1
|
Sato R, Kondo Y, Agarie S. The first released available genome of the common ice plant ( Mesembryanthemum crystallinum L.) extended the research region on salt tolerance, C 3-CAM photosynthetic conversion, and halophilism. F1000Res 2024; 12:448. [PMID: 38618020 PMCID: PMC11016173 DOI: 10.12688/f1000research.129958.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background The common ice plant ( Mesembryanthemum crystallinum L.) is an annual herb belonging to the genus Mesembryanthemum of the family Aizoaceae, native to Southern Africa. Methods We performed shotgun genome paired-end sequencing using the Illumina platform to determine the genome sequence of the ice plants. We assembled the whole genome sequences using the genome assembler "ALGA" and "Redundans", then released them as available genomic information. Finally, we mainly estimated the potential genomic function by the homology search method. Results A draft genome was generated with a total length of 286 Mb corresponding to 79.2% of the estimated genome size (361 Mb), consisting of 49,782 contigs. It encompassed 93.49% of the genes of terrestrial higher plants, 99.5% of the ice plant transcriptome, and 100% of known DNA sequences. In addition, 110.9 Mb (38.8%) of repetitive sequences and untranslated regions, 971 tRNA, and 100 miRNA loci were identified, and their effects on stress tolerance and photosynthesis were investigated. Molecular phylogenetic analysis based on ribosomal DNA among 26 kinds of plant species revealed genetic similarity between the ice plant and poplar, which have salt tolerance. Overall, 35,702 protein-coding regions were identified in the genome, of which 56.05% to 82.59% were annotated and submitted to domain searches and gene ontology (GO) analyses, which found that eighteen GO terms stood out among five plant species. These terms were related to biological defense, growth, reproduction, transcription, post-transcription, and intermembrane transportation, regarded as one of the fundamental results of using the utilized ice plant genome. Conclusions The information that we characterized is useful for elucidation of the mechanism of growth promotion under salinity and reversible conversion of the photosynthetic type from C3 to Crassulacean Acid Metabolism (CAM).
Collapse
Affiliation(s)
- Ryoma Sato
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Yuri Kondo
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Sakae Agarie
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Kumar P, Babu K, Singh A, Singh D, Nalli A, Mukul S, Roy A, Mazeed M, Raman B, Kruparani S, Siddiqi I, Sankaranarayanan R. Distinct localization of chiral proofreaders resolves organellar translation conflict in plants. Proc Natl Acad Sci U S A 2023; 120:e2219292120. [PMID: 37276405 PMCID: PMC10268278 DOI: 10.1073/pnas.2219292120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using Arabidopsis as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code. Plants survive this conflict by spatially restricting the conflicted DTD1 to the cytosol. In addition, plants have targeted archaeal DTD2 to both the organelles as it is compatible with their translation machinery due to its strict D-chiral specificity and lack of tRNA determinants. Intriguingly, plants have confined bacterial-derived DTD1 to work in archaeal-derived cytosolic compartment whereas archaeal DTD2 is targeted to bacterial-derived organelles. Overall, the study provides a remarkable example of the criticality of optimization of biochemical networks for survival and evolution of plant mitochondria and chloroplast.
Collapse
Affiliation(s)
- Pradeep Kumar
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB) campus, Hyderabad500007, India
| | - Kandhalu Sagadevan Dinesh Babu
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Avinash Kumar Singh
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Dipesh Kumar Singh
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Aswan Nalli
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Shivapura Jagadeesha Mukul
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB) campus, Hyderabad500007, India
| | - Ankit Roy
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Mohd Mazeed
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Bakthisaran Raman
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Shobha P. Kruparani
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
| | - Imran Siddiqi
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB) campus, Hyderabad500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR–CCMB) campus, Hyderabad500007, India
| |
Collapse
|
3
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
4
|
Cognat V, Pawlak G, Pflieger D, Drouard L. PlantRNA 2.0: an updated database dedicated to tRNAs of photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1112-1119. [PMID: 36196656 DOI: 10.1111/tpj.15997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PlantRNA (http://plantrna.ibmp.cnrs.fr/) is a comprehensive database of transfer RNA (tRNA) gene sequences retrieved from fully annotated nuclear, plastidial and mitochondrial genomes of photosynthetic organisms. In the first release (PlantRNA 1.0), tRNA genes from 11 organisms were annotated. In this second version, the annotation was implemented to 51 photosynthetic species covering the whole phylogenetic tree of photosynthetic organisms, from the most basal group of Archeplastida, the glaucophyte Cyanophora paradoxa, to various land plants. tRNA genes from lower photosynthetic organisms such as streptophyte algae or lycophytes as well as extremophile photosynthetic species such as Eutrema parvulum were incorporated in the database. As a whole, about 37 000 tRNA genes were accurately annotated. In the frame of the tRNA genes annotation from the genome of the Rhodophyte Chondrus crispus, non-canonical splicing sites in the D- or T-regions of tRNA molecules were identified and experimentally validated. As for PlantRNA 1.0, comprehensive biological information including 5'- and 3'-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences and tRNA mitochondrial import are included.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - Gael Pawlak
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084, Strasbourg, France
| |
Collapse
|
5
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
6
|
Singh A, Zahra S, Das D, Kumar S. PtRNAdb: a web resource of plant tRNA genes from a wide range of plant species. 3 Biotech 2022; 12:185. [PMID: 35875176 PMCID: PMC9300776 DOI: 10.1007/s13205-022-03255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA, as well as their derived products such as short interspersed nuclear elements (SINEs), pseudogenes, and transfer RNA (tRNA)-derived fragments (tRFs), have now been shown to be vital for cellular life, functioning, and adaptation during different stress conditions in all diverse life forms. In this study, we have developed PtRNAdb (www.nipgr.ac.in/PtRNAdb), a plant-exclusive tRNA database containing 113,849 tRNA gene sequences from phylogenetically diverse plant species. We have analyzed a total of 106 nuclear, 89 plastidial, and 38 mitochondrial genomes of plants by the tRNAscan-SE software package, and after careful curation of the output data, we integrated the data and developed this database. The information about the tRNA gene sequences obtained was further enriched with a consensus sequence-based study of tRNA genes based on their isoacceptors and isodecoders. We have also built covariance models based on the isoacceptors and isodecoders of all the tRNA sequences using the infernal tool. The user can also perform BLAST not only against PtRNAdb entries but also against all the tRNA sequences stored in the PlantRNA database and annotated tRNA genes across the plant kingdom available at NCBI. This resource is believed to be of high utility for plant researchers as well as molecular biologists to carry out further exploration of the plant tRNAome on a wider spectrum, as well as for performing comparative and evolutionary studies related to tRNAs, and their derivatives across all domains of life. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03255-7.
Collapse
Affiliation(s)
- Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Durdam Das
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
- University of Regensburg, Regensburg, Germany
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
7
|
Bhatta A, Hillen HS. Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes. Trends Biochem Sci 2022; 47:965-977. [PMID: 35725940 DOI: 10.1016/j.tibs.2022.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Ribonuclease P (RNase P) enzymes are responsible for the 5' processing of tRNA precursors. In addition to the well-characterised ribozyme-based RNase P enzymes, an evolutionarily distinct group of protein-only RNase Ps exists. These proteinaceous RNase Ps (PRORPs) can be found in all three domains of life and can be divided into two structurally different types: eukaryotic and prokaryotic. Recent structural studies on members of both families reveal a surprising diversity of molecular architectures, but also highlight conceptual and mechanistic similarities. Here, we provide a comparison between the different types of PRORP enzymes and review how the combination of structural, biochemical, and biophysical studies has led to a molecular picture of protein-mediated tRNA processing.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Goettingen, D-37075 Goettingen, Germany.
| |
Collapse
|
8
|
Abstract
Transfer RNAs (tRNAs) are intermediate-sized non-coding RNAs found in all organisms that help translate messenger RNA into protein. Recently, the number of sequenced plant genomes has increased dramatically. The availability of this extensive data greatly accelerates the study of tRNAs on a large scale. Here, 8,768,261 scaffolds/chromosomes containing 229,093 giga-base pairs representing whole-genome sequences of 256 plant species were analyzed to identify tRNA genes. As a result, 331,242 nuclear, 3,216 chloroplast, and 1,467 mitochondrial tRNA genes were identified. The nuclear tRNA genes include 275,134 tRNAs decoding 20 standard amino acids, 1,325 suppressor tRNAs, 6,273 tRNAs with unknown isotypes, 48,475 predicted pseudogenes, and 37,873 tRNAs with introns. Efforts also extended to the creation of PltRNAdb (https://bioinformatics.um6p.ma/PltRNAdb/index.php), a data source for tRNA genes from 256 plant species. PltRNAdb website allows researchers to search, browse, visualize, BLAST, and download predicted tRNA genes. PltRNAdb will help improve our understanding of plant tRNAs and open the door to discovering the unknown regulatory roles of tRNAs in plant genomes.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Achraf EL Allali
- African Genome Center, University Mohammed VI Polytechnic, Benguerir, Morocco
| |
Collapse
|
9
|
Yoshida A, Taoka KI, Hosaka A, Tanaka K, Kobayashi H, Muranaka T, Toyooka K, Oyama T, Tsuji H. Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. FRONTIERS IN PLANT SCIENCE 2021; 12:697206. [PMID: 34707626 PMCID: PMC8542802 DOI: 10.3389/fpls.2021.697206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/31/2021] [Indexed: 06/12/2023]
Abstract
Duckweeds (Araceae: Lemnoideae) are aquatic monocotyledonous plants that are characterized by their small size, rapid growth, and wide distribution. Developmental processes regulating the formation of their small leaf-like structures, called fronds, and tiny flowers are not well characterized. In many plant species, flowering is promoted by the florigen activation complex, whose major components are florigen FLOWERING LOCUS T (FT) protein and transcription factor FD protein. How this complex is regulated at the molecular level during duckweed flowering is also not well understood. In this study, we characterized the course of developmental changes during frond development and flower formation in Lemna aequinoctialis Nd, a short-day plant. Detailed observations of frond and flower development revealed that cell proliferation in the early stages of frond development is active as can be seen in the separate regions corresponding to two budding pouches in the proximal region of the mother frond. L. aequinoctialis produces two stamens of different lengths with the longer stamen growing more rapidly. Using high-throughput RNA sequencing (RNA-seq) and de novo assembly of transcripts from plants induced to flower, we identified the L. aequinoctialis FT and FD genes, whose products in other angiosperms form a transcriptional complex to promote flowering. We characterized the protein-protein interaction of duckweed FT and FD in yeast and examined the functions of the two gene products by overexpression in Arabidopsis. We found that L. aequinoctialis FTL1 promotes flowering, whereas FTL2 suppresses flowering.
Collapse
Affiliation(s)
- Akiko Yoshida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ken-ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Aoi Hosaka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
10
|
Abstract
Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France;
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
11
|
Salinas-Giegé T, Ubrig E, Drouard L. Cyanophora paradoxa mitochondrial tRNAs play a double game. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1105-1115. [PMID: 33666295 DOI: 10.1111/tpj.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Present-day mitochondria derive from a single endosymbiosis of an α-proteobacterium into a proto-eukaryotic cell. Since this monophyletic event, mitochondria have evolved considerably, and unique traits have been independently acquired in the different eukaryotic kingdoms. Mitochondrial genome expression and RNA metabolism have diverged greatly. Here, Cyanophora paradoxa, a freshwater alga considered as a living fossil among photosynthetic organisms, represents an exciting model for studying the evolution of mitochondrial gene expression. As expected, fully mature tRNAs are released from primary transcripts to function in mitochondrial translation. We also show that these tRNAs take part in an mRNA processing punctuation mechanism in a non-conventional manner, leading to mRNA-tRNA hybrids with a CCA triplet at their 3'-extremities. In this case, tRNAs are probably used as stabilizing structures impeding the degradation of mRNA by exonucleases. From our data we propose that the present-day tRNA-like elements (t-elements) found at the 3'-terminals of mitochondrial mRNAs in land plants originate from true tRNAs like those observed in the mitochondria of this basal photosynthetic glaucophyte.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Ehrlich R, Davyt M, López I, Chalar C, Marín M. On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 2021; 8:643701. [PMID: 33796548 PMCID: PMC8007984 DOI: 10.3389/fmolb.2021.643701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Cellular tRNAs appear today as a diverse population of informative macromolecules with conserved general elements ensuring essential common functions and different and distinctive features securing specific interactions and activities. Their differential expression and the variety of post-transcriptional modifications they are subject to, lead to the existence of complex repertoires of tRNA populations adjusted to defined cellular states. Despite the tRNA-coding genes redundancy in prokaryote and eukaryote genomes, it is surprising to note the absence of genes coding specific translational-active isoacceptors throughout the phylogeny. Through the analysis of different releases of tRNA databases, this review aims to provide a general summary about those “missing tRNA genes.” This absence refers to both tRNAs that are not encoded in the genome, as well as others that show critical sequence variations that would prevent their activity as canonical translation adaptor molecules. Notably, while a group of genes are universally missing, others are absent in particular kingdoms. Functional information available allows to hypothesize that the exclusion of isodecoding molecules would be linked to: 1) reduce ambiguities of signals that define the specificity of the interactions in which the tRNAs are involved; 2) ensure the adaptation of the translational apparatus to the cellular state; 3) divert particular tRNA variants from ribosomal protein synthesis to other cellular functions. This leads to consider the “missing tRNA genes” as a source of putative non-canonical tRNA functions and to broaden the concept of adapter molecules in ribosomal-dependent protein synthesis.
Collapse
Affiliation(s)
- Ricardo Ehrlich
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay.,Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Ma X, Liu C, Kong X, Liu J, Zhang S, Liang S, Luan W, Cao X. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants. SCIENCE CHINA-LIFE SCIENCES 2021; 64:495-511. [DOI: 10.1007/s11427-020-1891-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
|
14
|
Alam SB, Reade R, Maghodia AB, Ghoshal B, Theilmann J, Rochon D. Targeting of cucumber necrosis virus coat protein to the chloroplast stroma attenuates host defense response. Virology 2021; 554:106-119. [PMID: 33418272 DOI: 10.1016/j.virol.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a). Agroinfiltrated CNV CP is shown to interfere with CNV p33 and Tomato bushy stunt virus p19 induced necrosis. Additionally, we provide evidence that a CP mutant that does not detectably enter the chloroplast stroma induces relatively higher levels of several plant defense-related genes compared to WT CNV. Together, our data suggest that targeting of CNV CP to the chloroplast stroma interferes with chloroplast-mediated plant defense.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada.
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Ajay B Maghodia
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| |
Collapse
|
15
|
Warren JM, Salinas-Giegé T, Hummel G, Coots NL, Svendsen JM, Brown KC, Drouard L, Sloan DB. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification. RNA Biol 2021; 18:64-78. [PMID: 32715941 PMCID: PMC7834048 DOI: 10.1080/15476286.2020.1792089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
Differences in tRNA expression have been implicated in a remarkable number of biological processes. There is growing evidence that tRNA genes can play dramatically different roles depending on both expression and post-transcriptional modification, yet sequencing tRNAs to measure abundance and detect modifications remains challenging. Their secondary structure and extensive post-transcriptional modifications interfere with RNA-seq library preparation methods and have limited the utility of high-throughput sequencing technologies. Here, we combine two modifications to standard RNA-seq methods by treating with the demethylating enzyme AlkB and ligating with tRNA-specific adapters in order to sequence tRNAs from four species of flowering plants, a group that has been shown to have some of the most extensive rates of post-transcriptional tRNA modifications. This protocol has the advantage of detecting full-length tRNAs and sequence variants that can be used to infer many post-transcriptional modifications. We used the resulting data to produce a modification index of almost all unique reference tRNAs in Arabidopsis thaliana, which exhibited many anciently conserved similarities with humans but also positions that appear to be 'hot spots' for modifications in angiosperm tRNAs. We also found evidence based on northern blot analysis and droplet digital PCR that, even after demethylation treatment, tRNA-seq can produce highly biased estimates of absolute expression levels most likely due to biased reverse transcription. Nevertheless, the generation of full-length tRNA sequences with modification data is still promising for assessing differences in relative tRNA expression across treatments, tissues or subcellular fractions and help elucidate the functional roles of tRNA modifications.
Collapse
Affiliation(s)
- Jessica M. Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Thalia Salinas-Giegé
- Institut De Biologie Moléculaire Des plantes-CNRS, Université De Strasbourg, Strasbourg, France
| | - Guillaume Hummel
- Institut De Biologie Moléculaire Des plantes-CNRS, Université De Strasbourg, Strasbourg, France
| | - Nicole L. Coots
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Kristen C. Brown
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Laurence Drouard
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Institut De Biologie Moléculaire Des plantes-CNRS, Université De Strasbourg, Strasbourg, France
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Bousquet L, Hemon C, Malburet P, Bucchini F, Vandepoele K, Grimsley N, Moreau H, Echeverria M. The medium-size noncoding RNA transcriptome of Ostreococcus tauri, the smallest living eukaryote, reveals a large family of small nucleolar RNAs displaying multiple genomic expression strategies. NAR Genom Bioinform 2020; 2:lqaa080. [PMID: 33575626 PMCID: PMC7671301 DOI: 10.1093/nargab/lqaa080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
The small nucleolar RNAs (snoRNAs), essential for ribosome biogenesis, constitute a major family of medium-size noncoding RNAs (mncRNAs) in all eukaryotes. We present here, for the first time in a marine unicellular alga, the characterization of the snoRNAs family in Ostreococcus tauri, the smallest photosynthetic eukaryote. Using a transcriptomic approach, we identified 131 O. tauri snoRNAs (Ot–snoRNA) distributed in three classes: the C/D snoRNAs, the H/ACA snoRNAs and the MRP RNA. Their genomic organization revealed a unique combination of both the intronic organization of animals and the polycistronic organization of plants. Remarkably, clustered genes produced Ot–snoRNAs with unusual structures never previously described in plants. Their abundances, based on quantification of reads and northern blots, showed extreme differences in Ot–snoRNA accumulation, mainly determined by their differential stability. Most of these Ot–snoRNAs were predicted to target rRNAs or snRNAs. Seventeen others were orphan Ot–snoRNAs that would not target rRNA. These were specific to O. tauri or Mamiellophyceae and could have functions unrelated to ribosome biogenesis. Overall, these data reveal an ‘evolutionary response’ adapted to the extreme compactness of the O. tauri genome that accommodates the essential Ot–snoRNAs, developing multiple strategies to optimize their coordinated expression with a minimal cost on regulatory circuits.
Collapse
Affiliation(s)
- Laurie Bousquet
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
| | - Paul Malburet
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
| | - François Bucchini
- Department of Plant Systems Biology,VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology,VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Bioinformatic Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Nigel Grimsley
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
| | - Manuel Echeverria
- Sorbonne Université, CNRS, Laboratoire de Biologie Intégrative des Organismes Marins , UMR7232, F-66650 Banyuls sur Mer, France
- Département de Biologie, Université de Perpignan via Domitia, 66860 Perpignan Cedex, France
| |
Collapse
|
17
|
Hummel G, Berr A, Graindorge S, Cognat V, Ubrig E, Pflieger D, Molinier J, Drouard L. Epigenetic silencing of clustered tRNA genes in Arabidopsis. Nucleic Acids Res 2020; 48:10297-10312. [PMID: 32941623 PMCID: PMC7544208 DOI: 10.1093/nar/gkaa766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Berr
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
18
|
Streit D, Shanmugam T, Garbelyanski A, Simm S, Schleiff E. The Existence and Localization of Nuclear snoRNAs in Arabidopsis thaliana Revisited. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1016. [PMID: 32806552 PMCID: PMC7464842 DOI: 10.3390/plants9081016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is one cell function-defining process. It depends on efficient transcription of rDNAs in the nucleolus as well as on the cytosolic synthesis of ribosomal proteins. For newly transcribed rRNA modification and ribosomal protein assembly, so-called small nucleolar RNAs (snoRNAs) and ribosome biogenesis factors (RBFs) are required. For both, an inventory was established for model systems like yeast and humans. For plants, many assignments are based on predictions. Here, RNA deep sequencing after nuclei enrichment was combined with single molecule species detection by northern blot and in vivo fluorescence in situ hybridization (FISH)-based localization studies. In addition, the occurrence and abundance of selected snoRNAs in different tissues were determined. These approaches confirm the presence of most of the database-deposited snoRNAs in cell cultures, but some of them are localized in the cytosol rather than in the nucleus. Further, for the explored snoRNA examples, differences in their abundance in different tissues were observed, suggesting a tissue-specific function of some snoRNAs. Thus, based on prediction and experimental confirmation, many plant snoRNAs can be proposed, while it cannot be excluded that some of the proposed snoRNAs perform alternative functions than are involved in rRNA modification.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Thiruvenkadam Shanmugam
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Asen Garbelyanski
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Institute of Bioinformatics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Frankfurt Institute of Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Agrawal S, Karcher D, Ruf S, Bock R. The Functions of Chloroplast Glutamyl-tRNA in Translation and Tetrapyrrole Biosynthesis. PLANT PHYSIOLOGY 2020; 183:263-276. [PMID: 32071153 PMCID: PMC7210637 DOI: 10.1104/pp.20.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 06/02/2023]
Abstract
The chloroplast glutamyl-tRNA (tRNAGlu) is unique in that it has two entirely different functions. In addition to acting in translation, it serves as the substrate of glutamyl-tRNA reductase (GluTR), the enzyme catalyzing the committed step in the tetrapyrrole biosynthetic pathway. How the tRNAGlu pool is distributed between the two pathways and whether tRNAGlu allocation limits tetrapyrrole biosynthesis and/or protein biosynthesis remains poorly understood. We generated a series of transplastomic tobacco (Nicotiana tabacum) plants to alter tRNAGlu expression levels and introduced a point mutation into the plastid trnE gene, which has been reported to uncouple protein biosynthesis from tetrapyrrole biosynthesis in chloroplasts of the protist Euglena gracilis We show that, rather than comparable uncoupling of the two pathways, the trnE mutation is lethal in tobacco because it inhibits tRNA processing, thus preventing translation of Glu codons. Ectopic expression of the mutated trnE gene uncovered an unexpected inhibition of glutamyl-tRNA reductase by immature tRNAGlu We further demonstrate that whereas overexpression of tRNAGlu does not affect tetrapyrrole biosynthesis, reduction of GluTR activity through inhibition by tRNAGlu precursors causes tetrapyrrole synthesis to become limiting in early plant development when active photosystem biogenesis provokes a high demand for de novo chlorophyll biosynthesis. Taken together, our findings provide insight into the roles of tRNAGlu at the intersection of protein biosynthesis and tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. BIOLOGY 2020; 9:biology9050088. [PMID: 32344921 PMCID: PMC7285048 DOI: 10.3390/biology9050088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Previous experimental observations and theoretical hypotheses have been providing insight into a hypothetical world where an RNA hairpin or ring may have debuted as the primary informational and functional molecule. We propose a model revisiting the architecture of RNA-peptide interactions at the origin of life through the evolutionary dynamics of RNA populations. (2) Methods: By performing a step-by-step computation of the smallest possible hairpin/ring RNA sequences compatible with building up a variety of peptides of the primitive network, we inferred the sequence of a singular docosameric RNA molecule, we call the ALPHA sequence. Then, we searched for any relics of the peptides made from ALPHA in sequences deposited in the different public databases. (3) Results: Sequence matching between ALPHA and sequences from organisms among the earliest forms of life on Earth were found at high statistical relevance. We hypothesize that the frequency of appearance of relics from ALPHA sequence in present genomes has a functional necessity. (4) Conclusions: Given the fitness of ALPHA as a supportive sequence of the framework of all existing theories, and the evolution of Archaea and giant viruses, it is anticipated that the unique properties of this singular archetypal ALPHA sequence should prove useful as a model matrix for future applications, ranging from synthetic biology to DNA computing.
Collapse
|
21
|
Lalande S, Merret R, Salinas-Giegé T, Drouard L. Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol 2020; 17:1137-1148. [PMID: 31994438 DOI: 10.1080/15476286.2020.1722514] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) exist in all branches of life. They are involved in RNA degradation, regulation of gene expression, ribosome biogenesis. In archaebacteria, kinetoplastid, yeast, and human cells, they were also shown to regulate translation. In Arabidopsis, the tRFs population fluctuates under developmental or environmental conditions but their functions are yet poorly understood. Here, we show that populations of long (30-35 nt) or short (19-25 nt) tRFs produced from Arabidopsis tRNAs can inhibit in vitro translation of a reporter gene. Analysing a series of oligoribonucleotides mimicking natural tRFs, we demonstrate that only a limited set of tRFs possess the ability to affect protein synthesis. Out of a dozen of tRFs, only two deriving from tRNAAla(AGC) and tRNAAsn(GUU) strongly attenuate translation in vitro. Contrary to human tRF(Ala), the 4 Gs present at the 5' extremity of Arabidopsis tRF(Ala) are not implicated in this inhibition while the G18 and G19 residues are essential. Protein synthesis inhibition by tRFs does not require complementarity with the translated mRNA but, having the capability to be associated with polyribosomes, tRFs likely act as general modulation factors of the translation process in plants.
Collapse
Affiliation(s)
- Stéphanie Lalande
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Rémy Merret
- Université de Perpignan Via Domitia , Perpignan, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
22
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
23
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
24
|
Hong WJ, Kim YJ, Chandran AKN, Jung KH. Infrastructures of systems biology that facilitate functional genomic study in rice. RICE (NEW YORK, N.Y.) 2019; 12:15. [PMID: 30874968 PMCID: PMC6419666 DOI: 10.1186/s12284-019-0276-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is both a major staple food for the worldwide population and a model crop plant for studying the mode of action of agronomically valuable traits, providing information that can be applied to other crop plants. Due to the development of high-throughput technologies such as next generation sequencing and mass spectrometry, a huge mass of multi-omics data in rice has been accumulated. Through the integration of those data, systems biology in rice is becoming more advanced.To facilitate such systemic approaches, we have summarized current resources, such as databases and tools, for systems biology in rice. In this review, we categorize the resources using six omics levels: genomics, transcriptomics, proteomics, metabolomics, integrated omics, and functional genomics. We provide the names, websites, references, working states, and number of citations for each individual database or tool and discuss future prospects for the integrated understanding of rice gene functions.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | | | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
25
|
Seo E, Kim T, Park JH, Yeom SI, Kim S, Seo MK, Shin C, Choi D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res 2019; 25:561-575. [PMID: 30060137 PMCID: PMC6289781 DOI: 10.1093/dnares/dsy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective. Microsynteny of miRNAs was analysed based on the genomic loci and their flanking genes and most of the well-conserved miRNA genes maintained microsynteny in Solanaceae. We identified target genes of the miRNAs via degradome analysis and found that several miRNAs target many genes encoding nucleotide-binding leucine-rich repeat (NLR) or receptor-like proteins (RLPs), which are known to be major players in defense responses. In addition, disease-resistance-associated miRNAs trigger phasiRNA production in pepper, indicating amplification of the regulation of disease-resistance gene families. Among these, miR-n033a-3p, whose target NLRs have been duplicated in pepper, targets more NLRs belonging to specific subgroup in pepper than those in potato. miRNAs targeting resistance genes might have evolved to regulate numerous targets in Solanaceae, following expansion of target resistance genes. This study provides an insight into evolutionary relationship between miRNAs and their target defense genes in plants.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Plus Program), Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seungill Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Min-Ki Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Cho J, Benoit M, Catoni M, Drost HG, Brestovitsky A, Oosterbeek M, Paszkowski J. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. NATURE PLANTS 2019; 5:26-33. [PMID: 30531940 PMCID: PMC6366555 DOI: 10.1038/s41477-018-0320-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 05/02/2023]
Abstract
Retrotransposons have played an important role in the evolution of host genomes1,2. Their impact is mainly deduced from the composition of DNA sequences that have been fixed over evolutionary time2. Such studies provide important 'snapshots' reflecting the historical activities of transposons but do not predict current transposition potential. We previously reported sequence-independent retrotransposon trapping (SIRT) as a method that, by identification of extrachromosomal linear DNA (eclDNA), revealed the presence of active long terminal repeat (LTR) retrotransposons in Arabidopsis3. However, SIRT cannot be applied to large and transposon-rich genomes, as found in crop plants. We have developed an alternative approach named ALE-seq (amplification of LTR of eclDNAs followed by sequencing) for such situations. ALE-seq reveals sequences of 5' LTRs of eclDNAs after two-step amplification: in vitro transcription and subsequent reverse transcription. Using ALE-seq in rice, we detected eclDNAs for a novel Copia family LTR retrotransposon, Go-on, which is activated by heat stress. Sequencing of rice accessions revealed that Go-on has preferentially accumulated in Oryza sativa ssp. indica rice grown at higher temperatures. Furthermore, ALE-seq applied to tomato fruits identified a developmentally regulated Gypsy family of retrotransposons. A bioinformatic pipeline adapted for ALE-seq data analyses is used for the direct and reference-free annotation of new, active retroelements. This pipeline allows assessment of LTR retrotransposon activities in organisms for which genomic sequences and/or reference genomes are either unavailable or of low quality.
Collapse
Affiliation(s)
- Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Chinese Academy of Sciences, Shanghai, China.
| | - Matthias Benoit
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Matthijs Oosterbeek
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Radachowka 37, Kolbiel, Poland.
| |
Collapse
|
27
|
Chen TH, Sotomayor M, Gopalan V. Biochemical Studies Provide Insights into the Necessity for Multiple Arabidopsis thaliana Protein-Only RNase P Isoenzymes. J Mol Biol 2018; 431:615-624. [PMID: 30414965 DOI: 10.1016/j.jmb.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
RNase P catalyzes removal of the 5' leader from precursor tRNAs (pre-tRNAs) in all three domains of life. Some eukaryotic cells contain multiple forms of the protein-only RNase P (PRORP) variant, prompting efforts to unravel this seeming redundancy. Previous studies concluded that there were only modest differences in the processing of typical pre-tRNAs by the three isoforms in Arabidopsis thaliana [AtPRORP1 (organellar), AtPRORP2 and AtPRORP3 (nuclear)]. Here, we investigated if different physical attributes of the three isoforms might engender payoffs under specific conditions. Our temperature-activity profiling studies revealed that AtPRORPs display substrate-identity dependent behavior at elevated temperatures (37-45 °C), with the organellar variant outperforming the nuclear counterparts. Echoing these findings, molecular dynamics simulations revealed that AtPRORP2 relative to AtPRORP1 samples a wider conformational ensemble that deviates from the crystal structure. Results from our biochemical studies and molecular dynamics simulations support the idea that AtPRORPs have overlapping but not necessarily redundant attributes and inspire new perspectives on the suitability of each variant to perform its function(s) in a specific cellular locale.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
29
|
Visser M, Cook G, Burger JT, Maree HJ. In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 2017; 14:200. [PMID: 29058618 PMCID: PMC5651572 DOI: 10.1186/s12985-017-0871-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Small RNA (sRNA) associated gene regulation has been shown to play a significant role during plant-pathogen interaction. In commercial citrus orchards co-infection of Citrus tristeza virus (CTV) and viroids occur naturally. METHODS A next-generation sequencing-based approach was used to study the sRNA and transcriptional response in grapefruit to the co-infection of CTV and Citrus dwarfing viroid. RESULTS The co-infection resulted in a difference in the expression of a number of sRNA species when comparing healthy and infected plants; the majority of these were derived from transcripts processed in a phased manner. Several RNA transcripts were also differentially expressed, including transcripts derived from two genes, predicted to be under the regulation of sRNAs. These genes are involved in plant hormone systems; one in the abscisic acid, and the other in the cytokinin regulatory pathway. Additional analysis of virus- and viroid-derived small-interfering RNAs (siRNAs) showed areas on the pathogen genomes associated with increased siRNA synthesis. Most interestingly, the starting position of the p23 silencing suppressor's sub-genomic RNA generated a siRNA hotspot on the CTV genome. CONCLUSIONS This study showed the involvement of various genes, as well as endogenous and exogenous RNA-derived sRNA species in the plant-defence response. The results highlighted the role of sRNA-directed plant hormone regulation during biotic stress, as well as a counter-response of plants to virus suppressors of RNA-silencing.
Collapse
Affiliation(s)
- Marike Visser
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Glynnis Cook
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Nelspruit, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij: Institute for Deciduous Fruit, Vines and Wine, Stellenbosch, South Africa
| |
Collapse
|
30
|
Gößringer M, Lechner M, Brillante N, Weber C, Rossmanith W, Hartmann RK. Protein-only RNase P function in Escherichia coli: viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res 2017; 45:7441-7454. [PMID: 28499021 PMCID: PMC5499578 DOI: 10.1093/nar/gkx405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.
Collapse
Affiliation(s)
- Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
31
|
Yang KJ, Guo L, Hou XL, Gong HQ, Liu CM. ZYGOTE-ARREST 3 that encodes the tRNA ligase is essential for zygote division in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:680-692. [PMID: 28631407 DOI: 10.1111/jipb.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 05/28/2023]
Abstract
In sexual organisms, division of the zygote initiates a new life cycle. Although several genes involved in zygote division are known in plants, how the zygote is activated to start embryogenesis has remained elusive. Here, we showed that a mutation in ZYGOTE-ARREST 3 (ZYG3) in Arabidopsis led to a tight zygote-lethal phenotype. Map-based cloning revealed that ZYG3 encodes the transfer RNA (tRNA) ligase AtRNL, which is a single-copy gene in the Arabidopsis genome. Expression analyses showed that AtRNL is expressed throughout zygotic embryogenesis, and in meristematic tissues. Using pAtRNL::cAtRNL-sYFP-complemented zyg3/zyg3 plants, we showed that AtRNL is localized exclusively in the cytoplasm, suggesting that tRNA splicing occurs primarily in the cytoplasm. Analyses using partially rescued embryos showed that mutation in AtRNL compromised splicing of intron-containing tRNA. Mutations of two tRNA endonuclease genes, SEN1 and SEN2, also led to a zygote-lethal phenotype. These results together suggest that tRNA splicing is critical for initiating zygote division in Arabidopsis.
Collapse
Affiliation(s)
- Ke-Jin Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Lei Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
32
|
Cognat V, Morelle G, Megel C, Lalande S, Molinier J, Vincent T, Small I, Duchêne AM, Maréchal-Drouard L. The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 2017; 45:3460-3472. [PMID: 27899576 PMCID: PMC5389709 DOI: 10.1093/nar/gkw1122] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19–26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Geoffrey Morelle
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France.,Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Cyrille Megel
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Stéphanie Lalande
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Timothée Vincent
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA6009, Australia
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
33
|
Wang Y, Li D, Gao J, Li X, Zhang R, Jin X, Hu Z, Zheng B, Persson S, Chen P. The 2'-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates salt stress tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1479-1491. [PMID: 28369540 PMCID: PMC5444449 DOI: 10.1093/jxb/erx061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress induces changes of modified nucleosides in tRNA, and these changes can influence codon-anticodon interaction and therefore the translation of target proteins. Certain nucleoside modification genes are associated with regulation of stress tolerance and immune response in plants. In this study, we found a dramatic increase of 2'-O-methyladenosine (Am) nucleoside in rice seedlings subjected to salt stress and abscisic acid (ABA) treatment. We identified LOC_Os03g61750 (OsTRM13) as a rice candidate methyltransferase for the Am modification. OsTRM13 transcript levels increased significantly upon salt stress and ABA treatment, and the OsTrm13 protein was found to be located primarily to the nucleus. More importantly, OsTRM13 overexpression plants displayed improved salt stress tolerance, and vice versa, OsTRM13 RNA interference (RNAi) plants showed reduced tolerance. Furthermore, OsTRM13 complemented a yeast trm13Δ mutant, deficient in Am synthesis, and the purified OsTrm13 protein catalysed Am nucleoside formation on tRNA-Gly-GCC in vitro. Our results show that OsTRM13, encoding a rice tRNA nucleoside methyltransferase, is an important regulator of salt stress tolerance in rice.
Collapse
Affiliation(s)
- Youmei Wang
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- College of Life Science, HuaZhong Agricultural University, Wuhan 430070, China
| | - Junbao Gao
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Xukai Li
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Rui Zhang
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Jin
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Zhen Hu
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, HuaZhong Agricultural University, Wuhan 430070, China
| | - Staffan Persson
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Australia
| | - Peng Chen
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China
- Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:789-804. [PMID: 27862469 DOI: 10.1111/tpj.13415] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Vivek Krishnakumar
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Agnes P Chan
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, US National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Seth Schobel
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Christopher D Town
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
35
|
Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics 2016; 17:853. [PMID: 27806710 PMCID: PMC5093975 DOI: 10.1186/s12864-016-3202-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Background Volvox carteri (V. carteri) is a multicellular green alga used as model system for the evolution of multicellularity. So far, the contribution of small RNA pathways to these phenomena is not understood. Thus, we have sequenced V. carteri Argonaute 3 (VcAGO3)-associated small RNAs from different developmental stages. Results Using this functional approach, we define the Volvox microRNA (miRNA) repertoire and show that miRNAs are not conserved in the closely related unicellular alga Chlamydomonas reinhardtii. Furthermore, we find that miRNAs are differentially expressed during different life stages of V. carteri. In addition to miRNAs, transposon-associated small RNAs or phased siRNA loci, which are common in higher land plants, are highly abundant in Volvox as well. Transposons not only give rise to miRNAs and other small RNAs, they are also targets of small RNAs. Conclusion Our analyses reveal a surprisingly complex small RNA network in Volvox as elaborate as in higher land plants. At least the identified VcAGO3-associated miRNAs are not conserved in C. reinhardtii suggesting fast evolution of small RNA systems. Thus, distinct small RNAs may contribute to multicellularity and also division of labor in reproductive and somatic cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3202-4) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Bonnard G, Gobert A, Arrivé M, Pinker F, Salinas-Giegé T, Giegé P. Transfer RNA maturation in Chlamydomonas mitochondria, chloroplast and the nucleus by a single RNase P protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:270-280. [PMID: 27133210 DOI: 10.1111/tpj.13198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
The maturation of tRNA precursors involves the 5' cleavage of leader sequences by an essential endonuclease called RNase P. Beyond the ancestral ribonucleoprotein (RNP) RNase P, a second type of RNase P called PRORP (protein-only RNase P) evolved in eukaryotes. The current view on the distribution of RNase P in cells is that multiple RNPs, multiple PRORPs or a combination of both, perform specialised RNase P activities in the different compartments where gene expression occurs. Here, we identify a single gene encoding PRORP in the green alga Chlamydomonas reinhardtii while no RNP is found. We show that its product, CrPRORP, is triple-localised to mitochondria, the chloroplast and the nucleus. Its downregulation results in impaired tRNA biogenesis in both organelles and the nucleus. CrPRORP, as a single-subunit RNase P for an entire organism, makes up the most compact and versatile RNase P machinery described in either prokaryotes or eukaryotes.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Franziska Pinker
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
37
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
38
|
Young REB, Purton S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1251-60. [PMID: 26471875 PMCID: PMC5102678 DOI: 10.1111/pbi.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 05/18/2023]
Abstract
There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.
Collapse
Affiliation(s)
- Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
39
|
Brillante N, Gößringer M, Lindenhofer D, Toth U, Rossmanith W, Hartmann RK. Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P. Nucleic Acids Res 2016; 44:2323-36. [PMID: 26896801 PMCID: PMC4797305 DOI: 10.1093/nar/gkw080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is the enzyme that removes 5′ extensions from tRNA precursors. With its diversity of enzyme forms—either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins—the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5′ or 3′ extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
Collapse
Affiliation(s)
- Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Dominik Lindenhofer
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
40
|
Narsai R. Databases and informatics resources for analysis of plant mitochondria. Methods Mol Biol 2016; 1305:263-79. [PMID: 25910741 DOI: 10.1007/978-1-4939-2639-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
As more omics data is generated from various plant species, it is becoming increasingly possible to carry out a range of in silico analyses to gain insight into mitochondrial function in plants. From the use of software tools for DNA motif analyses and transcript expression visualization to proteomic and subcellular localization resources, it is possible to carry out significant in silico analyses that are highly informative to researchers and can help to guide experimental design for further mitochondrial study. Databases specific to plant mitochondrial analyses have been developed in recent years, revealing mitochondria-specific information. This chapter outlines the databases and informatics resources that are useful for plant mitochondrial studies, with specific examples presented to indicate how these resources can be used to gain insight into plant mitochondrial function(s).
Collapse
Affiliation(s)
- Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence Plant Energy Biology, School of Life Sciences, La Trobe University, 5 Ring Road, Bundoora, VIC, 3086, Australia,
| |
Collapse
|
41
|
Alam SB, Rochon D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J Virol 2015; 90:3302-17. [PMID: 26719261 PMCID: PMC4794660 DOI: 10.1128/jvi.02833-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| |
Collapse
|
42
|
Burgess AL, David R, Searle IR. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC PLANT BIOLOGY 2015; 15:199. [PMID: 26268215 PMCID: PMC4535395 DOI: 10.1186/s12870-015-0580-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Post-transcriptional methylation of RNA cytosine residues to 5-methylcytosine (m(5)C) is an important modification that regulates RNA metabolism and occurs in both eukaryotes and prokaryotes. Yet, to date, no transcriptome-wide identification of m(5)C sites has been undertaken in plants. Plants provide a unique comparative system for investigating the origin and evolution of m(5)C as they contain three different genomes, the nucleus, mitochondria and chloroplast. Here we use bisulfite conversion of RNA combined with high-throughput IIlumina sequencing (RBS-seq) to identify single-nucleotide resolution of m(5)C sites in non-coding ribosomal RNAs and transfer RNAs of all three sub-cellular transcriptomes across six diverse species that included, the single-celled algae Nannochloropsis oculata, the macro algae Caulerpa taxifolia and multi-cellular higher plants Arabidopsis thaliana, Brassica rapa, Triticum durum and Ginkgo biloba. RESULTS Using the plant model Arabidopsis thaliana, we identified a total of 39 highly methylated m(5)C sites in predicted structural positions of nuclear tRNAs and 7 m(5)C sites in rRNAs from nuclear, chloroplast and mitochondrial transcriptomes. Both the nucleotide position and percent methylation of tRNAs and rRNAs m(5)C sites were conserved across all species analysed, from single celled algae N. oculata to multicellular plants. Interestingly the mitochondrial and chloroplast encoded tRNAs were devoid of m(5)C in A. thaliana and this is generally conserved across Plantae. This suggests independent evolution of organelle methylation in animals and plants, as animal mitochondrial tRNAs have m(5)C sites. Here we characterize 5 members of the RNA 5-methylcytosine family in Arabidopsis and extend the functional characterization of TRDMT1 and NOP2A/OLI2. We demonstrate that nuclear tRNA methylation requires two evolutionarily conserved methyltransferases, TRDMT1 and TRM4B. trdmt1 trm4b double mutants are hypersensitive to the antibiotic hygromycin B, demonstrating the function of tRNA methylation in regulating translation. Additionally we demonstrate that nuclear large subunit 25S rRNA methylation requires the conserved RNA methyltransferase NSUN5. Our results also suggest functional redundancy of at least two of the NOP2 paralogs in Arabidopsis. CONCLUSIONS Our data demonstrates widespread occurrence and conservation of non-coding RNA methylation in the kingdom Plantae, suggesting important and highly conserved roles of this post-transcriptional modification.
Collapse
Affiliation(s)
- Alice Louise Burgess
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Adelaide, Australia.
| |
Collapse
|
43
|
Williams AV, Boykin LM, Howell KA, Nevill PG, Small I. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene. PLoS One 2015; 10:e0125768. [PMID: 25955637 PMCID: PMC4425659 DOI: 10.1371/journal.pone.0125768] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/26/2015] [Indexed: 11/25/2022] Open
Abstract
Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex.
Collapse
Affiliation(s)
- Anna V. Williams
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M. Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Katharine A. Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G. Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
44
|
Zhou W, Karcher D, Fischer A, Maximova E, Walther D, Bock R. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme. PLoS One 2015; 10:e0120533. [PMID: 25793367 PMCID: PMC4368725 DOI: 10.1371/journal.pone.0120533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/23/2015] [Indexed: 01/22/2023] Open
Abstract
Transfer RNA (tRNA) precursors undergo endoribonucleolytic processing of their 5’ and 3’ ends. 5’ cleavage of the precursor transcript is performed by ribonuclease P (RNase P). While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids) and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs). The plant organellar PRORP (PRORP1) has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi). PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA) and tRNA-Arg(ACG) suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.
Collapse
Affiliation(s)
- Wenbin Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Axel Fischer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eugenia Maximova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
45
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
46
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
47
|
Visser M, Maree HJ, Rees DJG, Burger JT. High-throughput sequencing reveals small RNAs involved in ASGV infection. BMC Genomics 2014; 15:568. [PMID: 24998458 PMCID: PMC4118050 DOI: 10.1186/1471-2164-15-568] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022] Open
Abstract
Background Plant small RNAs (sRNAs) associated with virulent virus infections have been reported by previous studies, while the involvement of sRNAs in latent virus infection remains largely uncharacterised. Apple trees show a high degree of resistance and tolerance to viral infections. We analysed two sRNA deep sequencing datasets, prepared from different RNA size fractions, to identify sRNAs involved in Apple stem grooving virus (ASGV) infection. Results sRNA analysis revealed virus-derived siRNAs (vsiRNAs) originating from two ASGV genetic variants. A vsiRNA profile for one of the ASGV variants was also generated showing an increase in siRNA production towards the 3′ end of the virus genome. Virus-derived sRNAs longer than those previously analysed were also observed in the sequencing data. Additionally, tRNA-derived sRNAs were identified and characterised. These sRNAs covered a broad size-range and originated from both ends of the mature tRNAs as well as from their central regions. Several tRNA-derived sRNAs showed differential regulation due to ASGV infection. No changes in microRNA, natural-antisense transcript siRNA, phased-siRNA and repeat-associated siRNA levels were observed. Conclusions This study is the first report on the apple sRNA-response to virus infection. The results revealed the vsiRNAs profile of an ASGV variant, as well as the alteration of the tRNA-derived sRNA profile in response to latent virus infection. It also highlights the importance of library preparation in the interpretation of high-throughput sequencing data. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-568) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Johan T Burger
- Genetics Department, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
48
|
Idiosyncrasies in decoding mitochondrial genomes. Biochimie 2014; 100:95-106. [PMID: 24440477 DOI: 10.1016/j.biochi.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.
Collapse
|