1
|
Bohdan DR, Voronina VV, Bujnicki JM, Baulin EF. A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures. Nucleic Acids Res 2023; 51:8367-8382. [PMID: 37471030 PMCID: PMC10484739 DOI: 10.1093/nar/gkad605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Understanding the 3D structure of RNA is key to understanding RNA function. RNA 3D structure is modular and can be seen as a composition of building blocks of various sizes called tertiary motifs. Currently, long-range motifs formed between distant loops and helical regions are largely less studied than the local motifs determined by the RNA secondary structure. We surveyed long-range tertiary interactions and motifs in a non-redundant set of non-coding RNA 3D structures. A new dataset of annotated LOng-RAnge RNA 3D modules (LORA) was built using an approach that does not rely on the automatic annotations of non-canonical interactions. An original algorithm, ARTEM, was developed for annotation-, sequence- and topology-independent superposition of two arbitrary RNA 3D modules. The proposed methods allowed us to identify and describe the most common long-range RNA tertiary motifs. Along with the prevalent canonical A-minor interactions, a large number of previously undescribed staple interactions were observed. The most frequent long-range motifs were found to belong to three main motif families: planar staples, tilted staples, and helical packing motifs.
Collapse
Affiliation(s)
- Davyd R Bohdan
- Department of Innovation and High Technology, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valeria V Voronina
- Department of Information Systems, Ulyanovsk State Technical University, Ulyanovsk 432027, Russia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| |
Collapse
|
2
|
Ghani NSA, Emrizal R, Moffit SM, Hamdani HY, Ramlan EI, Firdaus-Raih M. GrAfSS: a webserver for substructure similarity searching and comparisons in the structures of proteins and RNA. Nucleic Acids Res 2022; 50:W375-W383. [PMID: 35639505 PMCID: PMC9252811 DOI: 10.1093/nar/gkac402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/03/2022] Open
Abstract
The GrAfSS (Graph theoretical Applications for Substructure Searching) webserver is a platform to search for three-dimensional substructures of: (i) amino acid side chains in protein structures; and (ii) base arrangements in RNA structures. The webserver interfaces the functions of five different graph theoretical algorithms – ASSAM, SPRITE, IMAAAGINE, NASSAM and COGNAC – into a single substructure searching suite. Users will be able to identify whether a three-dimensional (3D) arrangement of interest, such as a ligand binding site or 3D motif, observed in a protein or RNA structure can be found in other structures available in the Protein Data Bank (PDB). The webserver also allows users to determine whether a protein or RNA structure of interest contains substructural arrangements that are similar to known motifs or 3D arrangements. These capabilities allow for the functional annotation of new structures that were either experimentally determined or computationally generated (such as the coordinates generated by AlphaFold2) and can provide further insights into the diversity or conservation of functional mechanisms of structures in the PDB. The computed substructural superpositions are visualized using integrated NGL viewers. The GrAfSS server is available at http://mfrlab.org/grafss/.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sabrina Mohamed Moffit
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hazrina Yusof Hamdani
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | | | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Baulin EF. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure. BIOCHEMISTRY (MOSCOW) 2021; 86:952-961. [PMID: 34488572 DOI: 10.1134/s000629792108006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A-minor motifs are RNA tertiary structure motifs that generally involve a canonical base pair and an adenine base forming hydrogen bonds with the minor groove of the base pair. Such motifs are among the most common tertiary interactions in known RNA structures, comparable in number with the non-canonical base pairs. They are often found in functionally important regions of non-coding RNAs and, in particular, play a central role in protein synthesis. Here, we review local variations of the A-minor geometry and discuss difficulties associated with their annotation, as well as various structural contexts and common A-minor co-motifs, and diverse functions of A-minors in various processes in a living cell.
Collapse
Affiliation(s)
- Eugene F Baulin
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
4
|
Emrizal R, Hamdani HY, Firdaus-Raih M. Graph Theoretical Methods and Workflows for Searching and Annotation of RNA Tertiary Base Motifs and Substructures. Int J Mol Sci 2021; 22:ijms22168553. [PMID: 34445259 PMCID: PMC8395288 DOI: 10.3390/ijms22168553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing number and complexity of structures containing RNA chains in the Protein Data Bank (PDB) have led to the need for automated structure annotation methods to replace or complement expert visual curation. This is especially true when searching for tertiary base motifs and substructures. Such base arrangements and motifs have diverse roles that range from contributions to structural stability to more direct involvement in the molecule's functions, such as the sites for ligand binding and catalytic activity. We review the utility of computational approaches in annotating RNA tertiary base motifs in a dataset of PDB structures, particularly the use of graph theoretical algorithms that can search for such base motifs and annotate them or find and annotate clusters of hydrogen-bond-connected bases. We also demonstrate how such graph theoretical algorithms can be integrated into a workflow that allows for functional analysis and comparisons of base arrangements and sub-structures, such as those involved in ligand binding. The capacity to carry out such automatic curations has led to the discovery of novel motifs and can give new context to known motifs as well as enable the rapid compilation of RNA 3D motifs into a database.
Collapse
Affiliation(s)
- Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia;
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia
| | - Hazrina Yusof Hamdani
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
- Correspondence: (H.Y.H.); (M.F.-R.)
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia;
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi 43600, Selangor, Malaysia
- Correspondence: (H.Y.H.); (M.F.-R.)
| |
Collapse
|
5
|
Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp. Curr Microbiol 2021; 78:2943-2955. [PMID: 34076709 DOI: 10.1007/s00284-021-02550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The glycine riboswitch is a known regulatory element that is unique in having two aptamers that are joined by a linker region. In this study, we investigated a glycine riboswitch located in the 5' untranslated region of a glycine cleavage system homolog (gcvTHP) in Burkholderia spp. Structure prediction using the sequence generated a model with a glycine binding pocket composed of base-triple interactions (G62-A64-A86 and G65-U84-C85) that are supported by A/G minor interactions (A17-C60-G88 and G16-C61-G87, respectively) and two ribose-zipper motifs (C11-G12 interacting with A248-A247 and C153-U154 interacting with A79-A78) which had not been previously reported. The capacity of the riboswitch to bind to glycine was experimentally validated by native gel assays and the crucial role of interactions that make up the glycine binding pocket were proven by mutations of A17U and G16C which resulted in conformational differences that may lead to dysfunction. Using glycine supplemented minimal media, we were able to prove that the expression of the gcvTHP genes found downstream of the riboswitch responded to the glycine concentrations introduced thus confirming the role of this highly conserved Burkholderia riboswitch and its associated genes as a putative glycine detoxification system in Burkholderia spp.
Collapse
|
6
|
Richardson KE, Adams MS, Kirkpatrick CC, Gohara DW, Znosko BM. Identification and Characterization of New RNA Tetraloop Sequence Families. Biochemistry 2019; 58:4809-4820. [PMID: 31714066 DOI: 10.1021/acs.biochem.9b00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There is an abundance of RNA sequence information available due to the efforts of sequencing projects. However, current techniques implemented to solve the tertiary structures of RNA, such as NMR and X-ray crystallography, are difficult and time-consuming. Therefore, biophysical techniques are not able to keep pace with the abundance of sequence information available. Because of this, there is a need to develop quick and efficient ways to predict RNA tertiary structure from sequence. One promising approach is to identify structural patterns within previously solved 3D structures and apply these patterns to new sequences. RNA tetraloops are one of the most common naturally occurring secondary structure motifs. Here, we use RNA Characterization of Secondary Structure Motifs (CoSSMos), Dissecting the Spatial Structure of RNA (DSSR), and a bioinformatic approach to search for and characterize tertiary structure patterns among tetraloops. Not surprising, we identified the well-known GNRA and UNCG tetraloops, as well as the previously identified RNYA tetraloop. However, some previously identified characteristics of these families were not observed in this data set, and some new characteristics were identified. In addition, we also identified and characterized three new tetraloop sequence families: YGAR, UGGU, and RMSA. This new structural information sheds light on the tertiary structure of tetraloops and contributes to the efforts of RNA tertiary structure prediction from sequence.
Collapse
Affiliation(s)
- Katherine E Richardson
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
| | - Miranda S Adams
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
| | - Charles C Kirkpatrick
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
| | - David W Gohara
- Department of Biochemistry and Molecular Biology , Saint Louis University , Saint Louis , Missouri 63103 , United States
| | - Brent M Znosko
- Department of Chemistry , Saint Louis University , Saint Louis , Missouri 63103 , United States
| |
Collapse
|
7
|
Identification of Structural Motifs Using Networks of Hydrogen-Bonded Base Interactions in RNA Crystallographic Structures. CRYSTALS 2019. [DOI: 10.3390/cryst9110550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA structural motifs can be identified using methods that analyze base–base interactions and the conformation of a structure’s backbone; however, these approaches do not necessarily take into consideration the hydrogen bonds that connect the bases or the networks of inter-connected hydrogen-bonded bases that are found in RNA structures. Large clusters of RNA bases that are tightly inter-connected by a network of hydrogen bonds are expected to be stable and relatively rigid substructures. Such base arrangements could therefore be present as structural motifs in RNA structures, especially when there is a requirement for a highly stable support platform or substructure to ensure the correct folding and spatial maintenance of functional sites that partake in catalysis or binding interactions. In order to test this hypothesis, we conducted a search in available RNA crystallographic structures in the Protein Data Bank database using queries that searched for profiles of bases inter-connected by hydrogen bonds. This method of searching does not require to have prior knowledge of the arrangement being searched. Our search results identified two clusters of six bases that are inter-connected by a network of hydrogen bonds. These arrangements of base sextuples have never been previously reported, thus making this the first report that proposes them as novel RNA tertiary motifs.
Collapse
|
8
|
Wang J, Zhao Y, Wang J, Xiao Y. Computational study of stability of an H-H-type pseudoknot motif. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062705. [PMID: 26764725 DOI: 10.1103/physreve.92.062705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 05/24/2023]
Abstract
Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.
Collapse
Affiliation(s)
- Jun Wang
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jian Wang
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
9
|
Appasamy SD, Hamdani HY, Ramlan EI, Firdaus-Raih M. InterRNA: a database of base interactions in RNA structures. Nucleic Acids Res 2015; 44:D266-71. [PMID: 26553798 PMCID: PMC4702846 DOI: 10.1093/nar/gkv1186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/24/2015] [Indexed: 11/17/2022] Open
Abstract
A major component of RNA structure stabilization are the hydrogen bonded interactions between the base residues. The importance and biological relevance for large clusters of base interactions can be much more easily investigated when their occurrences have been systematically detected, catalogued and compared. In this paper, we describe the database InterRNA (INTERactions in RNA structures database—http://mfrlab.org/interrna/) that contains records of known RNA 3D motifs as well as records for clusters of bases that are interconnected by hydrogen bonds. The contents of the database were compiled from RNA structural annotations carried out by the NASSAM (http://mfrlab.org/grafss/nassam) and COGNAC (http://mfrlab.org/grafss/cognac) computer programs. An analysis of the database content and comparisons with the existing corpus of knowledge regarding RNA 3D motifs clearly show that InterRNA is able to provide an extension of the annotations for known motifs as well as able to provide novel interactions for further investigations.
Collapse
Affiliation(s)
- Sri Devan Appasamy
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hazrina Yusof Hamdani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Effirul Ikhwan Ramlan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Zahran M, Sevim Bayrak C, Elmetwaly S, Schlick T. RAG-3D: a search tool for RNA 3D substructures. Nucleic Acids Res 2015; 43:9474-88. [PMID: 26304547 PMCID: PMC4627073 DOI: 10.1093/nar/gkv823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/03/2015] [Indexed: 01/23/2023] Open
Abstract
To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.
Collapse
Affiliation(s)
- Mai Zahran
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | | | - Shereef Elmetwaly
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY 10003, USA Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| |
Collapse
|
11
|
Mak CH, Sani LL, Villa AN. Residual Conformational Entropies on the Sugar–Phosphate Backbone of Nucleic Acids: An Analysis of the Nucleosome Core DNA and the Ribosome. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chi H. Mak
- Department of Chemistry and ‡Center of Applied Mathematical
Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Levana L. Sani
- Department of Chemistry and ‡Center of Applied Mathematical
Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Amber N. Villa
- Department of Chemistry and ‡Center of Applied Mathematical
Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Firdaus-Raih M, Hamdani HY, Nadzirin N, Ramlan EI, Willett P, Artymiuk PJ. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures. Nucleic Acids Res 2014; 42:W382-8. [PMID: 24831543 PMCID: PMC4086061 DOI: 10.1093/nar/gku438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen bonds are crucial factors that stabilize a complex ribonucleic acid (RNA) molecule's three-dimensional (3D) structure. Minute conformational changes can result in variations in the hydrogen bond interactions in a particular structure. Furthermore, networks of hydrogen bonds, especially those found in tight clusters, may be important elements in structure stabilization or function and can therefore be regarded as potential tertiary motifs. In this paper, we describe a graph theoretical algorithm implemented as a web server that is able to search for unbroken networks of hydrogen-bonded base interactions and thus provide an accounting of such interactions in RNA 3D structures. This server, COGNAC (COnnection tables Graphs for Nucleic ACids), is also able to compare the hydrogen bond networks between two structures and from such annotations enable the mapping of atomic level differences that may have resulted from conformational changes due to mutations or binding events. The COGNAC server can be accessed at http://mfrlab.org/grafss/cognac.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Hazrina Yusof Hamdani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Nurul Nadzirin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Effirul Ikhwan Ramlan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Peter Willett
- Information School, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Artymiuk
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Appasamy SD, Ramlan EI, Firdaus-Raih M. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches. PLoS One 2013; 8:e73984. [PMID: 24040136 PMCID: PMC3764141 DOI: 10.1371/journal.pone.0073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022] Open
Abstract
The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand’s functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
Collapse
Affiliation(s)
- Sri D Appasamy
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | | |
Collapse
|
14
|
Brovarets’ OO, Yurenko YP, Hovorun DM. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 2013; 32:993-1022. [PMID: 23730732 DOI: 10.1080/07391102.2013.799439] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|