1
|
Hill SL, Rogan PK, Wang YX, Knoll JHM. Differentially accessible, single copy sequences form contiguous domains along metaphase chromosomes that are conserved among multiple tissues. Mol Cytogenet 2021; 14:49. [PMID: 34670606 PMCID: PMC8527651 DOI: 10.1186/s13039-021-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND During mitosis, chromatin engages in a dynamic cycle of condensation and decondensation. Condensation into distinct units to ensure high fidelity segregation is followed by rapid and reproducible decondensation to produce functional daughter cells. Factors contributing to the reproducibility of chromatin structure between cell generations are not well understood. We investigated local metaphase chromosome condensation along mitotic chromosomes within genomic intervals showing differential accessibility (DA) between homologs. DA was originally identified using short sequence-defined single copy (sc) DNA probes of < 5 kb in length by fluorescence in situ hybridization (scFISH) in peripheral lymphocytes. These structural differences between metaphase homologs are non-random, stable, and heritable epigenetic marks which have led to the proposed function of DA as a marker of chromatin memory. Here, we characterize the organization of DA intervals into chromosomal domains by identifying multiple DA loci in close proximity to each other and examine the conservation of DA between tissues. RESULTS We evaluated multiple adjacent scFISH probes at 6 different DA loci from chromosomal regions 2p23, 3p24, 12p12, 15q22, 15q24 and 20q13 within peripheral blood T-lymphocytes. DA was organized within domains that extend beyond the defined boundaries of individual scFISH probes. Based on hybridizations of 2 to 4 scFISH probes per domain, domains ranged in length from 16.0 kb to 129.6 kb. Transcriptionally inert chromosomal DA regions in T-lymphocytes also demonstrated conservation of DA in bone marrow and fibroblast cells. CONCLUSIONS We identified novel chromosomal regions with allelic differences in metaphase chromosome accessibility and demonstrated that these accessibility differences appear to be aggregated into contiguous domains extending beyond individual scFISH probes. These domains are encompassed by previously established topologically associated domain (TAD) boundaries. DA appears to be a conserved feature of human metaphase chromosomes across different stages of lymphocyte differentiation and germ cell origin, consistent with its proposed role in maintenance of intergenerational cellular chromosome memory.
Collapse
Affiliation(s)
- Seana L Hill
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
- Cytognomix Inc., London, ON, Canada
| | - Yi Xuan Wang
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Joan H M Knoll
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.
- Cytognomix Inc., London, ON, Canada.
| |
Collapse
|
2
|
Liu G, Zhang T. Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation. Int J Mol Sci 2021; 22:ijms22137124. [PMID: 34281175 PMCID: PMC8268824 DOI: 10.3390/ijms22137124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotides fluorescence in situ hybridization (Oligo-FISH) is an emerging technology and is an important tool in research areas such as detection of chromosome variation, identification of allopolyploid, and deciphering of three-dimensional (3D) genome structures. Based on the demand for highly efficient oligo probes for oligo-FISH experiments, increasing numbers of tools have been developed for probe design in recent years. Obsolete oligonucleotide design tools have been adapted for oligo-FISH probe design because of their similar considerations. With the development of DNA sequencing and large-scale synthesis, novel tools have been designed to increase the specificity of designed oligo probes and enable genome-scale oligo probe design, which has greatly improved the application of single copy oligo-FISH. Despite this, few studies have introduced the development of the oligo-FISH probe design tools and their application in FISH experiments systematically. Besides, a comprehensive comparison and evaluation is lacking for the available tools. In this review, we provide an overview of the oligo-FISH probe design process, summarize the development and application of the available tools, evaluate several state-of-art tools, and eventually provide guidance for single copy oligo-FISH probe design.
Collapse
Affiliation(s)
- Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
3
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
4
|
Caminsky NG, Mucaki EJ, Perri AM, Lu R, Knoll JHM, Rogan PK. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations. Hum Mutat 2016; 37:640-52. [PMID: 26898890 DOI: 10.1002/humu.22972] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
BRCA1 and BRCA2 testing for hereditary breast and ovarian cancer (HBOC) does not identify all pathogenic variants. Sequencing of 20 complete genes in HBOC patients with uninformative test results (N = 287), including noncoding and flanking sequences of ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51B, STK11, TP53, and XRCC2, identified 38,372 unique variants. We apply information theory (IT) to predict and prioritize noncoding variants of uncertain significance in regulatory, coding, and intronic regions based on changes in binding sites in these genes. Besides mRNA splicing, IT provides a common framework to evaluate potential affinity changes in transcription factor (TFBSs), splicing regulatory (SRBSs), and RNA-binding protein (RBBSs) binding sites following mutation. We prioritized variants affecting the strengths of 10 splice sites (four natural, six cryptic), 148 SRBS, 36 TFBS, and 31 RBBS. Three variants were also prioritized based on their predicted effects on mRNA secondary (2°) structure and 17 for pseudoexon activation. Additionally, four frameshift, two in-frame deletions, and five stop-gain mutations were identified. When combined with pedigree information, complete gene sequence analysis can focus attention on a limited set of variants in a wide spectrum of functional mutation types for downstream functional and co-segregation analysis.
Collapse
Affiliation(s)
- Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Computer Science, Faculty of Science, Western University, London, Ontario, Canada.,Cytognomix Inc, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Khan WA, Rogan PK, Knoll JHM. Reversing chromatin accessibility differences that distinguish homologous mitotic metaphase chromosomes. Mol Cytogenet 2015; 8:65. [PMID: 26273322 PMCID: PMC4535684 DOI: 10.1186/s13039-015-0159-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin-modifying reagents that alter histone associating proteins, DNA conformation or its sequence are well established strategies for studying chromatin structure in interphase (G1, S, G2). Little is known about how these compounds act during metaphase. We assessed the effects of these reagents at genomic loci that show reproducible, non-random differences in accessibility to chromatin that distinguish homologous targets by single copy DNA probe fluorescence in situ hybridization (scFISH). By super-resolution 3-D structured illumination microscopy (3D-SIM) and other criteria, the differences correspond to 'differential accessibility' (DA) to these chromosomal regions. At these chromosomal loci, DA of the same homologous chromosome is stable and epigenetic hallmarks of less accessible interphase chromatin are present. RESULTS To understand the basis for DA, we investigate the impact of epigenetic modifiers on these allelic differences in chromatin accessibility between metaphase homologs in lymphoblastoid cell lines. Allelic differences in metaphase chromosome accessibility represent a stable chromatin mark on mitotic metaphase chromosomes. Inhibition of the topoisomerase IIα-DNA cleavage complex reversed DA. Inter-homolog probe fluorescence intensity ratios between chromosomes treated with ICRF-193 were significantly lower than untreated controls. 3D-SIM demonstrated that differences in hybridized probe volume and depth between allelic targets were equalized by this treatment. By contrast, DA was impervious to chromosome decondensation treatments targeting histone modifying enzymes, cytosine methylation, as well as in cells with regulatory defects in chromatid cohesion. These data altogether suggest that DA is a reflection of allelic differences in metaphase chromosome compaction, dictated by the localized catenation state of the chromosome, rather than by other epigenetic marks. CONCLUSIONS Inhibition of the topoisomerase IIα-DNA cleavage complex mitigated DA by decreasing DNA superhelicity and axial metaphase chromosome condensation. This has potential implications for the mechanism of preservation of cellular phenotypes that enables the same chromatin structure to be correctly reestablished in progeny cells of the same tissue or individual.
Collapse
Affiliation(s)
- Wahab A. Khan
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1 ON Canada
| | - Peter K. Rogan
- />Departments of Biochemistry, Computer Science, and Oncology, University of Western Ontario, London, N6A 5C1 ON Canada
- />Cytognomix, Inc., London, N6G 4X8 ON Canada
| | - Joan H. M. Knoll
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1 ON Canada
- />Cytognomix, Inc., London, N6G 4X8 ON Canada
| |
Collapse
|
6
|
Bogomolov AG, Karamysheva TV, Rubtsov NB. Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions. Mol Biol 2014. [DOI: 10.1134/s002689331406003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Khan WA, Rogan PK, Knoll JHM. Localized, non-random differences in chromatin accessibility between homologous metaphase chromosomes. Mol Cytogenet 2014; 7:70. [PMID: 25520753 PMCID: PMC4269072 DOI: 10.1186/s13039-014-0070-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Condensation differences along the lengths of homologous, mitotic metaphase chromosomes are well known. This study reports molecular cytogenetic data showing quantifiable localized differences in condensation between homologs that are related to differences in accessibility (DA) of associated DNA probe targets. Reproducible DA was observed for ~10% of locus-specific, short (1.5-5 kb) single copy DNA probes used in fluorescence in situ hybridization. RESULTS Fourteen probes (from chromosomes 1, 5, 9, 11, 15, 17, 22) targeting genic and intergenic regions were developed and hybridized to cells from 10 individuals with cytogenetically-distinguishable homologs. Differences in hybridization between homologs were non-random for 8 genomic regions (RGS7, CACNA1B, GABRA5, SNRPN, HERC2, PMP22:IVS3, ADORA2B:IVS1, ACR) and were not unique to known imprinted domains or specific chromosomes. DNA probes within CCNB1, C9orf66, ADORA2B:Promoter-Ex1, PMP22:IVS4-Ex 5, and intergenic region 1p36.3 showed no DA (equivalent accessibility), while OPCML showed unbiased DA. To pinpoint probe locations, we performed 3D-structured illumination microscopy (3D-SIM). This showed that genomic regions with DA had 3.3-fold greater volumetric, integrated probe intensities and broad distributions of probe depths along axial and lateral axes of the 2 homologs, compared to a low copy probe target (NOMO1) with equivalent accessibility. Genomic regions with equivalent accessibility were also enriched for epigenetic marks of open interphase chromatin (DNase I HS, H3K27Ac, H3K4me1) to a greater extent than regions with DA. CONCLUSIONS This study provides evidence that DA is non-random and reproducible; it is locus specific, but not unique to known imprinted regions or specific chromosomes. Non-random DA was also shown to be heritable within a 2 generation family. DNA probe volume and depth measurements of hybridized metaphase chromosomes further show locus-specific chromatin accessibility differences by super-resolution 3D-SIM. Based on these data and the analysis of interphase epigenetic marks of genomic intervals with DA, we conclude that there are localized differences in compaction of homologs during mitotic metaphase and that these differences may arise during or preceding metaphase chromosome compaction. Our results suggest new directions for locus-specific structural analysis of metaphase chromosomes, motivated by the potential relationship of these findings to underlying epigenetic changes established during interphase.
Collapse
Affiliation(s)
- Wahab A Khan
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| | - Peter K Rogan
- />Departments of Biochemistry and Computer Science, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| | - Joan HM Knoll
- />Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5C1 Canada
- />Cytognomix, Inc, London, ON N6G 4X8 Canada
| |
Collapse
|
8
|
Jonker MJ, de Leeuw WC, Marinković M, Wittink FRA, Rauwerda H, Bruning O, Ensink WA, Fluit AC, Boel CH, Jong MD, Breit TM. Absence/presence calling in microarray-based CGH experiments with non-model organisms. Nucleic Acids Res 2014; 42:e94. [PMID: 24771343 PMCID: PMC4066771 DOI: 10.1093/nar/gku343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Structural variations in genomes are commonly studied by (micro)array-based comparative genomic hybridization. The data analysis methods to infer copy number variation in model organisms (human, mouse) are established. In principle, the procedures are based on signal ratios between test and reference samples and the order of the probe targets in the genome. These procedures are less applicable to experiments with non-model organisms, which frequently comprise non-sequenced genomes with an unknown order of probe targets. We therefore present an additional analysis approach, which does not depend on the structural information of a reference genome, and quantifies the presence or absence of a probe target in an unknown genome. The principle is that intensity values of target probes are compared with the intensities of negative-control probes and positive-control probes from a control hybridization, to determine if a probe target is absent or present. In a test, analyzing the genome content of a known bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful, demonstrated by receiver operating characteristic area under the curve values larger than 0.9995. We show its usability in various applications, such as comparing genome content and validating next-generation sequencing reads from eukaryotic non-model organisms.
Collapse
Affiliation(s)
- Martijs J Jonker
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Netherlands Bioinformatics Centre (NBIC), 6525 GA, Nijmegen, the Netherlands
| | - Wim C de Leeuw
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Netherlands Bioinformatics Centre (NBIC), 6525 GA, Nijmegen, the Netherlands
| | - Marino Marinković
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Floyd R A Wittink
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands
| | - Han Rauwerda
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Netherlands Bioinformatics Centre (NBIC), 6525 GA, Nijmegen, the Netherlands
| | - Oskar Bruning
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Netherlands Bioinformatics Centre (NBIC), 6525 GA, Nijmegen, the Netherlands
| | - Wim A Ensink
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands
| | - Ad C Fluit
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C H Boel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mark de Jong
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands
| | - Timo M Breit
- MicroArray Department & Integrative Bioinformatics Unit (MAD-IBU), Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam (UvA), 1098 XH, Amsterdam, the Netherlands Netherlands Bioinformatics Centre (NBIC), 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|