non-aqueous solutions, indicating its sensitivity to environmental changes. This is the first time a fluorescent nucleoside by single-atom alteration has been observed. Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins, such as membrane-transporter proteins.
Collapse
Affiliation(s)
- Kaur Manindar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
12
|
Sheng J, Gan J, Soares AS, Salon J, Huang Z. Structural insights of non-canonical U*U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Res 2013; 41:10476-87. [PMID: 24013566 PMCID: PMC3905866 DOI: 10.1093/nar/gkt799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Unlike DNA, in addition to the 2′-OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non-coding RNAs. Non-canonical U•U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U•U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine (SeU) phosphoramidite and Se-nucleobase-modified RNAs (SeU-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U•U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U•U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans-Hoogsteen U•U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4…H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se-functionalization studies reveal more insights into the U•U interaction and U-participation in structure and function diversification of nucleic acids.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA and Department of Biology, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | | | | | |
Collapse
|
13
|
Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Se-guanosine RNAs for structural study. Org Lett 2013; 15:3934-7. [PMID: 23859218 DOI: 10.1021/ol401698n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Se-guanosine phosphoramidite and RNAs have been synthesized by selenium substitution of the 6-oxygen atom, and it is revealed that the Se-derivatization is relatively stable and that bulge and wobble structures can better accommodate a large Se atom than a duplex. This Se-modification is useful in the structural study of RNAs and their protein complexes.
Collapse
Affiliation(s)
- Jozef Salon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
14
|
Wen Z, Abdalla HE, Zhen H. Synthesis of novel di-Se-containing thymidine and Se-DNAs for structure and function studies. Sci China Chem 2012; 56:273-278. [PMID: 24639685 DOI: 10.1007/s11426-012-4800-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The selenium derivatization of nucleic acids and nucleic acid-protein complexes has provided a powerful tool to solve phase problem in X-ray crystallography. Selenium atoms in the nucleotides can serve as fine scattering centers in crystal diffraction. Towards the synthesis of multiple selenium atom-containing nucleotides, which offers strong phasing power to facilitate crystal structure determination, we report here the synthesis of the thymidine analogue containing two Se atoms in one nucleobase. The novel Se-containing nucleoside and oligonucleotide DNAs were synthesized and found with the red-shifted UV spectrum and yellow color. Their unique properties are useful in phase determination, nucleic acid-based detection as well as spectroscopic studies of nucleic acids and nucleic acid-protein complexes.
Collapse
Affiliation(s)
- Zhang Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hassan E Abdalla
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|