1
|
Lehner AF. Reactions of deoxyribonucleotide bases with sulfooxymethyl or halomethyl polycyclic aromatic hydrocarbons induce unwinding of DNA supercoils. Toxicol Mech Methods 2024; 34:423-443. [PMID: 38133498 DOI: 10.1080/15376516.2023.2297836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Torsional stress in double-stranded DNA enables and regulates facets of chromosomal metabolism, replication, and transcription and requires regulatory enzymatic systems including topoisomerases and histone methyltransferases. As such, this machinery may be subject to deleterious effects from reactive mutagens, including ones from carcinogenic polycyclic aromatic hydrocarbon (PAH) adduct formation with DNA. Supercoiled plasmid DNA was investigated for its torsional responses to adducts formed in vitro from PAH benzylic carbocation reactive intermediates created spontaneously by release of leaving groups. PAH sulfate esters were found to (1) unwind DNA in a concentration dependent manner, and (2) provide maximum unwinding in a pattern consistent with known carcinogenicities of the parent PAHs, that is, 6-methylbenzo[a]pyrene > 7,12-methylbenz[a]anthracene > 3-methylcholanthrene > 9-methylanthracene > 7-methylbenz[a]anthracene > 1-methylpyrene. Supercoil unwinding was demonstrated to be dependent on the presence of sulfate or chloride leaving groups such that reactive carbocations were generated in situ by hydrolysis. In silico modeling of intercalative complex topology showed PAH benzylic carbocation reactive functional groups in alignment with target nucleophiles on guanine bases in a 5'-dCdG-3' pocket in agreement with known formation of nucleotide adducts. Inhibitory or modulatory effects on PAH-induced supercoil unwinding were seen with ascorbic acid and an experimental antineoplastic agent Antineoplaston A10 in agreement with their known anticarcinogenic properties. In summary, the reactive PAH intermediates studied here undoubtedly participate in well-known mutational mechanisms such as frameshifts and apurinic site generation. However, they are also capable of random disruption of chromosomal supercoiling in a manner consistent with the known carcinogenicities of the parent compounds, and this mechanism may represent an additional detrimental motif worthy of further study for a more complete understanding of chemical carcinogenicity.
Collapse
Affiliation(s)
- Andreas F Lehner
- Veterinary Diagnostic Lab, Toxicology Section, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
3
|
Luo Y, Lan C, Xie K, Li H, Devillard E, He J, Liu L, Cai J, Tian G, Wu A, Ren Z, Chen D, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo J, Yan H, Wang Q, Wang H, Tang J. Active or Autoclaved Akkermansia muciniphila Relieves TNF-α-Induced Inflammation in Intestinal Epithelial Cells Through Distinct Pathways. Front Immunol 2022; 12:788638. [PMID: 34975882 PMCID: PMC8716699 DOI: 10.3389/fimmu.2021.788638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Intestinal inflammation is a major threat to the health and growth of young animals such as piglets. As a next-generation probiotics, limited studies have shown that Akkermansia muciniphila could alleviate inflammation of intestinal epithelial cells (IECs). In this study, a TNF-α-induced inflammatory model of IPEC-J2 cells, the intestinal porcine enterocytes, was built to evaluate the effects of active or inactive A. muciniphila on the inflammation of IECs. The viability of IPEC-J2 cells was the highest when treated with active (108 copies/mL) or inactive (109 copies/mL) A. muciniphila for 7.5 h (P < 0.01). Treated with 20 ng/mL of TNF-α and followed by a treatment of A. muciniphila, the mRNA level of proinflammatory cytokines (IL-8, IL-1β, IL-6 and TNF-α) was remarkably reduced (P < 0.05) along with the increased mRNA level of tight junction proteins (ZO-1 and Occludin, P < 0.05). Flow cytometry analysis showed that active or inactive A. muciniphila significantly suppressed the rate of the early and total apoptotic of the inflammatory IPEC-J2 cells (P < 0.05). According to results of transcriptome sequencing, active and inactive A. muciniphila may decline cell apoptosis by down-regulating the expression of key genes in calcium signaling pathway, or up-regulating the expression of key genes in cell cycle signaling pathway. And the bacterium may alleviate the inflammation of IECs by down-regulating the expression of PI3K upstream receptor genes. Our results indicate that A. muciniphila may be a promising NGP targeting intestinal inflammation.
Collapse
Affiliation(s)
- Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Cong Lan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunhong Xie
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Estelle Devillard
- Center of Research for Nutrition and Health, Adisseo France SAS, Commentry, France
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quyuan Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huifen Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Yalala VR, Lynch AK, Mills KV. Conditional Alternative Protein Splicing Promoted by Inteins from Haloquadratum walsbyi. Biochemistry 2022; 61:294-302. [PMID: 35073064 PMCID: PMC8847336 DOI: 10.1021/acs.biochem.1c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein splicing is a post-translational process by which an intervening protein, or an intein, catalyzes its own excision from flanking polypeptides, or exteins, coupled to extein ligation. Four inteins interrupt the MCM helicase of the halophile Haloquadratum walsbyi, two of which are mini-inteins that lack a homing endonuclease. Both inteins can be overexpressed in Escherichia coli and purified as unspliced precursors; splicing can be induced in vitro by incubation with salt. However, one intein can splice in 0.5 M NaCl in vitro, whereas the other splices efficiently only in buffer containing over 2 M NaCl; the organism also requires high salt to grow, with the standard growth media containing over 3 M NaCl and about 0.75 M magnesium salts. Consistent with this difference in salt-dependent activity, an intein-containing precursor protein with both inteins promotes conditional alternative protein splicing (CAPS) to yield different spliced products dependent on the salt concentration. Native Trp fluorescence of the inteins suggests that the difference in activity may be due to partial unfolding of the inteins at lower salt concentrations. This differential salt sensitivity of intein activity may provide a useful mechanism for halophiles to respond to environmental changes.
Collapse
Affiliation(s)
- Vaishnavi R Yalala
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Abigeal K Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
5
|
Su D. MCM7 affects the cisplatin resistance of liver cancer cells and the development of liver cancer by regulating the PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol 2021; 44:17-27. [PMID: 34821526 DOI: 10.1080/08923973.2021.1991372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Aberrant DNA replication is regarded as a component of cancer development. Minichromosome maintenance protein 7 (MCM7), which is critical for the initiation of DNA replication, is overexpressed in multiple malignancies. The effect of MCM7 on cell proliferation, apoptosis, and drug resistance of liver cancer and its mechanism were investigated in this study. METHODS MCM7 expression in normal liver cells, liver cancer cell lines, and tissues, as well as adjacent tissues, was determined by qRT-PCR. CCK-8 and flow cytometry was performed to detect cell viability, apoptosis, and cell cycle, respectively. The related mRNA and protein expressions were detected by qRT-PCR and western blot. RESULTS High expression of MCM7 was found in liver cancer tissues and cells, which results in notably lower survival time of patients. Cisplatin (DDP) could inhibit cell proliferation and affect MCM7 expression. Silencing of MCM7 inhibited cell viability, promoted cell apoptosis, arrested cell cycle at G1 phase, and enhanced the effect of DDP on cancer cells, while overexpression of MCM7 did the opposite. Moreover, silencing of MCM7 inhibited cyclinD1 and Ki-67 expressions. The overexpression of MCM7 increased phosphorylation levels of PI3K and AKT, activated the PI3K/AKT pathway, and weakened the inhibitory effect of DDP on the PI3K/AKT pathway. CONCLUSION Silencing of MCM7 may inhibit cell proliferation and promote apoptosis by regulating the PI3K/AKT pathway to affect the cell cycle, thus affecting the development of liver cancer, and improving the sensitivity of liver cancer cells to DDP.
Collapse
Affiliation(s)
- Dongna Su
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
6
|
Mohammed Khalid AA, Parisse P, Medagli B, Onesti S, Casalis L. Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA. MATERIALS 2021; 14:ma14030687. [PMID: 33540751 PMCID: PMC7867263 DOI: 10.3390/ma14030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
The MCM (minichromosome maintenance) protein complex forms an hexameric ring and has a key role in the replication machinery of Eukaryotes and Archaea, where it functions as the replicative helicase opening up the DNA double helix ahead of the polymerases. Here, we present a study of the interaction between DNA and the archaeal MCM complex from Methanothermobacter thermautotrophicus by means of atomic force microscopy (AFM) single molecule imaging. We first optimized the protocol (surface treatment and buffer conditions) to obtain AFM images of surface-equilibrated DNA molecules before and after the interaction with the protein complex. We discriminated between two modes of interaction, one in which the protein induces a sharp bend in the DNA, and one where there is no bending. We found that the presence of the MCM complex also affects the DNA contour length. A possible interpretation of the observed behavior is that in one case the hexameric ring encircles the dsDNA, while in the other the nucleic acid wraps on the outside of the ring, undergoing a change of direction. We confirmed this topographical assignment by testing two mutants, one affecting the N-terminal β-hairpins projecting towards the central channel, and thus preventing DNA loading, the other lacking an external subdomain and thus preventing wrapping. The statistical analysis of the distribution of the protein complexes between the two modes, together with the dissection of the changes of DNA contour length and binding angle upon interaction, for the wild type and the two mutants, is consistent with the hypothesis. We discuss the results in view of the various modes of nucleic acid interactions that have been proposed for both archaeal and eukaryotic MCM complexes.
Collapse
Affiliation(s)
- Amna Abdalla Mohammed Khalid
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (IOM-CNR), 34149 Trieste, Italy
- Correspondence: (P.P.); (S.O.); (L.C.)
| | - Barbara Medagli
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Onesti
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Correspondence: (P.P.); (S.O.); (L.C.)
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Correspondence: (P.P.); (S.O.); (L.C.)
| |
Collapse
|
7
|
Graham BW, Bougoulias ME, Dodge KL, Thaxton CT, Olaso D, Tao Y, Young NL, Marshall AG, Trakselis MA. Control of Hexamerization, Assembly, and Excluded Strand Specificity for the Sulfolobus solfataricus MCM Helicase. Biochemistry 2018; 57:5672-5682. [DOI: 10.1021/acs.biochem.8b00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian W. Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael E. Bougoulias
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Katie L. Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Carly T. Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Yeqing Tao
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, United States
| | - Alan G. Marshall
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
8
|
Dauter Z, Jaskolski M. On the helical arrangements of protein molecules. Protein Sci 2017; 27:643-652. [PMID: 29194829 DOI: 10.1002/pro.3356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022]
Abstract
Helical structures are prevalent in biology. In the PDB, there are many examples where protein molecules are helically arranged, not only according to strict crystallographic screw axes but also according to approximate noncrystallographic screws. The preponderance of such screws is rather striking as helical arrangements in crystals must preserve an integer number of subunits per turn, while intuition and simple packing arguments would seem to favor fractional helices. The article provides insights into such questions, based on stereochemistry, trigonometry, and topology, and illustrates the findings with concrete PDB structures. Updated statistics of Sohncke space groups in the PDB are also presented.
Collapse
Affiliation(s)
- Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, 61-614, Poland.,Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
9
|
Frigola J, He J, Kinkelin K, Pye VE, Renault L, Douglas ME, Remus D, Cherepanov P, Costa A, Diffley JFX. Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun 2017; 8:15720. [PMID: 28643783 PMCID: PMC5490006 DOI: 10.1038/ncomms15720] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.
Collapse
Affiliation(s)
- Jordi Frigola
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Jun He
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Kerstin Kinkelin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
10065, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - John F. X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| |
Collapse
|
10
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Bell SD. Initiation of DNA Replication in the Archaea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:99-115. [PMID: 29357055 DOI: 10.1007/978-981-10-6955-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organisms within the archaeal domain of life possess a simplified version of the eukaryotic DNA replication machinery. While some archaea possess a bacterial-like mode of DNA replication with single origins of replication per chromosome, the majority of species characterized to date possess chromosomes with multiple replication origins. Genetic, structural, and biochemical studies have revealed the nature of archaeal origin specification. Recent work has begun to shed light on the mechanisms of replication initiation in these organisms.
Collapse
Affiliation(s)
- Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
12
|
Graham BW, Tao Y, Dodge KL, Thaxton CT, Olaso D, Young NL, Marshall AG, Trakselis MA. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. J Biol Chem 2016; 291:12467-12480. [PMID: 27044751 DOI: 10.1074/jbc.m116.719591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding.
Collapse
Affiliation(s)
- Brian W Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Katie L Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Carly T Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Nicolas L Young
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306; National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798.
| |
Collapse
|
13
|
Xia Y, Niu Y, Cui J, Fu Y, Chen XS, Lou H, Cao Q. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Front Microbiol 2015; 6:1247. [PMID: 26617586 PMCID: PMC4639711 DOI: 10.3389/fmicb.2015.01247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.
Collapse
Affiliation(s)
- Yisui Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Yang Fu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA, USA ; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles CA, USA ; Department of Chemistry, University of Southern California, Los Angeles CA, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| |
Collapse
|
14
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|
15
|
Stebbing J, Zhang H, Xu Y, Grothey A, Ajuh P, Angelopoulos N, Giamas G. Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics. Mol Cell Proteomics 2015; 14:2479-92. [PMID: 26089344 PMCID: PMC4563730 DOI: 10.1074/mcp.m115.048090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinases (TKs) are central regulators in cellular activities and perturbations of TK signaling contribute to oncogenesis. However, less than half of the TKs have been thoroughly studied and a global functional analysis of their proteomic portrait is lacking. Here we conducted a combined approach of RNA interference (RNAi) and stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics to decode the TK-regulated proteome and associated signaling dynamics. As a result, a broad proteomic repertoire modulated by TKs was revealed, upon silencing of the 65 TKs expressed in MCF7 breast cancer cells. This yielded 10 new distinctive TK clusters according to similarity in TK-regulated proteome, each characterized by a unique signaling signature in contrast to previous classifications. We provide functional analyses and identify critical pathways for each cluster based on their common downstream targets. Analysis of different breast cancer subtypes showed distinct correlations of each cluster with clinical outcome. From the significantly up- and down-regulated proteins, we identified a number of markers of drug sensitivity and resistance. These data supports the role of TKs in regulating major aspects of cellular activity, but also reveals redundancy in signaling, explaining why kinase inhibitors alone often fail to achieve their clinical aims. The TK-SILACepedia provides a comprehensive resource for studying the global function of TKs in cancer.
Collapse
Affiliation(s)
- Justin Stebbing
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Hua Zhang
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK;
| | - Yichen Xu
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Arnhild Grothey
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Paul Ajuh
- §Dundee Cell Products Ltd, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, UK
| | - Nicos Angelopoulos
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Georgios Giamas
- From the ‡Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| |
Collapse
|
16
|
Wiedemann C, Szambowska A, Häfner S, Ohlenschläger O, Gührs KH, Görlach M. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex. Nucleic Acids Res 2015; 43:2958-67. [PMID: 25712103 PMCID: PMC4357721 DOI: 10.1093/nar/gkv120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany Laboratory of Molecular Biology IBB PAS, affiliated with University of Gdansk, Wita Stwosza 59, Gdansk, Poland
| | - Sabine Häfner
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Karl-Heinz Gührs
- Protein laboratory, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Matthias Görlach
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| |
Collapse
|
17
|
Zhong X, Chen X, Guan X, Zhang H, Ma Y, Zhang S, Wang E, Zhang L, Han Y. Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology 2014; 66:192-200. [PMID: 24805087 DOI: 10.1111/his.12456] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022]
Abstract
AIMS Histone methyltransferase G9a has been primarily understood as a co-repressor of gene expression, but it has been shown that G9a also positively regulates nuclear receptor-mediated transcription. MCM7, a critical component of the DNA replication licensing complex, is amplified and overexpressed in a variety of human malignancies. The objectives of the present study were to study the relationship between the expression of G9a and MCM7 and the pathological grade, clinical stage and prognosis of oesophageal squamous cell carcinoma (OSCC). METHODS AND RESULTS We collected 139 formalin-fixed and paraffin-embedded tissues from patients with OSCC and surveyed them by tissue microarray-based immunohistochemical staining. Associations between the expression of MCM7 and G9a and clinicopathological parameters and prognosis of OSCC were examined. From tissue microarray immunohistochemistry staining results, we found that nuclear staining intensity for MCM7 and G9a was associated with histological grade (both P < 0.001), tumour depth (P = 0.050, 0.034), lymph node metastasis (P = 0.001, 0.009) and tumour stage (P < 0.001, =0.003). G9a expression was correlated with that of MCM7. G9a overexpression independently predicted poor cancer-specific survival in OSCC (hazard ratio 0.05, 95% confidence interval 0.006-0.417, P = 0.006) and MCM7 (hazard ratio 0.05, 95% confidence interval 0.013-0.441, P = 0.004). OSCC patients whose tumours showed double-positive expression of G9a and MCM7 (G9a(+) MCM7(+) ) had much shorter survival than those from either the G9a or MCM7 low expression groups (G9a(-) MCM7(-) , G9a(+) MCM7(-) , G9a(-) MCM7(+) ). CONCLUSIONS MCM7 and G9a may serve as effective prognostic factors and could also be used as biomarkers for predicting various clinical outcomes of OSCCs in the Chinese population.
Collapse
Affiliation(s)
- Xinwen Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol 2014; 1:e963429. [PMID: 27308340 PMCID: PMC4905024 DOI: 10.4161/23723548.2014.963429] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
Abstract
Genome integrity is achieved and maintained by the sum of all of the processes in the cell that ensure the faithful duplication and repair of DNA, as well as its genetic transmission from one cell division to the next. As central players in virtually all of the DNA transactions that occur in vivo, DNA helicases (molecular motors that unwind double-stranded DNA to produce single-stranded substrates) represent a crucial enzyme family that is necessary for genomic stability. Indeed, mutations in many human helicase genes are linked to a variety of diseases with symptoms that can be generally described as genomic instability, such as predispositions to cancers. This review focuses on the roles of both DNA replication helicases and recombination/repair helicases in maintaining genome integrity and provides a brief overview of the diseases related to defects in these enzymes.
Collapse
Affiliation(s)
- Matthew L Bochman
- Molecular and Cellular Biochemistry Department; Indiana University ; Bloomington, IN USA
| |
Collapse
|
19
|
MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014; 2014:574850. [PMID: 25386362 PMCID: PMC4217321 DOI: 10.1155/2014/574850] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 12/03/2022] Open
Abstract
As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.
Collapse
|
20
|
Wiedemann C, Ohlenschläger O, Medagli B, Onesti S, Görlach M. ¹H, ¹⁵N, and ¹³C chemical shift assignments for the winged helix domains of two archeal MCM C-termini. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:357-360. [PMID: 23934138 DOI: 10.1007/s12104-013-9516-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
High-fidelity replication guarantees the stable inheritance of genetic information stored in the DNA of living organisms. The minichromosome maintenance (MCM) complex functions as replicative DNA-unwinding helicase and has been identified as one key player in the replication process of archea and eukarya. Despite the availability of considerable structural information on archeal MCMs, such information was missing for their C-terminal domain. In order to obtain more detailed structural information, we assigned the NMR chemical shifts for backbone and side chain nuclei for the MCM C-terminal winged helix domains of the archeal species Methanothermobacter thermautrophicus and Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research-Fritz Lipman Institute, Beutenbergstr. 11, 07745, Jena, Germany,
| | | | | | | | | |
Collapse
|
21
|
Miller JM, Arachea BT, Epling LB, Enemark EJ. Analysis of the crystal structure of an active MCM hexamer. eLife 2014; 3:e03433. [PMID: 25262915 PMCID: PMC4359371 DOI: 10.7554/elife.03433] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 12/26/2022] Open
Abstract
In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis. DOI:http://dx.doi.org/10.7554/eLife.03433.001
Collapse
Affiliation(s)
- Justin M Miller
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Buenafe T Arachea
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Leslie B Epling
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
22
|
Activation of the MCM helicase from the thermophilic archaeon, Thermoplasma acidophilum by interactions with GINS and Cdc6-2. Extremophiles 2014; 18:915-24. [PMID: 25107272 DOI: 10.1007/s00792-014-0673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
In DNA replication studies, the mechanism for regulation of the various steps from initiation to elongation is a crucial subject to understand cell cycle control. The eukaryotic minichromosome maintenance (MCM) protein complex is recruited to the replication origin by Cdc6 and Cdt1 to form the pre-replication complex, and participates in forming the CMG complex formation with Cdc45 and GINS to work as the active helicase. Intriguingly, Thermoplasma acidophilum, as well as many other archaea, has only one Gins protein homolog, contrary to the heterotetramer of the eukaryotic GINS made of four different proteins. The Gins51 protein reportedly forms a homotetramer (TaGINS) and physically interacts with TaMCM. In addition, TaCdc6-2, one of the two Cdc6/Orc1 homologs in T. acidophilum reportedly stimulates the ATPase and helicase activities of TaMCM in vitro. Here, we found a reaction condition, in which TaGINS stimulated the ATPase and helicase activities of TaMCM in a concentration dependent manner. Furthermore, the stimulation of the TaMCM helicase activity by TaGINS was enhanced by the addition of TaCdc6-2. A gel retardation assay revealed that TaMCM, TaGINS, and TaCdc6-2 form a complex on ssDNA. However, glutaraldehyde-crosslinking was necessary to detect the shifted band, indicating that the ternary complex of TaMCM-TaGINS-TaCdc6-2 is not stable in vitro. Immunoprecipitation experiment supported a weak interaction of these three proteins in vivo. Activation of the replicative helicase by a mechanism including a Cdc6-like protein suggests the divergent evolution after the division into Archaea and Eukarya.
Collapse
|
23
|
Fu Y, Slaymaker IM, Wang J, Wang G, Chen XS. The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament. J Mol Biol 2014; 426:1512-23. [PMID: 24378617 DOI: 10.1016/j.jmb.2013.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022]
Abstract
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication.
Collapse
Affiliation(s)
- Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Slaymaker
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Junfeng Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ganggang Wang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Gleave ES, Schmidt H, Carter AP. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. J Struct Biol 2014; 186:367-75. [PMID: 24680784 PMCID: PMC4047620 DOI: 10.1016/j.jsb.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/05/2022]
Abstract
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins.
Collapse
Affiliation(s)
- Emma S Gleave
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Helgo Schmidt
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK
| | - Andrew P Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| |
Collapse
|
25
|
Kristensen TP, Maria Cherian R, Gray FC, MacNeill SA. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines. Front Microbiol 2014; 5:123. [PMID: 24723920 PMCID: PMC3972481 DOI: 10.3389/fmicb.2014.00123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
Collapse
Affiliation(s)
- Tatjana P Kristensen
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Reeja Maria Cherian
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Fiona C Gray
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark
| | - Stuart A MacNeill
- Department of Biology, University of Copenhagen, Københavns Biocenter Copenhagen N, Denmark ; School of Biology, University of St. Andrews North Haugh, St. Andrews, Fife, UK
| |
Collapse
|
26
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|