1
|
Vetcher AA, Stanishevskiy YM. DNA microcircles - The promising tool for in vivo studies of the behavior of non-canonical DNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:84-88. [PMID: 35219771 DOI: 10.1016/j.pbiomolbio.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The paper discusses the reasons for the resurrection of the term DNA microcircles through the change of its definition to "topologically closed DNA circles with the length less than 1 Kbp" from the entire population of circular DNA that holds the name of minicircles. The possible applications of such tool for in vivo studies of non-canonical DNA are also discussed. Prospective for in vivo and in vitro studies of non-canonical DNA cloned into microcircles are demonstrated. A method of stepwise elongation or shortening of plasmids is discussed.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- IBCTN of the Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str, Moscow, 117588, Russian Federation.
| | - Yaroslav M Stanishevskiy
- IBCTN of the Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
2
|
Conformational dynamics promotes disordered regions from function-dispensable to essential in evolved site-specific DNA recombinases. Comput Struct Biotechnol J 2022; 20:989-1001. [PMID: 35242289 PMCID: PMC8860914 DOI: 10.1016/j.csbj.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
New functional regions emerging in evolution of DNA site-specific recombinase tails. Transient structural nucleation promotes function-dispensable regions to essential. Molecular dynamics reveals conformational diversity and its functional implications. Evolved disordered molecular mechanisms of N-term tails for protein stability. Structural disorder-based link between protein evolution, stability and function.
Protein intrinsically disordered regions (IDRs) play pivotal roles in molecular recognition and regulatory processes through structural disorder-to-order transitions. To understand and exploit the distinctive functional implications of IDRs and to unravel the underlying molecular mechanisms, structural disorder-to-function relationships need to be deciphered. The DNA site-specific recombinase system Cre/loxP represents an attractive model to investigate functional molecular mechanisms of IDRs. Cre contains a functionally dispensable disordered N-terminal tail, which becomes indispensable in the evolved Tre/loxLTR recombinase system. The difficulty to experimentally obtain structural information about this tail has so far precluded any mechanistic study on its involvement in DNA recombination. Here, we use in vitro and in silico evolution data, conformational dynamics, AI-based folding simulations, thermodynamic stability calculations, mutagenesis and DNA recombination assays to investigate how evolution and the dynamic behavior of this IDR may determine distinct functional properties. Our studies suggest that partial conformational order in the N-terminal tail of Tre recombinase and its packing to a conserved hydrophobic surface on the protein provide thermodynamic stability. Based on our results, we propose a link between protein stability and function, offering new plausible atom-detailed mechanistic insights into disorder-function relationships. Our work highlights the potential of N-terminal tails to be exploited for regulation of the activity of Cre-like tyrosine-type SSRs, which merits future investigations and could be of relevance in future rational engineering for their use in biotechnology and genomic medicine.
Collapse
|
3
|
Shoura MJ, Giovan SM, Vetcher AA, Ziraldo R, Hanke A, Levene SD. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Nucleic Acids Res 2020; 48:4371-4381. [PMID: 32182357 PMCID: PMC7192630 DOI: 10.1093/nar/gkaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/12/2022] Open
Abstract
In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131-151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA intermediate. Fitting the experimental site-spacing dependence of the loop-closure probability, J, to a statistical-mechanical theory of DNA looping provides evidence for substantial out-of-plane HJ distortion, which unequivocally stands in contrast to the square-planar intermediate geometry from Cre-loxP crystal structures and those of other int-superfamily recombinases. J measurements for an HJ-isomerization-deficient Cre mutant suggest that the apparent geometry of the wild-type complex is consistent with temporal averaging of right-handed and achiral structures. Our approach connects the static pictures provided by crystal structures and the natural dynamics of macromolecules in solution, thus advancing a more comprehensive dynamic analysis of large nucleoprotein structures and their mechanisms.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stefan M Giovan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alexandre A Vetcher
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Riccardo Ziraldo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas Hanke
- Department of Physics, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3-GENES GENOMES GENETICS 2017; 7:3295-3303. [PMID: 28801508 PMCID: PMC5633380 DOI: 10.1534/g3.117.300141] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples.
Collapse
|
5
|
Kempe D, Cerminara M, Poblete S, Schöne A, Gabba M, Fitter J. Single-Molecule FRET Measurements in Additive-Enriched Aqueous Solutions. Anal Chem 2016; 89:694-702. [PMID: 27966879 DOI: 10.1021/acs.analchem.6b03147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data. First, we present a confocal based method for the determination of fluorescence quantum yields to facilitate a fast characterization of smFRET-samples at sub-nM-concentrations. As a case study, we analyze smFRET data of structurally rigid, double-stranded DNA-oligonucleotides in aqueous buffer and in buffers with specific amounts of glycerol, guanidine hydrochloride (GdnHCl), and sodium chloride (NaCl) added. We show that the calculation of interdye distances, without taking into account solvent-induced spectral and photophysical changes of the labels, leads to deviations of up to 4 Å from the real interdye distances. Additionally, we demonstrate that electrostatic dye-dye repulsions are negligible for the interdye distance regime considered here (>50 Å). Finally, we use our approach to validate the further compaction of the already unfolded state of phosphoglycerate kinase (PGK) with decreasing denaturant concentrations, a mechanism known as coil-globule transition.
Collapse
Affiliation(s)
- Daryan Kempe
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University , 52056 Aachen, Germany
| | | | | | | | | | - Jörg Fitter
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University , 52056 Aachen, Germany
| |
Collapse
|
6
|
Gu M, Berrido A, Gonzalez WG, Miksovska J, Chambers JW, Leng F. Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases. Sci Rep 2016; 6:36006. [PMID: 27796331 PMCID: PMC5087112 DOI: 10.1038/srep36006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases.
Collapse
Affiliation(s)
- Maxwell Gu
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Andrea Berrido
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Walter G Gonzalez
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Jaroslava Miksovska
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Jeremy W Chambers
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199
| | - Fenfei Leng
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| |
Collapse
|
7
|
Abstract
The use of Cre recombinase to carry out conditional mutagenesis of transgenes and insert DNA cassettes into eukaryotic chromosomes is widespread. In addition to the numerous in vivo and in vitro applications that have been reported since Cre was first shown to function in yeast and mammalian cells nearly 30 years ago, the Cre-loxP system has also played an important role in understanding the mechanism of recombination by the tyrosine recombinase family of site-specific recombinases. The simplicity of this system, requiring only a single recombinase enzyme and short recombination sequences for robust activity in a variety of contexts, has been an important factor in both cases. This review discusses advances in the Cre recombinase field that have occurred over the past 12 years since the publication of Mobile DNA II. The focus is on those recent contributions that have provided new mechanistic insights into the reaction. Also discussed are modifications of Cre and/or the loxP sequence that have led to improvements in genome engineering applications.
Collapse
|
8
|
Shoura MJ, Ranatunga RJKU, Harris SA, Nielsen SO, Levene SD. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study. Biophys J 2015; 107:700-710. [PMID: 25099809 DOI: 10.1016/j.bpj.2014.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/23/2023] Open
Abstract
In Förster resonance energy transfer (FRET) experiments, extracting accurate structural information about macromolecules depends on knowing the positions and orientations of donor and acceptor fluorophores. Several approaches have been employed to reduce uncertainties in quantitative FRET distance measurements. Fluorophore-position distributions can be estimated by surface accessibility (SA) calculations, which compute the region of space explored by the fluorophore within a static macromolecular structure. However, SA models generally do not take fluorophore shape, dye transition-moment orientation, or dye-specific chemical interactions into account. We present a detailed molecular-dynamics (MD) treatment of fluorophore dynamics for an ATTO donor/acceptor dye pair and specifically consider as case studies dye-labeled protein-DNA intermediates in Cre site-specific recombination. We carried out MD simulations in both an aqueous solution and glycerol/water mixtures to assess the effects of experimental solvent systems on dye dynamics. Our results unequivocally show that MD simulations capture solvent effects and dye-dye interactions that can dramatically affect energy transfer efficiency. We also show that results from SA models and MD simulations strongly diverge in cases where donor and acceptor fluorophores are in close proximity. Although atomistic simulations are computationally more expensive than SA models, explicit MD studies are likely to give more realistic results in both homogeneous and mixed solvents. Our study underscores the model-dependent nature of FRET analyses, but also provides a starting point to develop more realistic in silico approaches for obtaining experimental ensemble and single-molecule FRET data.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas
| | | | - Sarah A Harris
- Department of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Steven O Nielsen
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas; Department of Physics, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
9
|
Giovan SM, Scharein RG, Hanke A, Levene SD. Free-energy calculations for semi-flexible macromolecules: applications to DNA knotting and looping. J Chem Phys 2014; 141:174902. [PMID: 25381542 PMCID: PMC4241824 DOI: 10.1063/1.4900657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/18/2014] [Indexed: 12/16/2022] Open
Abstract
We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.
Collapse
Affiliation(s)
- Stefan M Giovan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | - Andreas Hanke
- Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, Texas 78520, USA
| | - Stephen D Levene
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| |
Collapse
|
10
|
Priest DG, Cui L, Kumar S, Dunlap DD, Dodd IB, Shearwin KE. Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors. Proc Natl Acad Sci U S A 2014; 111:349-54. [PMID: 24344307 PMCID: PMC3890862 DOI: 10.1073/pnas.1317817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficient and specific interactions between proteins bound to the same DNA molecule can be dependent on the length of the DNA tether that connects them. Measurement of the strength of this DNA tethering effect has been largely confined to short separations between sites, and it is not clear how it contributes to long-range DNA looping interactions, such as occur over separations of tens to hundreds of kilobase pairs in vivo. Here, gene regulation experiments using the LacI and λ CI repressors, combined with mathematical modeling, were used to quantitate DNA tethering inside Escherichia coli cells over the 250- to 10,000-bp range. Although LacI and CI loop DNA in distinct ways, measurements of the tethering effect were very similar for both proteins. Tethering strength decreased with increasing separation, but even at 5- to 10-kb distances, was able to increase contact probability 10- to 20-fold and drive efficient looping. Tethering in vitro with the Lac repressor was measured for the same 600-to 3,200-bp DNAs using tethered particle motion, a single molecule technique, and was 5- to 45-fold weaker than in vivo over this range. Thus, the enhancement of looping seen previously in vivo at separations below 500 bp extends to large separations, underlining the need to understand how in vivo factors aid DNA looping. Our analysis also suggests how efficient and specific looping could be achieved over very long DNA separations, such as what occurs between enhancers and promoters in eukaryotic cells.
Collapse
Affiliation(s)
- David G. Priest
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Lun Cui
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Sandip Kumar
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - David D. Dunlap
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Ian B. Dodd
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Keith E. Shearwin
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| |
Collapse
|
11
|
Abstract
The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.
Collapse
|
12
|
Fan HF, Ma CH, Jayaram M. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Nucleic Acids Res 2013; 41:7031-47. [PMID: 23737451 PMCID: PMC3737535 DOI: 10.1093/nar/gkt424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Flp, a tyrosine site-specific recombinase coded for by the selfish two micron plasmid of Saccharomyces cerevisiae, plays a central role in the maintenance of plasmid copy number. The Flp recombination system can be manipulated to bring about a variety of targeted DNA rearrangements in its native host and under non-native biological contexts. We have performed an exhaustive analysis of the Flp recombination pathway from start to finish by using single-molecule tethered particle motion (TPM). The recombination reaction is characterized by its early commitment and high efficiency, with only minor detraction from ‘non-productive’ and ‘wayward’ complexes. The recombination synapse is stabilized by strand cleavage, presumably by promoting the establishment of functional interfaces between adjacent Flp monomers. Formation of the Holliday junction intermediate poses a rate-limiting barrier to the overall reaction. Isomerization of the junction to the conformation favoring its resolution in the recombinant mode is not a slow step. Consistent with the completion of nearly every initiated reaction, the chemical steps of strand cleavage and exchange are not reversible during a recombination event. Our findings demonstrate similarities and differences between Flp and the mechanistically related recombinases λ Int and Cre. The commitment and directionality of Flp recombination revealed by TPM is consistent with the physiological role of Flp in amplifying plasmid DNA.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | | | | |
Collapse
|
13
|
Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence. Proc Natl Acad Sci U S A 2012. [PMID: 23184986 DOI: 10.1073/pnas.1211922109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Site-specific recombination plays key roles in microbe biology and is exploited extensively to manipulate the genomes of higher organisms. Cre is a well studied site-specific recombinase, responsible for establishment and maintenance of the P1 bacteriophage genome in bacteria. During recombination, Cre forms a synaptic complex between two 34-bp DNA sequences called loxP after which a pair of strand exchanges forms a Holliday junction (HJ) intermediate; HJ isomerization then allows a second pair of strand exchanges and thus formation of the final recombinant product. Despite extensive work on the Cre-loxP system, many of its mechanisms have remained unclear, mainly due to the transient nature of complexes formed and the ensemble averaging inherent to most biochemical work. Here, we address these limitations by introducing tethered fluorophore motion (TFM), a method that monitors large-scale DNA motions through reports of the diffusional freedom of a single fluorophore. We combine TFM with Förster resonance energy transfer (FRET) and simultaneously observe both large- and small-scale conformational changes within single DNA molecules. Using TFM-FRET, we observed individual recombination reactions in real time and analyzed their kinetics. Recombination was initiated predominantly by exchange of the "bottom-strands" of the DNA substrate. In productive complexes we used FRET distributions to infer rapid isomerization of the HJ intermediates and that a rate-limiting step occurs after this isomerization. We also observed two nonproductive synaptic complexes, one of which was structurally distinct from conformations in crystals. After recombination, the product synaptic complex was extremely stable and refractory to subsequent rounds of recombination.
Collapse
|